Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 221))

Abstract

Groundwater (GW) constitutes the most important source of drinking water, and despite the benefit of pesticides in food production, the contamination of GW by biologically active pesticides at unacceptable levels should be avoided. A number of pesticides and their degradation products have frequently been detected in field GW monitoring programs (Cohen et al. 1984; Hancock et al. 2008; Kolpin et al. 2000). Regulatory agencies in each country are responsible for preventing contamination of GW by pesticides or their degradates. Regulators have developed methods to assess both existing and newly developed pesticides for any tendency to leach in soil. The US EPA has performed monitoring studies to determine if pesticides contaminate GW (Wells et al. 1995) and has recently introduced a conceptual environmental model to better evaluate GW contamination (USEPA 2008b). In Europe, a stepwise evaluation procedure for regulating GW contamination by pesticides and their degradates is used, and this has recently been updated; the revision not only utilizes computer simulations of predicted environmental concentrations to determine if the 0.1 ppb trigger level is exceeded, but also relies on data from higher-tier field experiments (Boesten et al. 2009). To estimate the leaching behavior of a pesticide in soil or to compare its relative mobility with other pesticides, the sophisticated simulation approaches used generally require considerable data on the environmental fate of the pesticide. Because the cost of conducting field experiments over extended time periods can be extremely high, it is useful to collect relevant information on pesticide soil mobility by first using experimental laboratory approaches. For soil mobility, such approaches include batch adsorption studies, soil thin-layer chromatography, and soil column leaching (Häfner 1994; Helling and Dragun 1981; USEPA 2008a). Although laboratory soil column leaching and batch adsorption/desorption studies have been performed on many pesticides, the results of these studies do not always reflect what actually occurs in the field. Nevertheless, such studies normally provide valuable information on the potential mobility of pesticides in soil if they are well-controlled and focused, and the results are mathematically analyzed using an appropriate model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla AR, Sinnakkannu S, Tahir NM (2001) Adsorption, desorption and mobility of metsulfuron-methyl in Malaysian agricultural soils. Bull Environ Contam Toxicol 66:762–769

    Google Scholar 

  • Abu-Zreig M, Rudra RP, Dickinson WT (2000) Influence of surfactant on leaching of atrazine through soil columns. Toxicol Environ Chem 75:1–16

    CAS  Google Scholar 

  • Aharonson N, Kafkafi U (1975) Adsorption, mobility and persistence of thiabendazole and methyl 2-benzimidazolecarbamate. J Agric Food Chem 23:720–724

    CAS  Google Scholar 

  • Aharonson N, Cohen SZ, Drescher N, Gish TJ, Gorbach S, Kearney PC, Otto S, Roberts TR, Vonk JW (1987) Potential contamination of ground water by pesticides. Pure Appl Chem 59:1419–1446

    CAS  Google Scholar 

  • Aktar MW, Sengupta D, Purkait S, Chowdhury A (2009) Vertical migration of some herbicides through undisturbed and homogenized soil columns. Orbital 1:17–25

    CAS  Google Scholar 

  • Alhajjar BJ, Simsiman GV, Chesters G (1990) Fate and transport of alachlor, metolachlor and atrazine in large columns. Water Sci Technol 22:87–94

    CAS  Google Scholar 

  • Alister C, Rojas S, Gómez P, Kogan M (2008) Dissipation and movement of flumioxazin in soil at four field sites in Chile. Pestic Manag Sci 64:579–583

    CAS  Google Scholar 

  • Anderson JJ, Dulka JJ (1985) Environmental fate of sulfometuron methyl in aerobic soils. J Agric Food Chem 33:596–602

    CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere—Plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    CAS  Google Scholar 

  • Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plants. Chemosphere 28:1551–1557

    CAS  Google Scholar 

  • Angley JT, Brusseau ML, Lamar Miller W, Delfino JJ (1992) Nonequilibrium sorption and aerobic biodegradation of dissolved alkylbenzenes during transport in aquifer material: Column experiments and evaluation of a coupled-process model. Environ Sci Technol 26:1404–1410

    CAS  Google Scholar 

  • Arienzo M, Crisanto T, Sánchez-Martín MJ, Sánchez-Camazano M (1994) Effect of soil characteristics on adsorption and mobility of (14C) diazinon. J Agric Food Chem 42:1803–1808

    CAS  Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Coats JR (1998) Mobility and degradation of pesticides and their degradates in intact soil columns. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, chap 7, pp 88–114

    Google Scholar 

  • Baker FC, Estigoy L, Kimmel E, Ikemoto Y, Kimura Y, Shigemura M (2002) Field dissipation [14C] ET-751 (pyraflufen-ethyl) in bare ground in California. High specific activity radiolabelled test substance and small plot design afford excellent method to measure field dissipation. In: Authur EL, Barefoot AC, Clay VE (eds) Terrestrial field dissipation studies—Purpose, design and interpretation. ACS Symp Ser 842, American Chemical Society, Washington DC, chap 11, pp 156–169

    Google Scholar 

  • Ballard M (1971) Role of humic carrier substances in DDT movement through forest soil. Soil Sci Soc Am Proc 35:145–147

    CAS  Google Scholar 

  • Barnes RD, Bull AT, Poller RC (1973) Studies on the persistence of the organotin fungicide fentin acetate (triphenyltin acetate) in the soil and on surfaces exposed to light. Pestic Sci 4:305–317

    CAS  Google Scholar 

  • Barton CD, Karathanasis AD (2003) Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths. Water Air Soil Pollut 143:3–21

    CAS  Google Scholar 

  • Baskaran S, Bolan NS, Rahman A, Tillman RW (1996) Non-equilibrium sorption during the movement of pesticides in soils. Pestic Sci 46:333–343

    CAS  Google Scholar 

  • Baskaran S, Bolan NS, Rahman A, Tillman RW, Macregor AN (1994) Effect of drying of soils on the adsorption and leaching of phosphate and 2,4-dichlorophenoxyacetic acid. Aust J Soil Res 32:491–502

    CAS  Google Scholar 

  • BBA (1990) Lysimeter tests for the translocation of plant protection products into the subsoil. In: Guidelines for the official testing of plant protection products, Part IV, 4–3. Biological Research Center for Agriculture and Forestry, Braunschweig

    Google Scholar 

  • Beck AJ, Lam V, Henderson DE, Beven KJ, Harris GL, Howse KR, Johnston AEJ, Jones KC (1995) Movement of water and herbicides atrazine and isoproturon through a large saturated clay soil core. J Contam Hydrol 19:237–260

    CAS  Google Scholar 

  • Beckie HJ, McKercher RB (1990) Mobility of two sulfonylurea herbicides in soil. J Agric Food Chem 38:310–315

    CAS  Google Scholar 

  • Bedmar F, Costa JL, Suero E, Gimenez D (2004) Transport of atrazine and metribuzin in three soils of the humid pampas of Argentina. Weed Technol 18:1–8

    CAS  Google Scholar 

  • Behrendt H, Matthies M, Gildemeister H, Görlitz G (1990) Leaching and transformation of glufosinate-ammonium and its main metabolite in a layered soil column. Environ Toxicol Chem 9:541–549

    CAS  Google Scholar 

  • Beigel C, Di Pietro L (1999) Transport of triticonazole in homogeneous soil columns: Influence of nonequilibrium sorption. Soil Sci Soc Am J 63:1077–1086

    CAS  Google Scholar 

  • Belden JB, Coats JR (2004) Effect of grasses on herbicide fate in the soil column: Infiltration of runoff, movement and degradation. Environ Toxicol Chem 23:2251–2258

    CAS  Google Scholar 

  • Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139:279–287

    CAS  Google Scholar 

  • Benoit P, Barriuso E, Vindon P, Réal B (2000) Isoproturon movement and dissipation in undisturbed soil cores from a grassed buffer strip. Agronomie 20:297–307

    Google Scholar 

  • Bergström L (1990) Use of lysimeters to estimate leaching of pesticides in agricultural soils. Environ Pollut 67:325–347

    Google Scholar 

  • Bergström L (2000) Leaching of agrochemicals in field lysimeters—A method to test mobility of chemicals in soil. In: Cornejo J, Jamet P (eds) Pesticide/Soil Interactions. Some Current Research Methods, INRA, Paris, pp 279–285

    Google Scholar 

  • Bergström L, Jarvis NJ (1993) Leaching of dichlorprop, bentazon and 36Cl in undisturbed field lysimeters of different agricultural soils. Weed Sci 41:251–261

    Google Scholar 

  • Beulke S, Dubus IG, Brown CD, Gottesbüren B (2000) Simulation of pesticide persistence in the field on the basis of laboratory data—A review. J Environ Qual 29:1371–1379

    CAS  Google Scholar 

  • Beulke S, Brown CD, Fryer CJ, Walker A (2001) Lysimeter study to investigate the effect of rainfall pattern on leaching of isoproturon. Pestic Manag Sci 58:45–53

    Google Scholar 

  • Beulke S, Brown CD, Fryer CJ, van Beinum W (2004a) Influence of kinetic sorption and diffusion on pesticide movement through aggregated soils. Chemosphere 57:481–490

    CAS  Google Scholar 

  • Beulke S, Brown CD, Dubus IG, Fryer CJ, Walker A (2004b) Evaluation of probabilistic modeling approaches against data on leaching of isoproturon through undisturbed lysimeters. Ecolog Modelling 179:131–144

    CAS  Google Scholar 

  • Beulke S, van Beinum W, Brown CD, Mitchell M, Walker A (2005) Evaluation of simplifying assumption on pesticide degradation in soil. J Environ Qual 34:1933–1943

    CAS  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Res 18:1311–1325

    Google Scholar 

  • Bewick D (1994) The mobility of pesticides in soil—Studies to prevent groundwater contamination. In: Börner H (ed) Chemistry of plant protection. Pesticides in ground and surface water, vol 9. Springer Verlag, Berlin, pp 57–86

    Google Scholar 

  • Bi E, Schmidt TC, Haderlein SB (2006) Sorption of heterocyclic organic compounds to reference soils: Column studies for process identification. Environ Sci Technol 40:5962–5970

