Skip to main content

Head Muscle Development

  • Chapter
  • First Online:
Craniofacial Muscles
  • 1916 Accesses

Abstract

Vertebrate movement depends on trunk skeletal muscles, which are derived from the segmented paraxial mesoderm known as somites (Christ and Ordahl 1995). During embryogenesis, muscle precursor cells proliferate extensively prior to their differentiation and fusion into muscle fibers containing multiple nuclei. Skeletal muscle was the first tissue in which a determination gene for cell fate, MyoD, was identified in vertebrates (Weintraub et al. 1991). Molecular and technical advances in the last two decades have resulted in a detailed understanding of the embryology of this tissue, and its genetic regulation by key transcription factors, including the paired/homeobox genes Pax3 and Pax7, and the myogenic regulatory genes Myf5, MyoD, Mrf4, and Myogenin (MRFs: myogenic regulatory factors (Kassar-Duchossoy et al. 2004)). These genes are crucial for regulating muscle cell fate, as shown by genetic loss-of-function analyses. Because many transcription factors that regulate the fate of muscle progenitors have been identified, skeletal muscle tissue constitutes an ideal model for the study of organogenesis and regeneration (Tajbakhsh 2005). Questions related to the inductive processes and the molecular events underpinning embryonic myogenesis are currently under intensive study worldwide. Answers to these questions may provide basic insights into developmental biology, as well as to the growing field of regenerative medicine as myogenesis in adult muscle stem cells recapitulates that of the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amthor H, Christ B, Patel K (1999) A molecular mechanism enabling continuous embryonic muscle growth—a balance between proliferation and differentiation. Development 126:1041–1053

    PubMed  CAS  Google Scholar 

  • Arnold JS, Werling U, Braunstein EM, Liao J, Nowotschin S, Edelmann W, Hebert JM, Morrow BE (2006) Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Development 133:977–987

    PubMed  CAS  Google Scholar 

  • Baugh LR, Hunter CP (2006) MyoD, modularity, and myogenesis: conservation of regulators and redundancy in C. elegans. Genes Dev 20:3342–3346

    PubMed  CAS  Google Scholar 

  • Black BL (2007) Transcriptional pathways in second heart field development. Semin Cell Dev Biol 18:67–76

    PubMed  CAS  Google Scholar 

  • Bohnsack BL, Gallina D, Thompson H, Kasprick DS, Lucarelli MJ, Dootz G, Nelson C, McGonnell IM, Kahana A (2011) Development of extraocular muscles require early signals from periocular neural crest and the developing eye. Arch Ophthalmol 129:1030–1041

    PubMed  Google Scholar 

  • Borycki A, Brown AM, Emerson CP Jr (2000) Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127:2075–2087

    PubMed  CAS  Google Scholar 

  • Bothe I, Dietrich S (2006) The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev Dyn 235:2845–2860

    PubMed  CAS  Google Scholar 

  • Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532

    PubMed  CAS  Google Scholar 

  • Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    PubMed  CAS  Google Scholar 

  • Burke AC, Nowicki JL (2003) A new view of patterning domains in the vertebrate mesoderm. Dev Cell 4:159–165

    PubMed  CAS  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    PubMed  CAS  Google Scholar 

  • Capdevila J, Tabin C, Johnson RL (1998) Control of dorsoventral somite patterning by Wnt-1 and beta-catenin. Dev Biol 193:182–194

    PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191:381–396

    CAS  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15

    PubMed  CAS  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    PubMed  CAS  Google Scholar 

  • Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z, Rodriguez-Niedenfuhr M, Ataliotis P, Baldini A, Scambler P, Francis-West P (2007) Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev Dyn 236:353–363

    PubMed  CAS  Google Scholar 

  • Davidson B (2007) Ciona intestinalis as a model for cardiac development. Semin Cell Dev Biol 18:16–26

    PubMed  CAS  Google Scholar 

  • Davidson B, Shi W, Beh J, Christiaen L, Levine M (2006) FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. Genes Dev 20:2728–2738

