Structure and Function of the Laryngeal and Pharyngeal Muscles

Chapter

Abstract

The muscles of the pharynx and larynx subserve critical airway, deglutitive and communication functions. The laryngeal muscles protect the lower airway from invasion and allow voice production for the purposes of communication. The muscles of the pharynx serve deglutitive functions by creating appropriate pressures to receive and propel a bolus and to shape the airway to modulate resonance during voice and speech production. Thus, the laryngeal and pharyngeal muscles are critically important to survival and to communication. The structure and function of these muscles are summarized in Table 9.1. A subset of these muscles will be discussed in this chapter as related to voice, swallowing, and airway functions.

Keywords

Fatigue Depression Respiration Adenosine Electrophoresis 

References

  1. Andrade FA (2010) Extraocular muscle metabolism. In: Dartt DA (ed) Encyclopedia of the eye, vol 2. Academic, Oxford, pp 105–110CrossRefGoogle Scholar
  2. Asanau A, Timoshenko AP, Prades JM, Galusca B, Martin C, Feasson L (2011) Posterior cricoarytenoid bellies: relationship between their function and histology. J Voice 25(2):e67–e73PubMedCrossRefGoogle Scholar
  3. Atkinson JE (1978) Correlation analysis of the physiological factors controlling fundamental voice frequency. J Acoust Soc Am 63(1):211–222PubMedCrossRefGoogle Scholar
  4. Baer T, Gay T, Niimi S (1976) Control of the fundamental frequency, intensity, and register of phonation. HLSRSR 45/46:205–210Google Scholar
  5. Belafsky PC (2010) Manual control of the upper esophageal sphincter. Laryngoscope 120(suppl 1):S1–S16PubMedCrossRefGoogle Scholar
  6. Belafsky PC, Rees CJ, Allen J, Leonard RJ (2010) Pharyngeal dilation in cricopharyngeus muscle dysfunction and zenker diverticulum. Laryngoscope 120(5):889–894PubMedGoogle Scholar
  7. Burnett TA, Mann EA, Cornell SA, Ludlow CL (2003) Laryngeal elevation achieved by neuromuscular stimulation at rest. J Appl Physiol 94(1):128–134PubMedGoogle Scholar
  8. Burnett TA, Mann EA, Stoklosa JB, Ludlow CL (2005) Self-triggered functional electrical stimulation during swallowing. J Neurophysiol 94(6):4011–4018PubMedCrossRefGoogle Scholar
  9. Collett PW, Brancatisano AP, Engel LA (1986) Upper airway dimensions and movements in bronchial asthma. Am Rev Respir Dis 133(6):1143–1149PubMedGoogle Scholar
  10. Collier R (1975) Physiological, correlates of intonation patterns. J Acoust Soc Am 58(1):249–256PubMedCrossRefGoogle Scholar
  11. Connor NP, Suzuki T, Lee K, Sewall GK, Heisey DM (2002) Neuromuscular junction changes in aged rat thyroarytenoid muscle. Ann Otol Rhinol Laryngol 111:579–586PubMedGoogle Scholar
  12. D’Antona G, Megighian A, Bortolotto S, Pellegrino MA, Marchese-Ragona R, Staffieri A et al (2002) Contractile properties and myosin heavy chain isoform composition in single fibres of human laryngeal muscles. J Muscle Res Cell Motil 23(3):187–195PubMedCrossRefGoogle Scholar
  13. Davis MV, Merati AL, Jaradeh SS, Blumin JH (2007) Myosin heavy chain composition and fiber size of the cricopharyngeus muscle in patients with achalasia and normal subjects. Ann Otol Rhinol Laryngol 116:643–646PubMedGoogle Scholar
  14. DelGaudio JM, Sciote JJ, Carroll WR, Escalmado RM (1995) Atypical myosin heavy chain in rat laryngeal muscle. Ann Otol Rhinol Laryngol 104(3):237–245PubMedGoogle Scholar
  15. Erickson D, Liberman M, Niimi S (1977) The geniohyoid and the role of the strap muscle. Haskins Lab Status Report in Speech Research (HLSRSR) SR-49:103–110Google Scholar