    CAS  Google Scholar 

  • Bi E, Schmidt TC, Haderlein SB (2007) Environmental factors influencing sorption of heterocyclic aromatic compounds to soil. Environ Sci Technol 41:3172–3178

    CAS  Google Scholar 

  • Bi E, Schmidt TC, Haderlein SB (2010) Practical issues relating to soil column chromatography for sorption parameter determination. Chemosphere 80:787–793

    CAS  Google Scholar 

  • Bilkert JN, Rao PSC (1985) Sorption and leaching of three nonfumigant nematicides in soils. J Environ Sci Health 20B:1–26

    Google Scholar 

  • Blasioli S, Braschi I, Pinna MV, Pusino A, Gessa CE (2008) Effect of undesalted dissolved organic matter from composts on persistence, adsorption and mobility of cyhalofop herbicide in soils. J Agric Food Chem 56:4102–4111

    CAS  Google Scholar 

  • Boesten JJTI (1991) Sensitivity analysis of a mathematical model for pesticide leaching to groundwater. Pestic Sci 31:375–388

    CAS  Google Scholar 

  • Boesten JJTI, van der Linden AMA (1991) Modelling the influence of sorption and transformation on pesticide leaching and persistence. J Environ Qual 20:425–435

    CAS  Google Scholar 

  • Boesten JJTI, Fischer R, Gottesbüren B, Hanze K, Huber A, Jarvis T, Jones RL, Klein M, Pokludová M, Remy B, Sweeney P, Tiktak A, Trevisan M, Vanclooster M, Vanderborght J (2009) Assessing potential for movement of active substances and their metabolites to ground water in the EU. Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/13144/2010 version 1. pp 604

    Google Scholar 

  • Börjesson E, Torstensson L, Stenström J (2004) The fate of imazapyr in a Swedish railway embankment. Pestic Manag Sci 60:544–549

    Google Scholar 

  • Brown CD, Carter AD, Hollis JM (1995) Soils and pesticide mobility. In: Roberts TR, Kearney PC (eds) Progress in pesticide biochemistry and toxicology. Environmental behavior of agrochemicals, chap. 3, vol 9. Wiley, Chichester, pp 131–184

    Google Scholar 

  • Brown CD, Fryer CJ, Walker A (2001) Influence of topsoil tilth and soil moisture status on losses of pesticide to drains from a heavy clay soil. Pestic Manag Sci 57:1127–1134

    CAS  Google Scholar 

  • Brown CD, Hollis JM, Bettinson RJ, Walker A (2000) Leaching of pesticides and a bromide tracer through lysimeter from five contrasting soils. Pestic Manag Sci 56:83–93

    CAS  Google Scholar 

  • Brown CD, Marshall VL, Deas A, Carter AD, Arnold D, Jones RL (1990) Investigation into the effect of tillage on solute movement to drain through a heavy clay soil. II. Interpretation using a radio-scanning technique, dye-tracing and modeling. Soil Use Manag 15:94–100

    CAS  Google Scholar 

  • Brown CD, Marshall VL, Carter AD, Walker A, Arnold D, Jones RL (1999) Investigation into the effect of tillage on solute movement to drains through a heavy clay soil. I. Lysimeter experiment. Soil Use Manag 15:84–93

    Google Scholar 

  • Brumhard B, Bergström LF, Snel M, Führ F, Baloch RI, Trozelli H (1991) Dissipation of clopyralid in soil under field conditions: Lysimeter studies in Germany and Sweden. Med Fac Landbouww Rijksuniv Gent 56/3a: 887–900

    Google Scholar 

  • Brusseau ML, Jessup RE, Rao PSC (1991) Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes. Environ Sci Technol 25:134–142

    CAS  Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spot’ in soils. Soil Biol Biochem 33:729–738

    CAS  Google Scholar 

  • Burauel P, Führ F (2000) Formation and long-term fate of non-extractable residues in outdoor lysimeter studies. Environ Pollut 108:45–52

    CAS  Google Scholar 

  • Calderón MJ, Ortega M, Hermosín MC, García-Baudín J, Cornejo J (2004) Hexazinone and simazine dissipation in forestry field nurseries. Chemosphere 54:1–8

    Google Scholar 

  • Capri E, Miao Z (2002) Modelling pesticide fate in rice paddy. Agronomie 22:363–371

    Google Scholar 

  • Caracciolo AB, Giuliano G, Grenni P, Guzzella L, Pozzoni F, Bottoni P, Fava L, Crobe A, Orrú M, Funari E (2005) Degradation and leaching of the herbicides metolachlor and diuron: a case study in an area of Northern Italy. Environ Pollut 134:525–534

    Google Scholar 

  • Caron J, Banton O, Angers DA, Villeneuve JP (1996) Preferential bromide transport through a clay loam under alfalfa and corn. Geoderma 69:175–191

    CAS  Google Scholar 

  • Carter AD, Fogg P (1995) A critical evaluation of field monitoring techniques used to describe the leaching and run-off behavior of pesticides. In: Walker A, Allen R, Bailey SW, Blair AM, Brown CD, Günther P, Leake CR, Nichollas PH (eds) Pesticide Movement to Water. BCPC Monograph No. 62. British Crop Protection Council, 2–1, Brighton, pp 71–80

    Google Scholar 

  • Celis R, Cox L, Hermosin MC, Cornejo J (2001) Porosity and surface fractal dimension of soils as affecting sorption, degradation and mobility of polar herbicides. BCPC Symposium Proceedings No. 78: Pesticide behaviour in soils and water. British Crop Protection Council, Brighton, pp 77–82

    Google Scholar 

  • Celis R, Real M, Hermosín MC, Cornejo J (2005) Sorption and leaching behaviour of polar aromatic acids in agricultural soils by batch and column leaching tests. Eur J Soil Sci 56:287–297

    CAS  Google Scholar 

  • Chang HT, Ying W (1998) A small-scale ground water leaching study for a primisulfuron herbicide. Ground Water Monitor Remed 18:103–110

    CAS  Google Scholar 

  • Charnay MP, Tuis S, Coquet Y, Barriuso E (2005) Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Pestic Manag Sci 61:845–855

    CAS  Google Scholar 

  • Chen W, Wagenet RJ (1997) Description of atrazine transport in soil with heterogeneous nonequilibrium sorption. Soil Sci Soc Am J 61:360–371

    CAS  Google Scholar 

  • Chen G, Lin C, Chen L, Yang H (2010) Effect of size-fractionation dissolved organic matter on the mobility of prometryn in soil. Chemosphere 79:1046–1055

    CAS  Google Scholar 

  • Cherrier R, Boivin A, Perrin-Ganier C, Schiavon M (2005) Sulcotrione versus atrazine transport and degradation in soil columns. Pestic Manag Sci 61:899–904

    CAS  Google Scholar 

  • Chiang HC, Duh JR, Wang YS (2001) Butachlor, thiobencarb and chlomethoxyfen movement in subtropical soils. Bull Environ Contam Toxicol 66:1–8

    CAS  Google Scholar 

  • Chopra I, Kumari B, Sharma SK (2010) Evaluation of leaching behaviour of pendimethalin in sandy loam soil. Environ Monit Assess 160:123–126

    CAS  Google Scholar 

  • Clay SA, Koskinen WC, Carlson P (1991) Alachlor movement through intact soil columns taken from two tillage systems. Weed Technol 5:485–489

    CAS  Google Scholar 

  • Cohen SZ (1998) Successful evaluation of EPA’s new screening model. Ground Water Monit Remed 18:55–57

    Google Scholar 

  • Cohen SZ, Creeger SM, Carsel RF, Enfield CG (1984) Potential for pesticide contamination of ground water from agricultural uses. In: Krueger RF, Seiber JN (eds) Treatment and disposal of pesticide wastes. ACS Symp Ser 259, American Chemical Society, Washington DC, chap 18, pp 297–325

    Google Scholar 

  • Comfort SD, Inskeep WP, Macur RE (1992) Degradation and transport of dicamba in a clay soil. J Environ Qual 21:653–658

    CAS  Google Scholar 

  • Conrad A, Dedourge O, Cherrier R, Couderchet M, Biagianti S (2006) Leaching of terbumeton and terbumeton-desethyl from mini-columns packed with soil aggregates in laboratory conditions. Chemosphere 65:1600–1609

    CAS  Google Scholar 

  • Copin A, Jamet P, Deleu R, Grieβbach E, Roche-Hoyoux D, Kerhoas L, Dréze P (2000) Methodology for microlysimeters set up in semi-controlled or field conditions. In: Cornejo J, Jamet P (eds) Pesticide/Soil Interactions. Some Current Research Methods, INRA, Paris, pp 261–266

    Google Scholar 

  • Coquet Y, Barriuso E (2002) Spatial variability of pesticide adsorption within the topsoil of a small agricultural catchment. Agronomie 22:389–398

    Google Scholar 

  • Corbin M, Eckel W, Ruhman M, Spatz D, Thurman N, Gangaraju R, Kuchnicki T, Mathew R, Nicholson I (2006) NAFTA Guidance Document for Conducting Terrestrial Field Dissipation Studies. pp 58

    Google Scholar 

  • Cox L, Walker A, Hermosín MC, Cornejo J (1996) Measurement and simulation of the movement of thiazafluron, clopyralid and metamitron in soil columns. Weed Res 36:419–429

    CAS  Google Scholar 

  • Cox L, Calderón MJ, Hermosín MC, Cornejo J (1999) Leaching of clopyralid and metamitron under conventional and reduced tillage systems. J Environ Qual 28:605–610

    CAS  Google Scholar 

  • Cox L, Celis R, Hermosín MC, Cornejo J (2000) Natural soil colloids to retard simazine and 2,4-D leaching in soil. J Agric Food Chem 48:93–99

    CAS  Google Scholar 

  • Cox L, Celis R, Hermosín MC, Becker A, Cornejo J (1997) Porosity and herbicide leaching in soils amended with olive-mill wastewater. Agric Ecosys Environ 65:151–161

    CAS  Google Scholar 

  • Cox L, Velarde P, Cabrera A, Hermosín MC, Cornejo J (2007) Dissolved organic carbon interactions with sorption and leaching of diuron in organic-amended soils. Eur J Soil Sci 58:714–721