    PubMed  CAS  Google Scholar 

  • Diehl AG, Zareparsi S, Qian M, Khanna R, Angeles R, Gage PJ (2006) Extraocular muscle morphogenesis and gene expression are regulated by Pitx2 gene dose. Invest Ophthalmol Vis Sci 47:1785–1793

    PubMed  Google Scholar 

  • Dong F, Sun X, Liu W, Ai D, Klysik E, Lu MF, Hadley J, Antoni L, Chen L, Baldini A et al (2006) Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133:4891–4899

    PubMed  CAS  Google Scholar 

  • Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336:137–144

    PubMed  CAS  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    PubMed  CAS  Google Scholar 

  • Ericsson R, Cerny R, Falck P, Olsson L (2004) Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. Dev Dyn 231:237–247

    PubMed  Google Scholar 

  • Evans SM, Yelon D, Conlon FL, Kirby ML (2010) Myocardial lineage development. Circ Res 107:1428–1444

    PubMed  CAS  Google Scholar 

  • Fukushige T, Brodigan TM, Schriefer LA, Waterston RH, Krause M (2006) Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development. Genes Dev 20:3395–3406

    PubMed  CAS  Google Scholar 

  • Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS (2000) Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127:5355–5365

    PubMed  CAS  Google Scholar 

  • Grenier J, Teillet MA, Grifone R, Kelly RG, Duprez D (2009) Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS One 4:e4381

    PubMed  Google Scholar 

  • Grifone R, Kelly RG (2007) Heartening news for head muscle development. Trends Genet 23:365–369

    PubMed  CAS  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    PubMed  CAS  Google Scholar 

  • Gustafsson MK, Pan H, Pinney DF, Liu Y, Lewandowski A, Epstein DJ, Emerson CP Jr (2002) Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 16:114–126

    PubMed  CAS  Google Scholar 

  • Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125:3461–3472

    PubMed  CAS  Google Scholar 

  • Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16:822–832

    PubMed  CAS  Google Scholar 

  • Harfe BD, Fire A (1998) Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development 125:421–429

    PubMed  CAS  Google Scholar 

  • Haun C, Alexander J, Stainier DY, Okkema PG (1998) Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proc Natl Acad Sci U S A 95:5072–5075

    PubMed  CAS  Google Scholar 

  • Helms JA, Cordero D, Tapadia MD (2005) New insights into craniofacial morphogenesis. Development 132:851–861

    PubMed  CAS  Google Scholar 

  • Herrel A, Podos J, Huber SK, Hendry AP (2005) Evolution of bite force in Darwin’s finches: a key role for head width. J Evol Biol 18:669–675

    PubMed  CAS  Google Scholar 

  • Heude E, Bouhali K, Kurihara Y, Kurihara H, Couly G, Janvier P, Levi G (2010) Jaw muscularization requires Dlx expression by cranial neural crest cells. Proc Natl Acad Sci U S A 107:11441–11446

    PubMed  CAS  Google Scholar 

  • Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquie O (1997) Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124:4605–4614

    PubMed  CAS  Google Scholar 

  • Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502

    PubMed  CAS  Google Scholar 

  • Hutson MR, Zhang P, Stadt HA, Sato AK, Li YX, Burch J, Creazzo TL, Kirby ML (2006) Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Dev Biol 295:486–497

    PubMed  CAS  Google Scholar 

  • Ikeya M, Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125:4969–4976

    PubMed  CAS  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    PubMed  CAS  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–1431

    PubMed  CAS  Google Scholar 

  • Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    PubMed  CAS  Google Scholar 

  • Kelly RG, Jerome-Majewska LA, Papaioannou VE (2004) The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum Mol Genet 13:2829–2840

    PubMed  CAS  Google Scholar 

  • Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701

    PubMed  CAS  Google Scholar 

  • Knight RD, Mebus K, Roehl HH (2008) Mandibular arch muscle identity is regulated by a conserved molecular process during vertebrate development. J Exp Zool B Mol Dev Evol 310:355–369