  16. Faaborg-Andersen K (1957) Electromyographic investigation of intrinsic laryngeal muscles in humans. Acta Physiol Scand 140S:1–149Google Scholar
  17. Faaborg-Andersen K, Sonninen A (1960) The function of the extrinsic laryngeal muscles at different pitch: an electromyographic and roentgenologic investigation. Acta Otolaryngol 51:89–93CrossRefGoogle Scholar
  18. Feinstein B, Lindegard B, Nyman E, Wohlfart G (1955) Morphologic studies of motor units in normal human muscles. Acta Anat 23:127–142PubMedCrossRefGoogle Scholar
  19. Gambino DR, Malmgren LT, Gacek RR (1990) Age-related changes in the neuromuscular junctions in the human posterior cricoarytenoid muscles: a quantitative study. Laryngoscope 100:262–268PubMedCrossRefGoogle Scholar
  20. Goyal RK, Martin SB, Shapiro J, Spechler SJ (1993) The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia 8(3):252–258PubMedCrossRefGoogle Scholar
  21. Halum SL, Shemirani NL, Merati AL, Jaradeh S, Toohill RJ (2006) Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles. Ann Otol Rhinol Laryngol 115(4):312–316PubMedGoogle Scholar
  22. Hammond CS, Davenport PW, Hutchison A, Otto RA (1997) Motor innervation of the cricopharyngeus muscle by the recurrent laryngeal nerve. J Appl Physiol 83(1):89–94PubMedGoogle Scholar
  23. Han Y, Wang J, Fischman DA, Biller HF, Sanders I (1999) Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds: a possible specialization for speech. Anat Rec 256(2):146–157PubMedCrossRefGoogle Scholar
  24. Hast MH (1969) The primate larynx: a comparative physiological study of intrinsic muscles. Acta Otolaryngol 67:84–92PubMedCrossRefGoogle Scholar
  25. Hinrichsen C, Dulhunty A (1982) The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat. J Muscle Res Cell Motil 3(2):169–190PubMedCrossRefGoogle Scholar
  26. Hirano M (1969) Recent advance in laryngeal electromyography in human. Kurume Med J 16(3):119–126PubMedCrossRefGoogle Scholar
  27. Hiss SG, Huckabee ML (2005) Timing of pharyngeal and upper esophageal sphincter pressures as a function of normal and effortful swallowing in young healthy adults. Dysphagia 20(2):149–156PubMedCrossRefGoogle Scholar
  28. Hixon TJ, Weismer G, Hoit JD (2008) Preclinical speech science. Plural Publishing, San DiegoGoogle Scholar
  29. Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM (2010) Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope 120:2367–2373PubMedCrossRefGoogle Scholar
  30. Hoh JF (2005) Laryngeal muscle fibre types. Acta Physiologica Scandinavica 183(2):133–149PubMedCrossRefGoogle Scholar
  31. Hong KH, Ye M, Kim YM, Kevorkian KF, Berke GS (1997) The role of strap muscles in phonation—in vivo canine laryngeal model. J Voice 11(1):23–32PubMedCrossRefGoogle Scholar
  32. Hwang K, Grossman MI, Ivy AC (1948) Nervous control of the cervical portion of the esophagus. Am J Physiol 154(2):343–357PubMedGoogle Scholar
  33. Inagi K, Schultz E, Ford CN (1998) An anatomic study of the rat larynx: establishing the rat model for neuromuscular function. Otolaryngol Head Neck Surg 118:74–81PubMedCrossRefGoogle Scholar
  34. Jung HH, Han SH, Choi JO (1999) Expression of myosin heavy chain mRNA in rat laryngeal muscles. Acta Otolaryngol 119(3):396–402PubMedCrossRefGoogle Scholar
  35. Kahrilas PJ (1997) Upper esophageal sphincter function during anterograde and retrograde transit. Am J Med 103(5A):56S–60SPubMedCrossRefGoogle Scholar
  36. Kenyon EL (1992) Significance of the extrinsic musculature of the larynx. J Am Med Assoc 79:428–431CrossRefGoogle Scholar