    CAS  Google Scholar 

  • Cox L, Cecchi A, Celis R, Hermosín MC, Koskinen WC, Cornejo J (2001) Effect of exogeneous carbon on movement of simazine and 2,4-D in soils. Soil Sci Soc Am J 65:1688–1695

    CAS  Google Scholar 

  • Crisanto Herrero T, Lorenzo Martín LF (1991) Mobility of flumeturon in soil columns sections. Toxicol Environ Chem 31(32):63–68

    Google Scholar 

  • Cuevas MV, Cox L, Calderón MJ, Hermosín MC, Fernández JE (2008) Chloridazon and lenacil dissipation in a clayey soil of the Guadalquivir river marshes (southwest Spain). Agric Ecosys Environ 24:245–251

    Google Scholar 

  • Czapar GF, Horton R, Fawcett RS (1992) Herbicide and tracer movement in soil columns containing an artificial macropore. J Environ Qual 21:110–115

    CAS  Google Scholar 

  • Dao TH (1995) Subsurface mobility of metribuzin as affected by crop residue placement and tillage method. J Environ Qual 24:1193–1198

    CAS  Google Scholar 

  • De Jonge LW, Kjaergaard C, Moldrup P (2004) Colloids and colloid-facilitated transport of contaminants in soils: An introduction. Vadose Zone J 3:321–325

    Google Scholar 

  • De Jonge H, Jacobson OH, de Jonge LW, Moldrup P (1998) Particle-facilitated transport of prochloraz in undisturbed sand loam soil columns. J Environ Qual 27:1495–1503

    Google Scholar 

  • Delphin JE, Chapot JY (2006) Leaching of atrazine, metolachlor and diuron in the field in relation to their injection depth into a silt loam soil. Chemosphere 64:1862–1869

    CAS  Google Scholar 

  • Doran G, Eberbach P, Helliwell S (2008) The mobility of thiobencarb and fipronil in two flooded rice-growing soils. J Environ Sci Health 43B:490–497

    Google Scholar 

  • Dörfler U, Cao G, Grundmann S, Schroll R (2006) Influence of a heavy rainfall event on the leaching of [14C] isoproturon and its degradation products in outdoor lysimeters. Environ Pollut 144:695–702

    Google Scholar 

  • Dousett S, Huguenot D, Andreux F (2007) Influence of grass cover on the leaching of pesticides in Beaujolais vineyards. 13th Symposium, Pesticide Chemistry—Environmental fate and ecological effects. Proceeding, Piacenza, pp 857–594

    Google Scholar 

  • Dousset S, Chauvin C, Durlet P, Thévenot M (2004) Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation. Chemosphere 57:265–272

    CAS  Google Scholar 

  • Dousset S, Thévenot M, Schrack D, Gouy V, Carluer N (2010) Effect of grass cover on water and pesticide transport through undisturbed soil columns, comparison with field study (Morcille watershed, Beaujolcuis). Environ Pollut 158:2446–2453

    CAS  Google Scholar 

  • Dousset S, Jacobson AR, Dessogne JB, Guichard N, Baveye PC, Andreux F (2007) Facilitated transport of diuron and glyphosate in high copper vineyard soils. Environ Sci Technol 41:8056–8061

    CAS  Google Scholar 

  • Dubus IG, Brown CD, Beulke S (2003a) Sources of uncertainty in pesticide fate modeling. Sci Total Environ 317:53–72

    CAS  Google Scholar 

  • Dubus IG, Brown CD, Beulke S (2003b) Sensitivity analyses for four pesticide leaching models. Pestic Manag Sci 59:962–982

    CAS  Google Scholar 

  • Dubus IG, Beulke S, Brown CD, Gottesbüren B, Dieses A (2004) Inverse modelling for estimating sorption and degradation parameters for pesticides. Pestic Manag Sci 60:859–874

    CAS  Google Scholar 

  • Dunnivant FM, Jardine PM, Taylor DL, McCarthy JF (1992a) Cotransport of cadmium and hexachlorobiphenyl by dissolved organic carbon through columns containing aquifer materials. Environ Sci Technol 26:360–368

    CAS  Google Scholar 

  • Dunnivant FM, Jardine PM, Taylor DL, McCarthy JF (1992b) Transport of naturally occurring dissolved organic carbon in laboratory columns containing aquifer material. Soil Sci Soc Am J 56:437–444

    CAS  Google Scholar 

  • Düring RA, Hummel H (1999) Herbicide and metabolite movement in different soils as studied by computer assisted microlysimeters. Chemosphere 39:641–654

    Google Scholar 

  • Dutch Commission (1987) Application for registration of a pesticide. Section G: Behaviour of the product and its metabolites in soil, water and air (G 3.1 Lysimeter studies). Dutch Commission for Registration of Pesticides

    Google Scholar 

  • Edwards WM, Glass BL (1971) Methoxychlor and 2,4,5-T in lysimeter percolation and runoff waters. Bull Environ Contam Toxicol 6:81–84

    CAS  Google Scholar 

  • Edwards WM, Norton LD, Redmond CE (1988) Characterizing macropores that affect infiltration into nontilled soil. Soil Sci Soc Am J 52:483–487

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Owens LB, Norton LD (1989) Water and nitrate movement in earthworm burrows within long-term no-till cornfields. J Soil Water Conserv 44:240–243

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Dick WA, Owens LB (1992a) Rainfall intensity affects transport of water and chemicals through macropores in no-till soil. Soil Sci Soc Am J 56:52–58

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Traina SJ, Edwards CA, Owens LB (1992b) Role of lumbricus terrestris (L.) burrows on quality of a filtrating water. Soil Biol Biochem 24:1555–1561

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Owens LB, Dick WA (1993) Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn. J Environ Qual 22:453–457

    CAS  Google Scholar 

  • EFSA (2007a) Opinion of the scientific panel on plant protection products and their residues on a request from the commission related to the revision of Annex II and III to Council Directive 91/414/EEC concerning the placing of plant protection products on the market—Fate and behaviour in the environment. EFSA J 448:1–17

    Google Scholar 

  • EFSA (2007b) Opinion on a request from EFSA related to the default Q10 value used to describe the temperature effect on transformation rates of pesticides in soil. Scientific Opinion of the Panel on Plant Protection Products and their Residues (PPR-Panel). EFSA J 622:1–32

    Google Scholar 

  • EFSA (2011) PRAPeR, Pesticide risk assessment peer review, European Safe Food Authority, List of available rapporteur Member State assessment Reports http://www.efsa.europa.eu/en/pesticidespeerreview/assessmentreports.htm

  • El Hadiri N, Ammati M, Chgoura M, Mounix K (2003) Behavior of 1,3-dichloropropene and methyl isothiocyanate in undisturbed soil columns. Chemosphere 52:893–899

    CAS  Google Scholar 

  • El Ouaghlidi F, Düring RA, Hummel HA (1999) Leaching and degradation of fenamiphos and atrazine in nondisturbed Moroccan sandy soil columns. Med Fac Landbouww Univ Gent 64/3b: 765–773

    Google Scholar 

  • Elabd H, Jurry WA, Cliath MM (1986) Spatial variability of pesticide adsorption parameters. Environ Sci Technol 20:256–260

    CAS  Google Scholar 

  • Ellerbrock RH, Gerke HH (2004) Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopy. Eur J Soil Sci 55:219–228

    Google Scholar 

  • Elliott JA, Cessna AJ, Nicholaichuk W, Tollefson LC (2000) Leaching rates and preferential flow of selected herbicides through tilled and untilled soil. J Environ Qual 29:1650–1656

    CAS  Google Scholar 

  • Elrick DE, French LK (1966) Miscible displacement patterns on disturbed and undisturbed soil cores. Soil Sci Soc Am Proc 30:153–156

    Google Scholar 

  • Enfield CG, Bengtsson G, Lindgvist R (1989) Influence of macromolecules on chemical transport. Environ Sci Technol 23:1278–1286

    CAS  Google Scholar 

  • Ertung T, Hartlieb N, Berns A, Klein W, Schaeffer A (2002) Investigations on the binding mechanism of the herbicide simazine to dissolved matter in leachates of compost. Chemosphere 49:597–604

    Google Scholar 

  • Estrella MR, Brusseau ML, Maier RS, Pepper IL, Wierenga PJ, Miller RM (1993) Biodegradation, sorption and transport of 2,4-dichlorophenoxyacetic acid in saturated and unsaturated soils. Appl Environ Microbiol 59:4266–4273

    CAS  Google Scholar 

  • EU (2011) Database on active substances. http://ec.europa.eu/food/plant/protection/evaluation/ database_act_subs_en.htm European Commission, Health & Consumer Protection Directorate—General, Plant health, Brussels

  • Farahani GHN, Sahid IB, Zakaria Z, Kuntom A, Omar D (2008) Study on the downward movement of carbofuran in two Malaysian soils. Bull Environ Contam Toxicol 81:294–298

    CAS  Google Scholar 

  • Farenhorst A (2006) Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil. Soil Sci Soc Am J 70:1005–1012

    CAS  Google Scholar 

  • Farenhorst A, Topp E, Bowman BT, Tomlin AD (2000) Earthworm burrow and feeding activity and the potential for atrazine transport by preferential flow. Soil Biol Biochem 32:479–488

    CAS  Google Scholar 

  • Farenhorst A, Londry KL, Nahar N, Gaultier J (2008) In-field variation in 2,4-D mineralization in relation to sorption and soil microbial communities. J Environ Sci Health 43B:113–119

    Google Scholar 

  • Farenhorst A, Topp E, Bowman BT, Tomlin AD, Bryan RB (2001) Sorption of atrazine and metolachlor by burrow linings developed in soils with different crop residues at the surface. J Environ Sci Health 36B:389–396

    Google Scholar 

  • Farran A, Chentouf A (2000) Study the behaviour of azinphos-methyl in a clay mineral by batch and column leaching. J Chromatogr 869A:481–485

    Google Scholar 

  • Fava L, Orrú MA, Scardala S, Funari E (2007) Leaching potential of carbamates and their metabolites and comparison with triazines. Microchem J 86:204–208

