Global Optimization Approaches for Optimal Trajectory Planning

  • Andrea Cassioli
  • Dario Izzo
  • David Di Lorenzo
  • Marco Locatelli
  • Fabio Schoen
Part of the Springer Optimization and Its Applications book series (SOIA, volume 73)


Optimal trajectory design for interplanetary space missions is an extremely hard problem, mostly because of the very large number of local minimizers that real problems present. Despite the challenges of the task, it is possible, in the preliminary phase, to design low-cost high-energy trajectories with little or no human supervision. In many cases, the discovered paths are as cheap, or even cheaper, as the ones found by experts through lengthy and difficult processes. More interestingly, many of the tricks that experts used to design the trajectories, like, e.g., traveling along an orbit in fractional resonance with a given planet, naturally emerge from the computed solutions, despite neither the model nor the solver have been explicitly designed in order to exploit such knowledge. In this chapter we will analyze the modelling techniques that computational experiments have shown to be most successful, along with some of the algorithms that might be used to solve such problems.


Global optimization Basin hopping Trajectory planning 


  1. 1.
    Addis, B., Locatelli, M., Schoen, F.: Disk packing in a square: A new global optimization approach. INFORMS J. on Computing 20(4), 516–524 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: A global optimization method for the design of space trajectories. COAP 3, 635–652 (2011)MathSciNetGoogle Scholar
  3. 3.
    Armellin, R., Di Lizia, P., Topputo, F., Lavagna, M., Bernelli-Zazzera, F., Berz, M.: Gravity assist space pruning based on differential algebra. Celestial Mech. Dyn. Astron. 106(1), 1–24 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the ‘simulated annealing’ algorithm. ACM Trans. Math. Software (TOMS) 13(3), 280 (1987)Google Scholar
  5. 5.
    Danby, J.: Fundamentals of Celestial Mechanics. Willman-Bell, Richmond (1988)Google Scholar
  6. 6.
    Di Lizia, P., Radice, G.: Advanced Global Optimisation Tools for Mission Analysis and Design. Tech. Rep. 03-4101b, European Space Agency, the Advanced Concepts Team, 2004Google Scholar
  7. 7.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Gil-Fernández, J., Graziano, M., Gomez-Tierno, M., Milic, E.: Autonomous Low-Thrust Guidance: Application to SMART-1 and BepiColombo. Ann. New York Acad. Sci. 1017, 307–327 (2004), Astrodynamics, Space Missions, and ChaosGoogle Scholar
  9. 9.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7, Software for Large-Scale Nonlinear Programming. Stanford Business Software Inc., Mountain View, USA (2006)Google Scholar
  11. 11.
    Greeley, R., Johnson, T., E.: Report of the NASA Science Definition Team for the Jupiter Icy Moons Orbiter. Tech. rep., NASA Science Definition Team, Feb. 2004Google Scholar
  12. 12.
    Grosso, A., Jamali, A., Locatelli, M., Schoen, F.: Solving the problem of packing equal and unequal circles in a circular container. J. Global Optim. 47(1), 63–81 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Izzo, D.: Lambert’s problem for exponential sinusoids. Tech. Rep. ACT-RPT-4100-DI-LMSP01, ESA, Apr. 2005Google Scholar
  14. 14.
    Izzo, D.: Global Trajectory Optimization Competition portal., July 2012
  15. 15.
    Izzo, D.: Global optimization and space pruning for spacecraft trajectory design. In: Spacecraft Trajectory Optimization, pp. 178–200. Cambridge University Press, New York (2010)Google Scholar
  16. 16.
    Izzo, D., Becerra, V., Myatt, D., Nasuto, S., Bishop, J.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J Global Optim. 38(2), 283–296 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Izzo, D., Vinko, T., Zapatero, M.: Global Trajectory Optimization Competition Database., July 2012
  18. 18.