  37. Kersing W, Jennekens FG (2004) Age-related changes in human thyroarytenoid muscles: a histological and histochemical study. Eur Arch Otorhinolaryngol 261(7):386–392PubMedCrossRefGoogle Scholar
  38. Kirchner JA (1958) The motor activity of the cricopharyngeus muscle. Laryngoscope 68(7):1119–1159PubMedGoogle Scholar
  39. Kuna ST, Insalaco G (1990) Respiratory-related intrinsic laryngeal muscle activity in normal adults. Prog Clin Biol Res 345:117–124PubMedGoogle Scholar
  40. Kuna ST, Insalaco G, Woodson GE (1988) Thyroarytenoid muscle activity during wakefulness and sleep in normal adults. J Appl Physiol 65(3):1332–1339PubMedGoogle Scholar
  41. Kuna ST, Smickley JS, Insalaco G (1990) Posterior cricoarytenoid muscle activity during wakefulness and sleep in normal adults. J Appl Physiol 68(4):1746–1754PubMedGoogle Scholar
  42. Kuna ST, Insalaco G, Villeponteaux RD (1991) Arytenoideus muscle activity in normal adult humans during wakefulness and sleep. J Appl Physiol 70(4):1655–1664PubMedGoogle Scholar
  43. Lang IM, Shaker R (1997) Anatomy and physiology of the upper esophageal sphincter. Am J Med 103(5A):50S–55SPubMedCrossRefGoogle Scholar
  44. Lund WS (1965) A study of the cricopharyngeal sphincter in man and in the dog. Ann R Coll Surg Engl 37(4):225–246PubMedGoogle Scholar
  45. Lundy DS, Smith C, Colangelo L, Sullivan PA, Logemann JA, Lazarus CL et al (1999) Aspiration: cause and implications. Otolaryngol Head Neck Surg 120(4):474–478PubMedCrossRefGoogle Scholar
  46. Mathieu-Costello O, Szewczak JM, Logemann RB, Agey PJ (1992) Geometry of blood-tissue exchange in bat flight muscle compared with bat hindlimb and rat soleus muscle. Am J Physiol 262(6 pt 2):R955–R965PubMedGoogle Scholar
  47. McCulloch TM, Hoffman MR, Ciucci MR (2010) High-resolution manometry of pharyngeal swallow pressure events associated with head turn and chin tuck. Ann Otol Rhinol Laryngol 119(6):369–376PubMedGoogle Scholar
  48. McMullen CA, Andrade FH (2006) Contractile dysfunction and altered metabolic profile of the aging rat thyroarytenoid muscle. J Appl Physiol 100(2):602–608PubMedCrossRefGoogle Scholar
  49. McMullen CA, Andrade FH (2009) Functional and morphological evidence of age-related denervation in rat laryngeal muscles. J Gerontol A Biol Sci Med Sci 64:435–442PubMedCrossRefGoogle Scholar
  50. Merati AL, Bodine SC, Bennett T, Jung H-H, Furuta H, Ryan AF (1996) Identification of a novel myosin heavy chain gene expressed in the rat larynx. Biochim Biophys Acta 1306:153–159PubMedCrossRefGoogle Scholar
  51. Mu L, Sanders I (1998) Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol 107(5 pt 1):370–377PubMedGoogle Scholar
  52. Mu L, Sanders I (2002) Muscle fiber-type distribution pattern in the human cricopharyngeus muscle. Dysphagia 17:87–96PubMedCrossRefGoogle Scholar
  53. Nagai H, Ota F, Connor NP (2005) Effect of deficits in laryngeal sensation on laryngeal muscle biochemistry. Ann Otol Rhinol Laryngol 114(5):352–360PubMedGoogle Scholar
  54. Nasri S, Beizai P, Ye M, Sercarz JA, Kim YM, Berke GS (1997) Cross-innervation of the thyroarytenoid muscle by a branch from the external division of the superior laryngeal nerve. Ann Otol Rhinol Laryngol 106:594–598PubMedGoogle Scholar
  55. Niimi S, Horiguchi S, Kobayashi N (1991) F0 raising role of the sternothyroid muscle—an electromyographic study of two tenors. In: Gauffin NJ, Hammarberg B (eds) Vocal fold physiology. Singular Publishing Group, San Diego, pp 183–188Google Scholar
  56. Palmer J (1989) Electromyography of the muscles of oropharyngeal swallowing: basic concepts. Dysphagia 3:192–198PubMedCrossRefGoogle Scholar