    CAS  Google Scholar 

  • Fava L, Bottoni P, Crobe A, Caracciolo AB, Funari E (2001) Assessment of leaching potential of aldicarb and its metabolites using laboratory studies. Pestic Manag Sci 57:1135–1141

    CAS  Google Scholar 

  • Fava L, Orrú MA, Businelli D, Scardala S, Funari E (2006) Leaching potential of some phenylureas and their main metabolites through laboratory studies. Environ Sci Pollut Res 13:386–391

    CAS  Google Scholar 

  • Felding G (1995) Leaching of phenoxyalkanoic acid herbicides from farmland. Sci Total Environ 168:11–18

    CAS  Google Scholar 

  • Felding G (1997) Pesticide adsorption as a function of depth below surface. Pestic Sci 50:64–66

    CAS  Google Scholar 

  • Felsot AS, Evans RG, Ruppert JR (2003) Field studies of imidacloprid distribution following application to soil through a drip irrigation system. In: Authur EL, Barefoot AC, Clay VE (eds) Terrestrial field dissipation studies—purpose, design and interpretation. ACS Symp Ser 842, American Chemical Society, Washington DC, chap 13, pp 189–205

    Google Scholar 

  • Fenoll J, Ruiz E, Flores P, Hellǐn P, Navarro S (2010) Leaching potential of several insecticides and fungicides through disturbed clay-loam soil columns. Intern J Environ Anal Chem 90:276–285

    CAS  Google Scholar 

  • Fent G, Kubiak R, Eichhorn KW (1993) Fate of the new sulfonylurea amidosulfuron in soil. Sci Total Environ 132:201–215

    CAS  Google Scholar 

  • Fent G, Kubiak R, Jene B (1999) Spatial distribution of 14C-benazolin residues and two tracers in lysimeters in comparison to a field plot experiment. In: Del Re AAM, Brown C, Capri E, Errera G, Evans SP, Trevisan M (eds) Human and Environmental Exposure to Xenobiotics. Proceedings, XI Symp Pestic Chem, La Goliardica Pavese s.r.l., Pavia, pp 121–129

    Google Scholar 

  • Fermanich KJ, Daniel TC, Lowery B (1991) Microlysimeter soil columns for evaluating pesticide movement through the root zone. J Environ Qual 20:189–195

    CAS  Google Scholar 

  • Fernandes MC, Cox L, Hermosín MC, Cornejo J (2003) Adsorption-desorption of metalaxyl as affecting dissipation and leaching in soils: the role of mineral and organic components. Pestic Manag Sci 59:545–552

    CAS  Google Scholar 

  • Fernandes MC, Cox L, Hermosín MC, Cornejo J (2006) Organic amendments affecting sorption, leaching and dissipation of fungicides in soils. Pestic Manag Sci 62:1207–1215

    CAS  Google Scholar 

  • Flores-Céspedes F, González-Pradas E, Fernández-Pérez M, Villafranca-Sánchez M, Socías-Viciana M, Urenã-Amate MD (2002) Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. J Environ Qual 31:880–888

    Google Scholar 

  • Flury M (1996) Experimental evidence of transport of pesticides through field soils—A review. J Environ Qual 25:25–45

    CAS  Google Scholar 

  • Flury M, Flühler H, Jury WA, Leuenberger J (1994) Susceptibility of soils to preferential flow of water: A field study. Water Resource Res 30:1945–1954

    Google Scholar 

  • Flury M, Leuenberger J, Studer B, Flühler H (1995) Transport of anions and herbicides in a loamy and a sandy field soil. Water Resource Res 31:823–835

    CAS  Google Scholar 

  • Focus (2011) Forum for the Co-ordination of Pesticide Fate Models and their Use, European Union. Focus GW Home. http://viso.ei.jrc.it/focus/index.html

  • Fogg P, Carter A, Brown CD (1994) A comparison of the use and regulatory interpretation of a predictive model, lysimeter and field studies to determine the leaching potential of a seed dressing. Proceedings, BCPC Conf – Pests and Diseases, British Crop Protection Council, Brighton, vol 3, 9 C–1, pp 1283–1288

    Google Scholar 

  • Fogg P, Boxall ABA, Walker A, Jukes A (2004a) Degradation and leaching potential of pesticides in biobed systems. Pestic Manag Sci 60:645–654

    CAS  Google Scholar 

  • Fogg P, Boxall ABA, Walker A, Jukes A (2004b) Leaching of pesticides from biobeds: Effect of biobed depth and water loading. J Agric Food Chem 52:6217–6227

    CAS  Google Scholar 

  • Fomsgaard IS, Spliid NH, Felding G (2003a) Leaching of pesticides through normal-tillage and low-tillage soil—A lysimeter study. I. Isoproturon. J Environ Sci Health 38B:1–18

    Google Scholar 

  • Fomsgaard IS, Spliid NH, Felding G (2003b) Leaching of pesticides through normal-tillage and low-tillage soil – A lysimeter study. II. Glyphosate. J Environ Sci Health 38B:19–35

    Google Scholar 

  • Fortin J, Gagnon-Bertrand E, Vézina L, Rompré M (2002) Preferential bromide and pesticide movement to tile drains under different cropping practices. J Environ Qual 31:1940–1952

    CAS  Google Scholar 

  • Fouqué-Brouard CM, Fournier JM (1996) Adsorption-desorption and leaching of phenylurea herbicides on soils. Talanta 43:1793–1802

    Google Scholar 

  • Francaviglia R, Capri E, Trevisan M (2000) Experimental guidelines for lysimeter studies in the Mediterranean area. In: Cornejo J, Jamet P (eds) Pesticide/soil interactions. Some Current Research Methods, INRA, Paris, pp 287–295

    Google Scholar 

  • Führ F, Steffens W, Mittelstaedt W, Brumhard B (1990) Lysimeter experiments with 14C-labeled pesticides – An agroecosystem approach. In: Frehse H (ed) Pesticide Chemistry, Advances in International Research, Development and Legislation. Proc 7th Intern Cong Pestic Chem, VCH, Weinheim, pp 37–48

    Google Scholar 

  • Führ F, Burauel P, Mittelstaedt W, Pütz T, Wanner U (2003) The lysimeter concept: A comprehensive approach to study the environmental behavior of pesticides in agroecosystems. In: Coats JR, Yamamoto H (eds) Environmental fate and effects of pesticides. ACS Symp Ser 853, American Chemical Society, Washington DC, chap 1, pp 1–29

    Google Scholar 

  • Führ F, Burauel P, Dust M, Mittelstaedt W, Pütz T, Reinken G, Stork A (1998) Comprehensive tracer studies on the environmental behavior of pesticides: The lysimeter concept. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, chap 1, pp 1–20

    Google Scholar 

  • Futch SH, Singh M (1999) Herbicide mobility using soil leaching columns. Bull Environ Contam Toxicol 62:520–529

    CAS  Google Scholar 

  • Gaber HM, Inskeep WP, Comfort SD, Wraith JM (1995) Nonequilibrium transport of atrazine through large intact soil cores. Soil Sci Soc Am J 59:60–67

    CAS  Google Scholar 

  • Gamerdinger AP, Wagenet RJ, van Genuchten MT (1990) Application of two-site/two-region models for studying simultaneous nonequilibrium transport and degradation of pesticides. Soil Sci Soc Am J 54:957–963

    CAS  Google Scholar 

  • Gardner DS, Branham BE (2001a) Mobility and dissipation of ethofumesate and halofenozide in turfgrass and bare soil. J Agric Food Chem 49:2894–2898

    CAS  Google Scholar 

  • Gardner DS, Branham BE (2001b) Effect of turfgrass cover and irrigation on soil mobility and dissipation of mefenoxam and propiconazole. J Environ Qual 30:1612–1618

    CAS  Google Scholar 

  • Garratt JA, Kennedy A, Wilkins RM, Ureña-Amate MD, González-Pradas E, Flores-Céspedes F, Fernández-Perez M (2007) Modeling pesticide leaching and dissipation in a Mediterranean littoral greenhouse. J Agric Food Chem 55:7052–7061

    CAS  Google Scholar 

  • Gaston LA, Locke MA (1996) Bentazon mobility through intact, unsaturated columns of conventional- and no-till Dundee soil. J Environ Qual 25:1350–1356

    CAS  Google Scholar 

  • Gaston LA, Locke MA (2000) Acifluorfen sorption, degradation and mobility in a Mississippi Delta soil. Soil Sci Soc Am J 64:112–121

    CAS  Google Scholar 

  • Gaston LA, Locke MA (2002) Difference in microbial biomass, organic carbon and dye sorption between flow and non-flow regions of unsaturated soil. J Environ Qual 31:1406–1408

    CAS  Google Scholar 

  • Gatzweiler EW, Schmidt B, Feyerabend M, Jones RL, Arnold DJ (1999) Isoproturon—Field studies on the behavior in fine-textured solid. In: Del Re AAM, Brown C, Capri E, Errera G, Evans SP, Trevisan M (eds) Human and Environmental Exposure to Xenobiotics. Proceedings, XI Symp Pestic Chem, La Goliardica Pavese s.r.l., Pavia, pp 305–312

    Google Scholar 

  • Ghodrati M, Jury WA (1990) A field study using dyes to characterize preferential flow of water. Soil Sci Soc Am J 54:1558–1563

    Google Scholar 

  • Ghosh RK, Singh N (2009) Leaching behavior of azoxystrobin and metabolites in soil columns. Pestic Manag Sci 65:1009–1014

    CAS  Google Scholar 

  • Gjettermann B, Petersen CT, Koch CB, Spliid NH, Grøn C, Baun DL, Styczen M (2009) Particle-facilitated leaching from differently structured soil monoliths. J Environ Qual 38:2382–2393

    CAS  Google Scholar 

  • Glass RL, Edwards WM (1979) Dicamba in lysimeter and percolation water. J Agric Food Chem 27:908–909

    CAS  Google Scholar 

  • Goicolea MA, Arranz JF, Barrio RJ, de Balugera ZG (1991) Adsorption-leaching study of the herbicides metamitron and chloridazon. Pestic Sci 32:259–264