    Katzkowski, M., Corral, C., Jehn, R., Pellon, J.-L., Landgraf, M., Khan, M., Yanez, A., Biesbroek, R.: BepiColombo Mercury Cornerstone Mission Analysis: Input to Definition Study. Tech. rep., ESA European Space Operations Centre, Apr. 2002Google Scholar
  19. 19.
    Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated Annealing. Science 220, 671–680 (1983)MathSciNetMATHGoogle Scholar
  20. 20.
    Leary, R.H.: Global optimization on funneling landscapes. J. Global Optim. 18, 367–383 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Locatelli, M.: On the multilevel structure of global optimization problems. Comput. Optim. Appl. 30(1), 5–22 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Locatelli, M., Vasile, M.: A hybrid multiagent approach for global trajectory optimization. J. Global Optim. 44(4), 461–479 (2009)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Myatt, D., Becerra, V., Nasuto, S., Bishop, J.: Advanced Global Optimisation Tools for Mission Analysis and Design. Tech. Rep. 03-4101a, European Space Agency, the Advanced Concepts Team, 2004Google Scholar
  24. 24.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, USA (2006)MATHGoogle Scholar
  25. 25.
    Parcher, D.W., Sims, J.A.: Gravity-assist trajectories to Jupiter using nuclear electric propulsion. In: AAS/AIAA Astrodynamics Specialist Conference, Aug. 2005Google Scholar
  26. 26.
    Sims, J.A., Flanagan, S.N.: Preliminary design of low-thrust interplanetary missions. In: AAS/AIAA Astrodynamics Specialist Conference, Aug. 1999Google Scholar
  27. 27.
    Strange, N.J., Sims, J.A.: Methods for the design of v-infinity leveraging maneuvers. In: AAS/AIAA Astrodynamics Specialist Conference, July/Aug. 2001Google Scholar
  28. 28.
    Tsiolkovsky, K.E.: Exploration of the universe with reaction machines (in Russian). Sci. Rev. 5 (1903)Google Scholar
  29. 29.
    Vasile, M., De Pascale, P.: Preliminary design of multiple gravity-assist trajectories. J. Spacecraft Rockets 43(4), 794–805 (2006)CrossRefGoogle Scholar
  30. 30.
    Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011)CrossRefGoogle Scholar
  31. 31.
    Vavrina, M.A., Howell, K.C.: Global low-thrust trajectory optimization through hybridization of a genetic algorithm and a direct method. In: AIAA/AAS Astrodynamics Specialist Conference, Aug. 2008Google Scholar
  32. 32.
    Vinko, T., Izzo, D.: Global Optimisation Heuristics and Test Problems for Preliminary Spacecraft Trajectory Design. Tech. Rep. GOHTPPSTD, European Space Agency, the Advanced Concepts Team, 2008Google Scholar
  33. 33.
    Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)CrossRefGoogle Scholar
  34. 34.
    Whiffen, G.J.: An investigation of a Jupiter Galilean Moon orbiter trajectory. In: AAS/AIAA Astrodynamics Specialist Conference, Aug. 2003Google Scholar
  35. 35.
    Yam, C.H., McConaghy, T.T., Chen, K.J., Longuski, J.M.: Design of low-thrust gravity-assist trajectories to the outer planets. In: 55th International Astronautical Congress, Oct. 2004Google Scholar
  36. 36.
    Yam, C.H., Biscani, F., Izzo, D.: Global optimization of low-thrust trajectories via impulsive Delta-V transcription. In: 27th International Symposium on Space Technology and Science, July 2009Google Scholar
  37. 37.
    Yam, C.H., McConaghy, T.T., Chen, K.J., Longuski, J.M.: Preliminary design of nuclear electric propulsion missions to the outer planets. In: AIAA/AAS Astrodynamics Specialist Conference, Aug. 2004Google Scholar
  38. 38.
    Yarnoz, D.G., Jehn, R., Croon, M.: Interplanetary navigation along the low-thrust trajectory of bepiColombo. Acta Astronautica 59(1–5), 284–293 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrea Cassioli
    • 1
  • Dario Izzo
    • 2
  • David Di Lorenzo
    • 1
  • Marco Locatelli
    • 3
  • Fabio Schoen
    • 1
  1. 1.Università di FirenzeFirenzeItaly
  2. 2.Advanced Concepts Team, European Space AgencyNoordwijkThe Netherlands
  3. 3.Università di ParmaParmaItaly

Personalised recommendations