    PubMed  Google Scholar 

  • Kontges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242

    PubMed  CAS  Google Scholar 

  • Kuang S, Rudnicki MA (2008) The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 14:82–91

    PubMed  CAS  Google Scholar 

  • Laugwitz KL, Moretti A, Caron L, Nakano A, Chien KR (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135:193–205

    PubMed  CAS  Google Scholar 

  • Le Douarin NM, Ziller C, Couly GF (1993) Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev Biol 159:24–49

    PubMed  Google Scholar 

  • Lescroart F, Kelly RG, Le Garrec JF, Nicolas JF, Meilhac SM, Buckingham M (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279

    PubMed  CAS  Google Scholar 

  • Lin CY, Yung RF, Lee HC, Chen WT, Chen YH, Tsai HJ (2006) Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish. Dev Biol 299:594–608

    PubMed  CAS  Google Scholar 

  • Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai CL, Bu L, Yang L, Martin J, Kemler R et al (2007) beta-Catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci U S A 104:9313–9318

    PubMed  CAS  Google Scholar 

  • Lin CY, Chen WT, Lee HC, Yang PH, Yang HJ, Tsai HJ (2009) The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev Biol 331:152–166

    PubMed  CAS  Google Scholar 

  • Lu JR, Bassel-Duby R, Hawkins A, Chang P, Valdez R, Wu H, Gan L, Shelton JM, Richardson JA, Olson EN (2002) Control of facial muscle development by MyoR and capsulin. Science 298:2378–2381

    PubMed  CAS  Google Scholar 

  • McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1452

    PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, Turner D, Markwald RR (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    PubMed  CAS  Google Scholar 

  • Mootoosamy RC, Dietrich S (2002) Distinct regulatory cascades for head and trunk myogenesis. Development 129:573–583

    PubMed  CAS  Google Scholar 

  • Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    PubMed  CAS  Google Scholar 

  • Munsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9:2911–2922

    PubMed  CAS  Google Scholar 

  • Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E (2008) The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135:647–657

    PubMed  CAS  Google Scholar 

  • Noden DM (1983a) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276

    PubMed  CAS  Google Scholar 

  • Noden DM (1983b) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    PubMed  CAS  Google Scholar 

  • Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235:1194–1218

    PubMed  CAS  Google Scholar 

  • Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601

    PubMed  Google Scholar 

  • Noden DM, Marcucio R, Borycki AG, Emerson CP Jr (1999) Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev Dyn 216:96–112

    PubMed  CAS  Google Scholar 

  • Ogasawara M, Sasaki A, Metoki H, Shin-i T, Kohara Y, Satoh N, Satou Y (2002) Gene expression profiles in young adult Ciona intestinalis. Dev Genes Evol 212:173–185

    PubMed  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927

    PubMed  CAS  Google Scholar 

  • Olsson L, Falck P, Lopez K, Cobb J, Hanken J (2001) Cranial neural crest cells contribute to connective tissue in cranial muscles in the anuran amphibian, Bombina orientalis. Dev Biol 237:354–367

    PubMed  CAS  Google Scholar 

  • Ono Y, Boldrin L, Knopp P, Morgan JE, Zammit PS (2010) Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev Biol 337:29–41

    PubMed  CAS  Google Scholar 

  • Porter JD, Israel S, Gong B, Merriam AP, Feuerman J, Khanna S, Kaminski HJ (2006) Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol Genomics 24:264–275

    PubMed  CAS  Google Scholar 

  • Pourquie O (2001) Vertebrate somitogenesis. Annu Rev Cell Dev Biol 17:311–350

    PubMed  CAS  Google Scholar 

  • Pourquie O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Breant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84:461–471

    PubMed  CAS  Google Scholar 

  • Psychoyos D, Stern CD (1996) Fates and migratory routes of primitive streak cells in the chick embryo. Development 122:1523–1534

    PubMed  CAS  Google Scholar 

  • Rana MS, Horsten NC, Tesink-Taekema S, Lamers WH, Moorman AF, van den Hoff MJ (2007) Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res 100:1000–1007