    Google Scholar 

  • Gonod LV, Chenu C, Soulas G (2003) Spatial variability of 2,4-dichlorophenoxyacetic acid (2,4-D) mineralization potential at a millimeter scale in soil. Soil Biol Biochem 35:373–382

    CAS  Google Scholar 

  • Gonzalez J, Ukrainczyk L (1999) Transport of nicosulfuron in soil columns. J Environ Qual 28:101–107

    CAS  Google Scholar 

  • González-Pradas E, Villafranca-Sánchez M, Fernández-Pérez M, Scocías-Viciana M, Ureña-Amate MD (1998) Sorption and leaching of diuron on natural peat-amended calcareous soil from Spain. Water Res 32:2814–2820

    Google Scholar 

  • Graber ER, Sluszny C, Gerstl Z (1997) Influence of sludge amendment on transport and sorption ideality of s-triazines in soil columns. Environ Toxicol Chem 16:2463–2469

    CAS  Google Scholar 

  • Graber ER, Gerstl Z, Fischer E, Mingelgrin U (1995) Enhanced transport of atrazine under irrigation with effluent. Soil Sci Soc Am J 59:1513–1519

    CAS  Google Scholar 

  • Graber ER, Dror I, Bercovich FC, Rosner M (2001) Enhanced transport of pesticides in a field trial with treated sewage sludge. Chemosphere 44:805–811

    CAS  Google Scholar 

  • Gray RA, Weierich AJ (1968) Leaching of five thiocarbamate herbicides in soils. Weed Sci 16:77–79

    CAS  Google Scholar 

  • Green JD, Horton R, Baker JL (1995) Crop residue effects on the leaching of surface applied chemicals. J Environ Qual 24:343–351

    CAS  Google Scholar 

  • Griessbach EFC, Copin A, Deleu R, Dreze P (1998) Mobility of a siliconepolyether studied by leaching experiments through disturbed and undisturbed soil columns. Sci Total Environ 221:159–169

    CAS  Google Scholar 

  • Grolimund D, Borkovec M (1999) Long-term release kinetics of colloidal particles from natural porous media. Environ Sci Technol 33:4054–4060

    CAS  Google Scholar 

  • Grolimund D, Borkovec M, Barmettler K, Sticher H (1996) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ Sci Technol 20:3118–3123

    Google Scholar 

  • Grover R (1977) Mobility of dicamba, picloram and 2,4-D in soil columns. Weed Sci 25:159–162

    CAS  Google Scholar 

  • Grundmann S, Dörfler U, Ruth B, Loos C, Wagner T, Karl H, Munch JC, Schroll R (2008) Mineralization and transfer processes of 14C-labeled pesticides in outdoor lysimeters. Water Air Soil Pollut: Focus 8:177–185

    CAS  Google Scholar 

  • Guimont S, Perrin-Ganier C, Real B, Schiavon M (2005) Effects of soil moisture and treatment volume on bentazon mobility in soil. Agron Sustain Dev 25:323–329

    CAS  Google Scholar 

  • Günther P, Pestemer W, Rahman A, Nordmeyer H (1993) A bioassay technique to study the leaching behavior of sulfonylurea herbicides in different soils. Weed Res 33:177–185

    Google Scholar 

  • Guo J, Zhu G, Shi J, Sun J (2003) Adsorption, desorption and mobility of fomesafen in Chinese soils. Water Air Soil Pollut 148:77–85

    CAS  Google Scholar 

  • Guo L, Wagenet RJ (1999) Evaluation of alachlor degradation under transport conditions. Soil Sci Soc Am J 63:443–449

    CAS  Google Scholar 

  • Guo L, Bicki TJ, Hinesly TD, Felsot AS (1991) Effect of carbon-rich waste materials on movement and sorption of atrazine in a sandy, coarse-textured soil. Environ Toxicol Chem 10:1273–1282

    CAS  Google Scholar 

  • Guo L, Bicki TJ, Felsot AS, Hinesly TD (1993) Sorption and movement of alachlor in soil modified by carbon-rich wastes. J Environ Qual 22:186–194

    CAS  Google Scholar 

  • Guo M, Chorover J (2003) Transport and fractionation of dissolved organic matter in soil columns. Soil Sci 168:108–118

    CAS  Google Scholar 

  • Gupta S, Gajbhiye VT (2002a) Adsorption-desorption, persistence, and leaching behaviour of dithiopyr in an Alluvial soil of India. J Environ Sci Health 37B:573–586

    Google Scholar 

  • Gupta S, Gajbhiye VT (2002b) Persistence and leaching of β-cyfluthrin in alluvial soil of India. Pestic Manag Sci 58:1259–1265

    CAS  Google Scholar 

  • Gupta S, Gajbhiye VT (2004) Adsorption-desorption, persistence and leaching behavior of thifluzamide in alluvial soil. Chemosphere 57:471–480

    CAS  Google Scholar 

  • Gupta S, Gajbhiye VT, Gupta RK (2008) Soil dissipation and leaching behavior of a neonicotinoid insecticide thiamethoxam. Bull Environ Contam Toxicol 80:431–437

    CAS  Google Scholar 

  • Gupta S, Gaibhiye VT, Kalpana ANP (2002) Leaching behaviour of imidacloprid formulation in soil. Bull Environ Contam Toxicol 68:502–508

    CAS  Google Scholar 

  • Gustafson DI (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357

    CAS  Google Scholar 

  • Guzzella L, Rullo S, Pozzoni F, Giuliano G (2003) Studies on mobility and degradation pathways of terbuthylazine using lysimeters on a field scale. J Environ Qual 32:1089–2098

    CAS  Google Scholar 

  • Haberhauer G, Temmel B, Gerzabek MH (2002) Influence of dissolved humic substances on the leaching of MCPA in a soil column experiment. Chemosphere 46:495–499

    CAS  Google Scholar 

  • Häfner M (1994) Pesticides in soil: A German approach of predicting their movement into ground and surface water. In: Börner H (ed) Chemistry in plant protection. Pesticides in ground and surface water. Springer-Verlag, Berlin, vol. 9, pp 247–288

    Google Scholar 

  • Hall DGM (1994) Simulation of dichlorprop leaching in three textually distinct soils using the pesticide leaching model. J Environ Sci Health 29A:1211–1230

    Google Scholar 

  • Hall JK, Mumma RO (1994) Dicamba mobility in conventionally tilled and no-tilled soil. Soil Tillage Res 30:3–17

    Google Scholar 

  • Hall JK, Murray MR, Hartwig NL (1989) Herbicide leaching and distribution in tilled and untilled soil. J Environ Qual 18:439–445

    CAS  Google Scholar 

  • Hall JK, Mumma RO, Watts DW (1991) Leaching and runoff losses of herbicides in a tilled and untilled field. Agric Ecosys Environ 37:303–314

    CAS  Google Scholar 

  • Hamaker J (1975) The interpretation of soil leaching experiments. In: Hague R, Freed V (eds) Environmental dynamics of pesticides. Plenum, New York, pp 115–133

    Google Scholar 

  • Hance RJ, Führ F (1992) The present situation. In: Führ F, Hance RJ (eds) Lysimeter studies of pesticides in the soil. BCPC Monograph No. 53, The Lavenham: Lavenham, Suffolk, pp 181–189

    Google Scholar 

  • Hance RJ, Embling SJ, Hill D, Graham-Bryce IJ, Nicholls P (1981) Movement of flumeturon, simazine, 36Cl and 144Ce3+ in soil under field conditions: Qualitative aspects. Weed Res 21:289–297

    CAS  Google Scholar 

  • Hancock TC, Sandstrom MW, Vogel JR, Webb RMT, Bayless ER, Barbash JE (2008) Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA. J Environ Qual 37:1086–1100

    CAS  Google Scholar 

  • Haouari J, Dahchour A, Peña-Heras A, Louchard X, Lennartz B, Alaouri ME, Satrallah A (2006) Behavior of two phenylurea herbicides in clayey soils and effect of altering dry-wet condition on their availability. J Environ Sci Health 41B:883–893

    Google Scholar 

  • Hassink J, Kördel W (2000) Transport and fate of pesticides in outdoor lysimeters. In: Cornejo J, Jamet P (eds) Pesticide/soil interactions. Some Current Research Methods, INRA, Paris, pp 297–303

    Google Scholar 

  • Hassink J, Klein A, Kördel W, Klein W (1994) Behavior of herbicides in non-cultivated soils. Chemosphere 28:285–295

    CAS  Google Scholar 

  • Heistermann M, Jene B, Fent G, Feyerabend M, Seppelt R, Richter O, Kubiak R (2003) Modelling approaches to compare sorption and degradation of metsulfuron-methyl in laboratory micro-lysimeter and batch experiments. Pestic Manag Sci 59:1276–1290

    CAS  Google Scholar 

  • Helling CS, Dragun J (1981) Soil leaching tests for toxic organic chemicals. In: Test protocols for environmental fate and movement of toxicants. Proc Symp Assoc Off Anal Chem, 94th Annual Meeting, AOAC, Washington DC, pp 43–88

    Google Scholar 

  • Helling CS, Gish TJ (1986) Soil characteristics affecting pesticide movement into ground water. In: Garner WY, Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in ground water. ACS Symp Ser 315, American Chemical Society, Washington DC, chap 2, pp 14–38

    Google Scholar 

  • Hellpointer E (1998) Lysimeter study of imidacloprid after seed treatment of sugar beet in two crop rotations. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, chap 3, pp 40–51

    Google Scholar 

  • Heyer R, Stan HJ (1995) Comparison of the leaching behavior of alachlor and its metabolites under field and laboratory conditions. Intern J Environ Anal Chem 58:173–183

    CAS  Google Scholar 

  • Hogue EJ, Khan SU, Gaunce A (1981) Leaching of four orchard herbicides in soil columns. Can J Soil Sci 61:401–407

    CAS  Google Scholar 

  • Hollis JM, Carter AD (1990) A comparison of laboratory, lysimeter and field study techniques to determine environmental fate of pesticides in the UK. Proceedings, BCPC Conf—Pests and Diseases, British Crop Protection Council, Brighton, vol 3, 8 C – 10, pp 1005–1010