  57. Perie S, St Guily JL, Callard P, Sebille A (1997) Innervation of adult human laryngeal muscle fibers. J Neurol Sci 149:81–86PubMedCrossRefGoogle Scholar
  58. Perie S, St Guily JL, Sebille A (1999) Comparison of perinatal and adult multi-innervation in human laryngeal muscle fibers. Ann Otol Rhinol Laryngol 108(7 pt 1):683–688PubMedGoogle Scholar
  59. Perie S, Agbulut O, St Guily JL, Butler-Browne GS (2000) Myosin heavy chain expression in human laryngeal muscle fibers. A biochemical study. Ann Otol Rhinol Laryngol 109(2):216–220PubMedGoogle Scholar
  60. Plant RL (1998) Anatomy and physiology of swallowing in adults and geriatrics. Otolaryngol Clin North Am 31(3):477–488PubMedCrossRefGoogle Scholar
  61. Powers S, Howley E (2004) Exercise physiology: theory and application to fitness and performance, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  62. Ren M, Mu L (2005) Intrinsic properties of the adult human mylohyoid muscle: neural organization, fiber-type distribution, and myosin heavy chain expression. Dysphagia 20:182–194PubMedCrossRefGoogle Scholar
  63. Rosen M, Malmgren LT, Gacek RR (1983) Three-dimensional computer reconstruction of the distribution of neuromuscular junctions in the thyroarytenoid muscle. Ann Otol Rhinol Laryngol 92:424–429PubMedGoogle Scholar
  64. Rosenfield DB, Miller RH, Sessions RB, Patten BM (1982) Morphologic and histochemical characteristics of laryngeal muscle. Arch Otolaryngol 108(10):662–666PubMedCrossRefGoogle Scholar
  65. Sanders I, Mu L (1998) Anatomy of the human internal superior laryngeal nerve. Anat Rec 252:646–656PubMedCrossRefGoogle Scholar
  66. Sanders I, Mu L, Wu BL, Biller HF (1993) The intramuscular nerve supply of the human lateral cricoarytenoid muscle. Acta Otolaryngol 113(5):679–682PubMedCrossRefGoogle Scholar
  67. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442PubMedCrossRefGoogle Scholar
  68. Sapir S, Campbell C, Larson C (1981) Effect of geniohyoid, cricothyroid and sternothyroid muscle stimulation on voice fundamental frequency of electrically elicited phonation in rhesus macaque. Laryngoscope 91(3):457–468PubMedCrossRefGoogle Scholar
  69. Sasaki CT, Kim YH, Sims HS, Czibulka A (1999) Motor innervation of the human cricopharyngeus muscle. Ann Otol Rhinol Laryngol 108(12):1132–1139PubMedGoogle Scholar
  70. Sciote JJ, Morris TJ, Brandon CA, Horton MJ, Rosen C (2002) Unloaded shortening velocity and myosin heavy chain variations in human laryngeal muscle fibers. Ann Otol Rhinol Laryngol 111(2):120–127PubMedGoogle Scholar
  71. Shin T, Hirano M, Maeyama T, Nozoe I, Ohkubo H (1981) The function of the extrinsic laryngeal muscles. In: Stevens K, Hirano M (eds) Vocal fold physiology. Tokyo: University of Tokyo Press, pp 171–180PubMedCrossRefGoogle Scholar
  72. Shiotani A, Flint PW (1998a) Expression of extraocular-superfast-myosin heavy chain in rat laryngeal muscles. Neuroreport 9(16):3639–3642PubMedCrossRefGoogle Scholar
  73. Shiotani A, Flint PW (1998b) Myosin heavy chain composition in rat laryngeal muscles after denervation. Laryngoscope 108(8 pt 1):1225–1229PubMedCrossRefGoogle Scholar
  74. Shiotani A, Jones RM, Flint PW (1999a) Postnatal development of myosin heavy chain isoforms in rat laryngeal muscles. Ann Otol Rhinol Laryngol 108(5):509–515PubMedGoogle Scholar
  75. Shiotani A, Westra WH, Flint PW (1999b) Myosin heavy chain composition in human laryngeal muscles. Laryngoscope 109(9):1521–1524PubMedCrossRefGoogle Scholar
