Skip to main content

Indirect Methods for the Optimization of Spacecraft Trajectories

  • Chapter
  • First Online:
Modeling and Optimization in Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 73))

Abstract

In this chapter, a general methodology to apply the theory of optimal control to spacecraft trajectories is outlined. This peculiar procedure allows for an almost mechanical derivation of the boundary conditions which must be satisfied by an optimal trajectory, depending on the specific constraints of the problem under analysis. The general way of posing the optimal control problem makes this indirect approach suitable to manage many specific features of the space missions, such as, impulsive and/or low-thrust engines, planetary flybys, atmospheric flight, and so on. Peculiarities of the problem simply modify the set of differential equations and boundary conditions in the context of the same theoretical frame. Examples will show that the indirect approach can deal efficiently with complex problems of space trajectory optimization. As in the case of direct methods, the indirect approach requires a tentative solution, and convergence to the optimum is typically obtained if the tentative solution is sufficiently close to the optimal one. Suitable procedures to find tentative guesses for the considered problems are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betts, T.: Survey of numerical methods for trajectory optimization. J. Guid. Contr. Dynam. 21, 193–207 (1998). doi: 10.2514/2.4231

    Article  MATH  Google Scholar 

  2. Bryson, E.A., Ho, Y.-C.: Applied Optimal Control. Hemisphere, New York, NY (1975)

    Google Scholar 

  3. Burghes, D.N., Graham, A.: Introduction to Control Theory, Including Optimal Control. Wiley, New York, NY (1980)

    MATH  Google Scholar 

  4. Casalino, L.: Singular arc during aerocruise. J. Guid. Contr. Dynam. 23, 118–123 (2000)

    Article  Google Scholar 

  5. Casalino, L., Colasurdo, G.: Optimization of variable-specific-impulse interplanetary trajectories. J. Guid. Contr. Dynam. 27, 678–684 (2004)

    Article  Google Scholar 

  6. Casalino, L., Colasurdo, G., Pastrone, D.: Optimization procedure for preliminary design of opposition-class Mars missions. J. Guid. Contr. Dynam. 21, 134–140 (1998)

    Article  MATH  Google Scholar 

  7. Casalino, L., Colasurdo, G., Pastrone, D.: Mission opportunities for human exploration of Mars. Planet. Space Sci. 46, 1613–1622 (1998)

    Article  Google Scholar 

  8. Casalino, L., Colasurdo, G., Pastrone, D.: Optimal low-thrust escape trajectories using gravity assist. J. Guid. Contr. Dynam. 22, 637–642 (1999)

    Article  Google Scholar 

  9. Casalino, L., Colasurdo, G., Rosa Sentinella, M.: Low-thrust trajectories to Mercury with multiple gravity assists. Paper AIAA 2007-5233, AIAA, Reston, VA (2007)

    Google Scholar 

  10. Casalino, L., Pastrone, D., Colasurdo, G.: Integrated design of hybrid rocket upper stage and launcher trajectory. Paper 2009-4843, AIAA, Reston, VA (2009)

    Google Scholar 

  11. Colasurdo, G., Pastrone, D.: Indirect optimization method for impulsive transfer. Paper AIAA 94–3762, AIAA, Reston, VA (1994)

    Google Scholar 

  12. Jehn, R.: BepiColombo a mission to Mercury. 21st International Symposium on Space Flight Dynamics (ISSFD), Toulouse, France, Sept 2009

    Google Scholar 

  13. Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  14. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963)

    MATH  Google Scholar 

  15. Olympio, J.T.: Designing optimal multi-gravity-assist trajectories with free number of impulses. International Symposium on Space Flights Dynamics, Toulouse, France. ESA ESTEC (2009). Available at http://www.esa.int/gsp/ACT/doc/MAD/pub/ACT-RPR-MAD-2009-DesignMGADSM.pdf

  16. Ranieri, C., Ocampo, C.: Optimizing finite-burn, round-trip trajectories with Isp constraints and mass discontinuities. J. Guid. Contr. Dynam. 28, 775–781 (2005). doi: 10.2514/1.9188

    Article  Google Scholar 

  17. Walberg, G.: How shall we go to Mars? A review of mission scenarios. J. Spacecraft Rockets 30, 129–139 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Casalino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Colasurdo, G., Casalino, L. (2012). Indirect Methods for the Optimization of Spacecraft Trajectories. In: Fasano, G., Pintér, J. (eds) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, vol 73. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4469-5_6

Download citation

Publish with us

Policies and ethics