    Google Scholar 

  • Hua R, Spliid NH, Heinrichson K, Laursen B (2009) Influence of surfactants on the leaching of bentazone in a sandy loam soil. Pestic Manag Sci 65:857–861

    CAS  Google Scholar 

  • Irwin KC, Podoll RT, Starr RI, Elias DJ (1996) The mobility of [14C]3-chloro-p-toluidine hydrochloride in a loam soil profile. Environ Toxicol Chem 15:1671–1675

    CAS  Google Scholar 

  • Isensee AR, Sadeghi AM (1992) Laboratory apparatus for studying pesticide leaching in intact soil cores. Chemosphere 25:581–590

    CAS  Google Scholar 

  • Isensee AR, Sadeghi AM (1995) Long-term effect of tillage and rainfall on herbicide leaching to shallow groundwater. Chemosphere 30:671–685

    CAS  Google Scholar 

  • Isensee AR, Nash RG, Helling CS (1990) Effect of conventional vs. no-tillage on pesticide leaching to shallow groundwater. J Environ Qual 19:434–440

    CAS  Google Scholar 

  • Ismail BS, Kalithasan K (2004) Adsorption, desorption and mobility of permethrin in Malaysian soils. J Environ Sci Health 39B:419–429

    Google Scholar 

  • Ismail BS, Enoma AOS, Cheah UB, Lum KY, Malik Z (2002) Adsorption, desorption and mobility of two insecticides in Malaysian agricultural soil. J Environ Sci Health 37B:355–364

    Google Scholar 

  • Jablonowski ND, Koeppchen S, Hofmann D, Schaeffer A, Burauel P (2008) Spatial distribution and characterization of long-term aged 14C-labeled atrazine residues in soil. J Agric Food Chem 56:9548–9554

    CAS  Google Scholar 

  • Jacobson AR, Dousset S, Guichard N, Baveye P, Andreux F (2005) Diuron mobility through vineyard soils contaminated with copper. Environ Pollut 138:250–259

    CAS  Google Scholar 

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546

    Google Scholar 

  • Jaynes DB, Novak JM, Moorman TB, Cambardella CA (1995) Estimating herbicide partition coefficients from electromagnetic induction measurements. J Environ Qual 24:36–41

    CAS  Google Scholar 

  • Jebellie SJ, Prasher SO, Bassi R (2000) Fate of metolachlor under subirrigation in a sandy soil: A lysimeter study. J Environ Sci Health 35B:13–38

    Google Scholar 

  • Jene B, Erzgraeber B, Feyerabend M, Fent G, Kubiak R (1999) Comparison of bromide and benazolin transport in the undisturbed field with simulations by the computer models PELMO and MACRO. Del Re AAM, Brown C, Capri E, Errera G, Evans SP, Trevisan M (eds) Proceeding, XI Symp Pestic Chem, La Goliardica Pavese srl, Viale Golgi, pp 131–142

    Google Scholar 

  • Jiang L, Huang J, Liang L, Zheng PY, Yang H (2008) Mobility of prometryne in soil as affected by dissolved organic matter. J Agric Food Chem 56:11933–11940

    CAS  Google Scholar 

  • Johnson AC, Bettinson RJ, Williams RJ (1999) Differentiating between physical and chemical constraints on pesticide and water movement into and out of soil aggregates. Pestic Sci 55:524–530

    CAS  Google Scholar 

  • Johnson AC, Worrall F, White C, Walker A, Besien TJ, Williams RJ (1997) The potential of incorporated organic matter to reduce pesticide leaching. Toxicol Environ Chem 58:47–61

    CAS  Google Scholar 

  • Johnson DH, Shaner DL, Deane J, Mackersie LA, Tuxhorn G (2000) Time-dependent adsorption of imazethapyr to soil. Weed Sci 48:769–775

    CAS  Google Scholar 

  • Jones RL, Parsons RG, Gatzweiler EW, Wicks RJ, Leake CR (1998) An industry approach to the application of the lysimeter concept. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, chap 15, pp 203–212

    Google Scholar 

  • Jones RL, Arnold DJS, Harris IGL, Bailey SW, Pepper TJ, Mason DJ, Brown CD, Leeds-Harrison PB, Walker A, Bromilow RH, Brockie D, Nicholls PH, Craven ACC, Lythgo CM (2000) Process affecting movement of pesticides to drainage in cracking clay soils. Pestic Outlook 11:174–178

    CAS  Google Scholar 

  • Jørgensen PR, McKay LD, Spliid NH (1998) Evaluation of chloride and pesticide transport in a fractured clayey till using large undisturbed columns and numerical modeling. Water Resources Res 34:539–553

    Google Scholar 

  • Jørgensen PR, Hoffmann M, Kistrup JP, Bryde C, Bossi R, Villholth KG (2002) Preferential flow and pesticide transport in a clay-rich till: Field, laboratory and modeling analysis. Water Resource Res 38:1246–1260

    Google Scholar 

  • Jury WA, Flühler H (1992) Transport of chemicals through soil: Mechanisms, models and field applications. Adv Agron 47:141–201

    CAS  Google Scholar 

  • Jury WA, Spencer WF, Farmer WJ (1983) Behavior assessment model for trace organics in soil: I. Model description. J Environ Qual 12:558–564

    CAS  Google Scholar 

  • Kamra SK, Lennartz B, van Genuchten MT, Widmoser P (2001) Evaluating non-equilibrium solute transport in small soil columns. J Contam Hydrol 48:189–212

    CAS  Google Scholar 

  • Kaneko H, Ohkawa H, Miyamoto J (1978) Degradation and movement of permethrin isomers in soil. J Pestic Sci 3:43–51

    CAS  Google Scholar 

  • Kaplan DI, Bertsch PM, Adriano DC, Miller WP (1993) Soil-borne mobile colloids as influenced by water flow and organic carbon. Environ Sci Technol 27:1193–1200

    CAS  Google Scholar 

  • Karpouzas DG, Ferrero A, Vidotto F, Capri E (2005) Application of the RICE-WQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies. Environ Toxicol Chem 24:1007–1017

    CAS  Google Scholar 

  • Karpouzas DG, Pantelelis I, Menkissoglu-Spiroudi U, Golia E, Tsiropoulos NG (2007) Leaching of the organophosphorus nematicide fosthiazate. Chemosphere 68:1359–1364

    CAS  Google Scholar 

  • Katagi T (2002) Abiotic hydrolysis of pesticides in the aquatic environment. Rev Environ Contam Toxicol 175:79–261

    CAS  Google Scholar 

  • Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–195

    CAS  Google Scholar 

  • Katagi T (2006) Behavior of pesticides in water-sediment systems. Rev Environ Contam Toxicol 187:133–251

    CAS  Google Scholar 

  • Katagi T (2008) Surfactant effects on environmental behavior of pesticides. Rev Environ Contam Toxicol 194:71–177

    CAS  Google Scholar 

  • Kaufman DD, Russel BA, Helling CS, Kayser AJ (1981) Movement of cypermethrin, decamethrin, and their degradation products in soil. J Agric Food Chem 29:239–245

    CAS  Google Scholar 

  • Kay P, Blackwell PA, Boxall ABA (2005) Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land. Chemosphere 60:497–507

    CAS  Google Scholar 

  • Kazemi HV, Anderson SH, Goyne KW, Gantzer CJ (2008) Atrazine and alachlor transport in Claypan soils as influenced by differential antecedent soil water content. J Environ Qual 37:1599–1607

    CAS  Google Scholar 

  • Kazemi HV, Anderson SH, Goyne KW, Gantzer CJ (2009) Aldicarb and carbofuran transport in a Hapludalf influenced by differential antecedent soil water content and irrigation delay. Chemosphere 74:265–273

    CAS  Google Scholar 

  • Keller KE, Weber JB (1995) Mobility and dissipation of 14C-labeled atrazine, metolachlor and primisulfuron in undisturbed field lysimeters of a coastal plain soil. J Agric Food Chem 43:1076–1086

    CAS  Google Scholar 

  • Keller KE, Weber JB (1997) Soybean (Glycine max) influences metolachlor mobility in soil. Weed Sci 45:833–841

    CAS  Google Scholar 

  • Kelsey JW, Alexander M (1995) Effect of flow rate and path length on p-nitrophenol biodegradation during transport in soil. Soil Sci Soc Am J 59:113–117

    CAS  Google Scholar 

  • Khan AT, Thomson MB (1990) Groundwater transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ Toxicol Chem 9:253–263

    Google Scholar 

  • Khoury R, Geahchan A, Coste CM, Abi Antoun M, Kawar NS (2001) Behavior or triadimefon in two Lebanese soils. J Environ Sci Health 36B:741–754

    Google Scholar 

  • Khoury R, Geahchan A, Coste CM, Cooper JF, Bobe A (2003) Retention and degradation of metribuzin in sandy loam and clay soils of Lebanon. Weed Res 43:252–259

    CAS  Google Scholar 

  • Kim IS, Beaudette LA, Shim JH, Trevors JT, Suh YT (2002) Environmental fate of the triazole fungicide propiconazole in a rice-paddy-soil lysimeter. Plant Soil 239:321–331

    CAS  Google Scholar 

  • Kim JH, Feagley SE (1998) Adsorption and leaching of trifluralin, metolachlor and metribuzin in a commerce soil. J Environ Sci Health 33B:529–546

    Google Scholar 

  • Kim JH, Feagley SE (2002) Leaching of trifluralin, metolachlor and metribuzin in a clay loam soil of Louisiana. J Environ Sci Health 37B:393–403

    Google Scholar 

  • Kissel DE, Ritchie JT, Burnett E (1973) Chloride movement in undisturbed swelling clay soil. Soil Sci Soc Am Proc 37:21–24

    CAS  Google Scholar 

  • Kjær J, Olsen P, Ullum M, Grant R (2005) Leaching of glyphosate and aminomethylphosphonic acid from Danish agricultural field sites. J Environ Qual 34:608–620

    Google Scholar 

  • Kjaergaard C, Moldrup P, de Jonge LW, Jacobsen OH (2004) Colloid mobilization and transport in undisturbed soil columns. II. The role of colloid dispersibity and preferential flow. Vadose Zone J 3:424–433