  76. Shipp T (1975) Vertical laryngeal position during continuous and discrete vocal frequency change. J Speech Hear Res 18:707–718PubMedGoogle Scholar
  77. Sonninen AA (1956) The role of the external laryngeal muscles in length-adjustment of the vocal cords in singing: phoniatric, roentgenologic and experimental studies of the mechanism of pitch change in the voice with special reference to the function of the sternothyroid. Acta Otolaryngol Suppl 130:1–102PubMedGoogle Scholar
  78. Soussi-Yanicostas N, Barbet JP, Laurent-Winter C, Barton P, Butler-Browne GS (1990) Transition of myosin isozymes during development of human masseter muscle: persistence of developmental isoforms during postnatal stage. Development 108(2):239–249PubMedGoogle Scholar
  79. Sundman E, Ansved T, Margolin G, Kuylenstierna R, Eriksson LI (2004) Fiber-type composition and fiber size of the human cricopharyngeal muscle and the pharyngeal constrictor muscle. Acta Anaesthesiol Scand 48:423–429PubMedCrossRefGoogle Scholar
  80. Suzuki T, Connor NP, Lee K, Bless DM, Ford CN, Inagi K (2002) Age-related alterations in myosin heavy chain isoforms in rat intrinsic laryngeal muscles. Ann Otol Rhinol Laryngol 111(11):962–967PubMedGoogle Scholar
  81. Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  82. Ueda N, Ohyama M, Harvey J, Ogura J (1972) Influence of certain extrinsic laryngeal muscles on artificial voice production. Laryngoscope 82:468–482Google Scholar
  83. Vaiman M, Eviatar E, Segal S (2004) Evaluation of normal deglutition with the help of rectified surface electromyography records. Dysphagia 19(2):125–132PubMedCrossRefGoogle Scholar
  84. Van Daele DJ, McCulloch TM, Palmer PM, Langmore SE (2005) Timing of glottic closure during swallowing: a combined electromyographic and endoscopic analysis. Ann Otol Rhinol Laryngol 114(6):478–487PubMedGoogle Scholar
  85. van Lunteren E, Strohl KP (1986) The muscles of the upper airways. Clin Chest Med 7(2): 171–188PubMedGoogle Scholar
  86. Vilkman E, Sonninen A, Hurme P, Korkko P (1996) External laryngeal frame function in voice production revisited: a review. J Voice 10(1):78–92PubMedCrossRefGoogle Scholar
  87. Widmaier EP, Raff H, Strang KT (2004) Vander, Sherman, and Luciano’s human physiology: the mechanisms of body function, 9th edn. McGraw-Hill, BostonGoogle Scholar
  88. Wieczorek DF, Periasamy M, Butler-Browne GS, Whalen RG, Nadal-Ginard B (1985) Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J Cell Biol 101(2):618–629PubMedCrossRefGoogle Scholar
  89. Woodson G (1999) Laryngeal and pharyngeal function part one: breathing and speech. In: Cummings CW, Fredrickson JM, Harker LA, Krause CJ, Richardson MA, Schuller DE (eds) Otolaryngology head and neck surgery, 3rd edn. Mosby, St. LouisGoogle Scholar
  90. Wu YZ, Baker MJ, Crumley RL, Blanks RH, Caiozzo VJ (1998) A new concept in laryngeal muscle: multiple myosin isoform types in single muscle fibers of the lateral cricoarytenoid. Otolaryngol Head Neck Surg 118(1):86–94PubMedCrossRefGoogle Scholar
  91. Wu YZ, Crumley RL, Armstrong WB, Caiozzo VJ (2000) New perspectives about human laryngeal muscle: single-fiber analyses and interspecies comparisons. Arch Otolaryngol Head Neck Surg 126(7):857–864PubMedGoogle Scholar
  92. Yoshihara T, Ishii T, Iwata M, Nomoto M (1998) Ultrastructural and histochemical study of the motor end plates of the intrinsic laryngeal muscles in amyotrophic lateral sclerosis. Ultrastruct Pathol 22:121–126PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Departments of Communicative Disorders and SurgeryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations