Advertisement

Space Module On-Board Stowage Optimization by Exploiting Empty Container Volumes

Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 73)

Abstract

This chapter discusses a research activity recently carried out by Thales Alenia Space, to support International Space Station (ISS) logistics. We investigate the issue of adding a number of virtual items (i.e. items not given a priori) inside partially loaded containers, in order to exploit the volume still available on board as much as possible. Items already accommodated are supposed to be tetris-like, while the additional virtual items are assumed to be parallelepipeds. A mixed-integer non-linear programming (MINLP) model is introduced first, then possible linear (MILP) approximations are discussed, and a corresponding heuristic solution approach is proposed. Guidelines for future research are highlighted, and experimental insights are provided to show the efficiency of the proposed approach.

Keywords

Space cargo accommodation Container loading problem Non-standard three-dimensional packing Virtual items Tetris-like items MINLP models MILP approximations Heuristics 

References

  1. 1.
    Birgin, E., Martinez, J.M., Nishihara, F.H., Ronconi, D.P.: Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Comput. Oper. Res. 33(12), 3535–3548 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. Eur. J. Oper. Res. 80, 68–76 (1995)MATHCrossRefGoogle Scholar
  3. 3.
    Dyckhoff, H., Scheithauer, G., Terno, J.: Cutting and packing. In: Dell'Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliographies in Combinatorial Optimization. Wiley, Chichester (1997)Google Scholar
  4. 4.
    Fasano, G.: MIP-based heuristic for non-standard 3D-packing problems. 4OR 6, 291–310 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fasano, G.: A global optimization point of view to handle non-standard object packing problems. J. Global Optim. (2012) DOI: 10.1007/s10898-012-9865-8Google Scholar
  6. 6.
    Fasano, G., Saia, D., Piras, A.M.: Columbus stowage optimization by CAST (cargo accommodation support tool). Acta Astronautica 67(3), 489–496 (2010)CrossRefGoogle Scholar
  7. 7.
    Fekete, S., Schepers, J.: A combinatorial characterization of higher-dimensional orthogonal packing. Math. Oper. Res. 29, 353–368 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Floudas, C.A., Pardalos, P.M. (eds.): Encyclopedia of Optimization. Kluwer, Dordrecht (2001)MATHGoogle Scholar
  9. 9.
    Kallrath, J.: Mixed-integer nonlinear applications. In: Ciriani, T., Gliozzi, S., Johnson E.L., (eds.) Operations Research in Industry, pp. 42–76. McMillan Press, Great Britain (1999)Google Scholar
  10. 10.
    Kallrath, J.: Modeling difficult optimization problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn, pp. 2284–2297. Springer, New York (2008)Google Scholar
  11. 11.
    Liberti, L., Maculan, N. (eds.): Global Optimization: From Theory to Implementation. Springer, New York (2005)Google Scholar
  12. 12.
    Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Oper. Res. 48, 256–267 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Martello, S., Pisinger, D., Vigo, D., den Boef, E., Korst, J.: Algorithms for general and robot-packable variants of the three-dimensional bin packing problem. ACM Trans. Math. Software 33(1) (2007). article 7Google Scholar
  14. 14.
    Padberg, M.: Packing small boxes into a big box. Office of Naval Research, N00014-327, New York University, New York (1999)Google Scholar
  15. 15.
    Pisinger, D., Sigurd, M.M.: The two-dimensional bin packing problem with variable bin sizes and costs. Discrete Optim. 2, 154–167 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Pisinger, D., Sigurd, M.M.: Using decomposition techniques and constraints programming for solving the two-dimensional bin packing problem. INFORMS J. Comput. 19(1), 36–51 (2006). Winter 2007MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rebennack, S., Kallrath, J., Pardalos, P.M.: Column enumeration based decomposition techniques for a class of non-convex MINLP problems. J. Global Optim. 43(2–3), 277–297 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  19. 19.
    Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128(1–2), 49–72 (2009)MathSciNetGoogle Scholar
  20. 20.
    Wang, P.C., Tsai, J.F.: A superior piecewise linearization approach for assortment problems. In: EURO XXIV Conference, Lisbon, 11–14 July 2010Google Scholar
  21. 21.
    Williams, H.P.: Model Building in Mathematical Programming. Wiley, London (1993)Google Scholar
  22. 22.
    Zhu, Y., Kuno, T.: Global optimization of non-convex minlp by a hybrid branch-and-bound and revised general Benders decomposition approach. Ind. Eng. Chem. Res. 42(3), 528–539 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Thales Alenia Space Italia S.p.A.TurinItaly
  2. 2.Altran Italia S.p.A.TurinItaly

Personalised recommendations