    CAS  Google Scholar 

  • Kladivko EJ, van Scoyoc GE, Monke EJ, Oates KM, Pask W (1991) Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. J Environ Qual 20:264–270

    CAS  Google Scholar 

  • Klein M, Klein W, Knoche H, Kördel W (1998) Comprehensive tracer studies on the environmental behavior of pesticides: The lysimeter concept. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, Chap 19, pp 246–258

    Google Scholar 

  • Klier C, Grundmann S, Gayler S, Priesack E (2008) Modelling the environmental fate of the herbicide glyphosate in soil lysimeters. Water Air Soil Pollut: Focus 8:187–207

    CAS  Google Scholar 

  • Kluitenberg GJ, Horton R (1990) Effect of solute application method on preferential transport of solutes in soil. Geoderma 46:283–297

    Google Scholar 

  • Kogan M, Rojas S, Gómez P, Suárez F, Munõz JF, Alister C (2007) Evaluation of six pesticides leaching indexes using field data of herbicide application in Casablanca Valley, Chile. Water Sci Technol 56:169–178

    CAS  Google Scholar 

  • Köhne JM, Gerke HH, Köhne S (2002) Effective diffusion coefficient of soil aggregates with surface skins. Soil Sci Soc Am J 66:1430–1438

    Google Scholar 

  • Köhne JM, Köhne S, Šimůnek J (2006) Multi-process herbicide transport in structured soil columns: Experiments and model analysis. J Contam Hydrol 85:1–32

    Google Scholar 

  • Koleli N, Kantar C, Cuvalci U, Yilmag H (2006) Movement and adsorption of methamidophos in clay loam and sandy loam soils. Intern J Environ Anal Chem 86:1127–1134

    CAS  Google Scholar 

  • Kolpin DW, Barbash JE, Gilliom RJ (2000) Pesticides in groundwater of the United States, 1992–1996. Ground Water 38:858–863

    CAS  Google Scholar 

  • Kookana R, Correll RL, Miller RB (2005) Pesticide impact rating index—A pesticide risk indicator for water quality. Water Air Soil Pollu: Focus 5:45–65

    CAS  Google Scholar 

  • Kördel W, Klein M (2006) Prediction of leaching and groundwater contamination by pesticides. Pure Appl Chem 78:1081–1090

    Google Scholar 

  • Kördel W, Herrchen M, Klein W (1991) Experimental assessment of pesticide leaching using undisturbed lysimeters. Pestic Sci 31:337–348

    Google Scholar 

  • Kördel W, Egli H, Klein M (2008) Transport of pesticides via macropores (IUPAC Technical Report). Pure Appl Chem 80:105–160

    Google Scholar 

  • Kördel W, Herrchen M, Klein M, Traub-Eberhard U, Klöppel H, Klein W (1992) Determination of the fate of pesticides in outdoor lysimeter experiments. Sci Total Environ 123(124):421–434

    Google Scholar 

  • Koskinen WC, Cecchi AM, Dowdy RH, Norberg KA (1999) Adsorption of selected pesticides on a rigid PVC lysimeter. J Environ Qual 28:732–734

    CAS  Google Scholar 

  • Koskinen WC, Sorenson BA, Buhler DD, Wyse DL, Strand EA, Lueschen WE, Jorgenson MD, Cheng HH (1998) Use of field lysimeters to determine 14C-dicamba persistence and movement in soil. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, chap 8, pp 115–121

    Google Scholar 

  • Krahe S, Schug B, Schütz S, Weissbecker B, Hummel HE (1997) Microlysimeter studies on plant protection agents. Med Fac Landbouww Univ Gent 62/2a: 145–155

    Google Scholar 

  • Kruger EL, Rice PJ, Anhalt JC, Anderson TA, Coats JR (1996) Use of undisturbed soil columns under controlled conditions to study the fate of [14C]deethylatrazine. J Agric Food Chem 44:1144–1149

    CAS  Google Scholar 

  • Krzyszowska AJ, Allen RD, Vance GF (1994) Assessment of the fate of two herbicides in a Wyoming Rangeland soil: Column studies. J Environ Qual 23:1051–1058

    CAS  Google Scholar 

  • Kung KJS (1990) Preferential flow in a sandy vadose zone: 1. Field observation. Geoderma 46:51–58

    Google Scholar 

  • Kung KJS, Steenhuis TS, Kladivko EJ, Gish TJ, Bubenzer G, Helling CS (2000) Impact of preferential flow on the transport of adsorbing and non-adsorbing tracers. Soil Sci Soc Am J 64:1290–1296

    CAS  Google Scholar 

  • Laegdsmand M, de Jonge LW, Moldrup P (2005) Leaching of colloids and dissolved organic matter from columns packed with natural soil aggregates. Soil Sci 170:13–27

    CAS  Google Scholar 

  • Laegdsmand M, Villholth KG, Ullum M, Jensen KH (1999) Processes of colloid mobilization and transport in macroporous soil monoliths. Geoderma 93:33–59

    CAS  Google Scholar 

  • Lalah JO, Njogu SN, Wandiga SO (2009) The effects of Mn2+, Ni2+, Cu2+, Co2+ and Zn2+ ions on pesticide adsorption and mobility in a tropical soil. Bull Environ Contam Toxicol 83:352–358

    CAS  Google Scholar 

  • Landry D, Dousset S, Andreux F (2004) Laboratory leaching studies of oryzalin and diuron through three undisturbed vineyard soil columns. Chemosphere 54:735–742

    CAS  Google Scholar 

  • Landry D, Dousset S, Andreux F (2006) Leaching of oryzalin and diuron through undisturbed vineyard soil columns under outdoor conditions. Chemosphere 62:1736–1747

    CAS  Google Scholar 

  • Landry D, Dousset S, Fournier JC, Andreux F (2005) Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (vosne-Romanée, 21-France). Environ Pollut 138:191–200

    CAS  Google Scholar 

  • Langenbach T, Schroll R, Paim S (2000) Fate and distribution of 14C-atrazine in a tropical oxisol. Chemosphere 40:449–455

    CAS  Google Scholar 

  • Langner HW, Inskeep WP, Gaber HM, Jones WL, Das BS, Wraith JM (1998) Pore water velocity and residence time effects on the degradation of 2,4-D during transport. Environ Sci Technol 32:1308–1315

    CAS  Google Scholar 

  • Larsson MH, Jarvis NJ (2000) Quantifying interactions between compound properties and macropore flow effects on pesticide leaching. Pestic Manag Sci 56:133–141

    CAS  Google Scholar 

  • Larsson MH, Jarvis NJ, Torstensson G, Kasteel R (1999) Quantifying the impact of preferential flow on solute transport to tile drains in a sandy field soil. J Hydrol 215:116–134

    Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  Google Scholar 

  • Laskowski DA, Goring CAI, McCall JP, Swann RL (1982) Terrestrial environment. In: Conway RA (ed) Environmental risk analysis for chemicals. Van Nostrand Reinhold Co, New York, pp 198–240

    Google Scholar 

  • Leake CR (1991) Lysimeter studies. Pestic Sci 31:363–373

    CAS  Google Scholar 

  • Lechón Y, Sánchez-Brunete C, Tadeo JL (1997) Influence of the laboratory incubation method on chlortoluron and terbutryn degradation in soil. J Agric Food Chem 45:951–954

    Google Scholar 

  • Lee JK, Führ F, Kyung KS (1994) Behavior of carbofuran in a rice plant-grown lysimeter throughout four growing seasons. Chemosphere 29:747–758

    CAS  Google Scholar 

  • Lee JK, Führ F, Kyung KS (1996) Fate of the herbicide bentazon in rice plant-grown lysimeters over four consecutive cultivation years. J Environ Sci Health 31B:179–201

    Google Scholar 

  • Lee JK, Führ F, Kyung KS, Ahn KC, Kwon JW (1998) Fate of the herbicide cinosulfuron in rice plant-grown lysimeters over two consecutive years. In: Führ F, Hance RJ, Plimmer JR, Nelson JO (eds) The lysimeter concept, environmental behavior of pesticides. ACS Symp Ser 699, American Chemical Society, Washington DC, chap 4, pp 52–64

    Google Scholar 

  • Lee JK, Führ F, Park SH, Lee EY, Kim YJ, Kyung KS (2003) Long-term fate of the herbicide azimsulfuron in a rice-grown lysimeter over six consecutive years. In: Clark JM, Ohkawa H (eds) Environmental fate and safety management of agrochemicals. ACS Symp Ser 899, American Chemical Society, Washington DC, chap 5, pp 50–61

    Google Scholar 

  • Lee CH, Oloffs PC, Szeto SY (1986) Persistence, degradation and movement of triclopyr and its ethylene glycol butyl ether ester in a forest soil. J Agric Food Chem 34:1075–1079

    CAS  Google Scholar 

  • Leistra M, Smelt JH, Lexmond TM (1976) Conversion and leaching of aldicarb in soil columns. Pestic Sci 7:471–482

    CAS  Google Scholar 

  • Lennartz B (1999) Variation of herbicide transport parameters within a single field and its relation to water flux and soil properties. Geoderma 91:327–345

    CAS  Google Scholar 

  • Letey J, Williams CF, Farmer WJ, Nelson SD, Agassi M, Ben-Hur M (2000) The role of dissolved organic matter in pesticide transport through soil. In: Steinheimer TR, Ross LJ, Spittler TD (eds) Agrochemical fate and movement. perspective and scale of study. ACS Symp Ser 751, American Chemical Society, Washington DC, chap 22, pp 347–360

    Google Scholar 

  • Levanon D, Codling EE, Meisinger JJ, Starr JL (1993) Mobility of agrochemicals through soil from two tillage systems. J Environ Qual 22:155–161

    CAS  Google Scholar 

  • Levanon D, Meisinger JJ, Codling EE, Starr JL (1994) Impact of tillage on microbial activity and the fate of pesticides in the upper soil. Water Air Soil Pollut 72:179–189

    CAS  Google Scholar 

  • Li K, Xing B, Torello WA (2005) Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environ Pollut 134:187–194