    PubMed  CAS  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    PubMed  CAS  Google Scholar 

  • Reshef R, Maroto M, Lassar AB (1998) Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev 12:290–303

    PubMed  CAS  Google Scholar 

  • Rinon A, Lazar S, Marshall H, Buchmann-Moller S, Neufeld A, Elhanany-Tamir H, Taketo MM, Sommer L, Krumlauf R, Tzahor E (2007) Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134:3065–3075

    PubMed  CAS  Google Scholar 

  • Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    PubMed  CAS  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    PubMed  CAS  Google Scholar 

  • Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly R, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821

    PubMed  CAS  Google Scholar 

  • Satou Y, Imai KS, Satoh N (2004) The ascidian Mesp gene specifies heart precursor cells. Development 131:2533–2541

    PubMed  CAS  Google Scholar 

  • Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103:945–950

    PubMed  CAS  Google Scholar 

  • Schilling TF, Kimmel CB (1997) Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124:2945–2960

    PubMed  CAS  Google Scholar 

  • Shih HP, Gross MK, Kioussi C (2007) Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch. Proc Natl Acad Sci U S A 104:5907–5912

    PubMed  CAS  Google Scholar 

  • Stern HM, Brown AM, Hauschka SD (1995) Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1. Development 121:3675–3686

    PubMed  CAS  Google Scholar 

  • Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L (2010) Early chordate origins of the vertebrate second heart field. Science 329:565–568

    PubMed  CAS  Google Scholar 

  • Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S (2005) Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res 306:364–372

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125:4155–4162

    PubMed  CAS  Google Scholar 

  • Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3A regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189

    PubMed  CAS  Google Scholar 

  • Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 429, 1 p following 262

    Google Scholar 

  • Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953

    PubMed  CAS  Google Scholar 

  • Tokita M, Schneider RA (2009) Developmental origins of species-specific muscle pattern. Dev Biol 331:311–325

    PubMed  CAS  Google Scholar 

  • Trainor PA, Tam PP (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121:2569–2582

    PubMed  CAS  Google Scholar 

  • Trainor PA, Tan SS, Tam PP (1994) Cranial paraxial mesoderm: regionalisation of cell fate and impact on craniofacial development in mouse embryos. Development 120:2397–2408

    PubMed  CAS  Google Scholar 

  • Tzahor E (2009) Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol 327:273–279

    PubMed  CAS  Google Scholar 

  • Tzahor E, Evans SM (2011) Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. Cardiovasc Res 91(2):196–202

    PubMed  CAS  Google Scholar 

  • Tzahor E, Lassar AB (2001) Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 15:255–260

    PubMed  CAS  Google Scholar 

  • Tzahor E, Kempf H, Mootoosamy RC, Poon AC, Abzhanov A, Tabin CJ, Dietrich S, Lassar AB (2003) Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17:3087–3099

    PubMed  CAS  Google Scholar 

  • Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL (2005) The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 287:134–145

    PubMed  CAS  Google Scholar 

  • Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41

    PubMed  Google Scholar 

  • Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611

    PubMed  CAS  Google Scholar 

  • von Scheven G, Alvares LE, Mootoosamy RC, Dietrich S (2006) Neural tube derived signals and Fgf8 act antagonistically to specify eye versus mandibular arch muscles. Development 133:2731–2745

    Google Scholar 

  • Wachtler F, Jacob M (1986) Origin and development of the cranial skeletal muscles. Bibl Anat 29:24–46

    PubMed  Google Scholar 

  • Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

  • Waldo KL, Hutson MR, Stadt HA, Zdanowicz M, Zdanowicz J, Kirby ML (2005) Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field. Dev Biol 281:66–77

    PubMed  CAS  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    PubMed  CAS  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldad Tzahor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harel, I., Tzahor, E. (2012). Head Muscle Development. In: McLoon, L., Andrade, F. (eds) Craniofacial Muscles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4466-4_2

Download citation

Publish with us

Policies and ethics