    CAS  Google Scholar 

  • Li ZC, Yost RS, Green RE (1998) Incorporating uncertainty in a chemical leaching assessment. J Contam Hydrol 29:285–299

    CAS  Google Scholar 

  • Liang X, Xu F, Lin B, Su F, Schramm KW, Kettrup A (2002) Retention behavior of hydrophobic chemicals as a function of temperature in soil leaching column chromatography. Chemosphere 49:569–574

    CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, Johnson WG, Jordan D, George MF (2003) The effect of five forage species on transport and transformation of atrazine and isoxaflutole (Balance) in lysimeter leachate. J Environ Qual 32:1992–2000

    CAS  Google Scholar 

  • Lipiec J, Kuś J, Stowińska-Jurkiewicz A, Nosalewicz A (2006) Soil porosity and water infiltration as influenced by tillage methods. Soil Tillage Res 89:210–220

    Google Scholar 

  • Liu Z, Clay SA, Clay DE, Harper SS (1995) Ammonia impacts on atrazine leaching through undisturbed soil columns. J Environ Qual 24:1170–1173

    CAS  Google Scholar 

  • Locke MA, Harper SS, Gaston LA (1994) Metribuzin mobility and degradation in undisturbed soil column. Soil Sci 157:279–288

    CAS  Google Scholar 

  • Lopetz-Avila V, Hitara P, Kraska S, Flanagan M, Taylor Jr JH, Hern SC, Melacon S, Pollard J (1986) Movement of selected pesticides and herbicides through columns of sandy loam. In: Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in groundwater. ACS Symp Ser 315, American Chemical Society, Washington DC, chap 16, pp 311–328

    Google Scholar 

  • Lynch MR (1995) Procedures for assessing the environmental fate and ecotoxicity of pesticides. Society of Environmental Toxicology and Chemistry, Brussels, p 54

    Google Scholar 

  • Magee BR, Lion LW, Lemley AT (1991) Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environ Sci Technol 25:323–331

    CAS  Google Scholar 

  • Majumdar K, Singh N (2007) Effect of soil amendments on sorption and mobility in soils. Chemosphere 66:630–637

    CAS  Google Scholar 

  • Mallawatantri AP, McConkey BG, Mulla DJ (1996) Characterization of pesticide sorption and degradation in macropore linings and soil horizons of Thatuna silt loam. J Environ Qual 25:227–235

    CAS  Google Scholar 

  • Malone RW, Shipitalo MJ, Wauchope RD, Sumner H (2004) Residual and contact herbicide transport through field lysimeters via preferential flow. J Environ Qual 33:2141–2148

    CAS  Google Scholar 

  • Manoj VB, Gajbhiye VT (2007) Adsorption-desorption and leaching of bifenthrin in soil. Pestic Res J 19:257–261

    CAS  Google Scholar 

  • Mao M, Ren L (2004) Simulating non-equilibrium transport of atrazine through saturated soil. Ground Water 42:500–508

    CAS  Google Scholar 

  • Martins JMF, Mermoud A (1999) Transport of rimsulfuron and its metabolites in soil columns. Chemosphere 38:601–616

    CAS  Google Scholar 

  • Martins EL, Weber OLS, Dores EFGC, Spadotto CA (2007) Leaching of seven pesticides currently used in cotton crop in Mato Grosso State – Brazil. J Environ Sci Health 42B:877–882

    Google Scholar 

  • Matallo M, Romero E, Peña A, Sánchez-Rasero F, Dios G (1999) Leaching of mecoprop and dichlorprop in calcareous soil. Effect of the exogen organic matter addition in this process. J Environ Health Sci 34B:617–632

    Google Scholar 

  • Matocha CJ, Hossner LR (1999) Mobility of the herbicide pyrithiobac through intact soil columns. J Agric Food Chem 47:1755–1759

    CAS  Google Scholar 

  • McCall PJ, Laskowski DE, Swann RL, Disburger HJ (1981) Measurement of sorption coefficients of organic chemicals and their use, in environment fate analysis. In: Test protocols for environmental fate and movement of toxicants. Proc Symp Assoc Off Anal Chem, 94th Annual Meeting, AOAC, Washington DC, pp 89–109

    Google Scholar 

  • McCall PJ, Swann RL, Laskowski DA, Unger SM, Vrona SA, Dishburger HJ (1980) Estimation of chemical mobility in soil from liquid chromatographic retention time. Bull Environ Contam Toxicol 24:190–195

    CAS  Google Scholar 

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    CAS  Google Scholar 

  • McDonald JA, Gaston LA, Jackson SH, Locke MA, Zablotowicz RM (2006) Degradation kinetics assessment for the fungicide BAS 505 in intact soil cores versus batch soils. Soil Sci 171:239–248

    CAS  Google Scholar 

  • McMahon MA, Thomas GW (1974) Chloride and tritiated water flow in disturbed and undisturbed soil cores. Soil Sci Soc Am Proc 38:727–732

    CAS  Google Scholar 

  • Meeks YJ, Dean JD (1990) Evaluating ground-water vulnerability to pesticides. J Water Resources Planning Manag 116:693–707

    Google Scholar 

  • Mersie W, Foy CL (1986) Adsorption, desorption, and mobility of chlorsulfuron in soils. J Agric Food Chem 34:89–92

    CAS  Google Scholar 

  • Mersie W, Seybold C, Tsegaye T (1999) Movement, adsorption and mineralization of atrazine in two soils with and without switchgrass (Panicum virgatum) roots. Eur J Soil Sci 50:343–349

    CAS  Google Scholar 

  • Miao Z, Cheplick MJ, Williams M, Trevisan M, Padovani L, Gennari M, Ferrero A, Vidotto F, Capri E (2003) Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model. J Environ Qual 32:2189–2199

    CAS  Google Scholar 

  • Mikata K, Ohta K, Tashiro S (2001) Degradation and leaching of herbicide imazosulfuron in upland soils. J Pestic Sci 26:376–382

    CAS  Google Scholar 

  • Mills MS, Hill IR, Newcombe AC, Simmons ND, Vaughan PC, Verity AA (2001) Quantification of acetochlor degradation in the unsaturated zone using two novel in situ field techniques: comparisons with laboratory-generated data and implications for groundwater risk assessment. Pestic Manag Sci 57:351–359

    CAS  Google Scholar 

  • Mora A, Hermosin MC, Cornejo J (1997) Mobility of terbacil as influenced by soil characteristics. Intern J Environ Anal Chem 66:149–161

    CAS  Google Scholar 

  • Morgan P, Buttle JM, Metcalfe CD, Ostrander D (1995) Laboratory studies on the leaching of aldicarb through a tropical soil from Belize, Central America. Water Air Soil Pollut 81:49–65

    CAS  Google Scholar 

  • Mori Y, Maruyama T, Mitsuno T (1999) Soft X-ray radiography of drainage patterns of saturated soils. Soil Sci Soc Am J 63:733–740

    CAS  Google Scholar 

  • Morillo E, Undabeytia T, Cabrera A, Villaverde J, Maqueda C (2004) Effect of soil type on adsorption-desorption, mobility and activity of the herbicide norflurazon. J Agric Food Chem 52:884–890

    CAS  Google Scholar 

  • Morrod RS (1982) Factors affecting the distribution of pesticide drenches in soil using the fungicide metazoxolon as a model. Pestic Sci 13:49–59

    Google Scholar 

  • Mueller TC, Banks PA (1991) Flurtamone adsorption and mobility in three Georgia soils. Weed Sci 39:275–279

    CAS  Google Scholar 

  • Münch JM, Totsche KU, Kaiser K (2002) Physicochemical factor controlling the release of dissolved organic carbon from columns of forest subsoils. Eur J Soil Sci 53:311–320

    Google Scholar 

  • Nambu K, Ohkawa H, Miyamoto J (1980) Metabolic fate of phenothrin in plants and soils. J Pestic Sci 5:177–197

    CAS  Google Scholar 

  • Nelson EA, Penner D (2007) Leaching of isoxaflutole and the herbicide safeners R-29148 and furilazole. Weed Technol 21:106–109

    CAS  Google Scholar 

  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M (1998) Facilitated transport of napropamide by dissolved organic matter in sewage sludge-amended soil. J Environ Qual 27:1194–1200

    CAS  Google Scholar 

  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M (2000) Herbicide application method effects on napropamide complexation with dissolved organic matter. J Environ Qual 29:987–994

    CAS  Google Scholar 

  • Newcombe AC, Gustafson DI, Fuhrman JD, van Wesenbeeck IJ, Simmons ND, Klein AJ, Travis KZ, Harradine KJ (2005) The acetochlor registration partnership: Prospective ground water monitoring program. J Environ Qual 34:1004–1015

    CAS  Google Scholar 

  • Nhung DTT, Phong TK, Watanabe H, Iwafune T, Thuyet DQ (2009) Simulating the dissipation of two herbicides using micropaddy lysimeters. Chemosphere 77:1393–1399

    CAS  Google Scholar 

  • Ni Y, Liang X, Chen J, Zhang Q, Ma L, Wu W, Kettrup A (2004) Investigation on the influence of methanol on adsorption and leaching of pesticides with soil column liquid chromatography. Chemosphere 56:1137–1142

    CAS  Google Scholar 

  • Nielsen DR, Biggar JW (1961) Miscible displacement in soils: I. Experimental information. Soil Sci Soc Am Proc 25:1–5

    Google Scholar 

  • Nkedl-Kizza P, Rao PSC, Hornsby AG (1987) Influence of organic cosolvents on leaching of hydrophobic organic chemicals through soils. Environ Sci Technol 21:1107–1111

    Google Scholar 

  • Novak JM, Moorman TB, Karlen DL (1994) Influence of soil aggregate size on atrazine sorption kinetics. J Agric Food Chem 42:1809–1812

    CAS  Google Scholar 

  • Novak JM, Moorman TB, Camberdella CA (1997) Atrazine sorption at the field scale in relation to soils and landscape position. J Environ Qual 26:1271–1277

    CAS  Google Scholar 

  • Novak SM, Portal JM, Schiavon M (2001a) Influence of soil aggregate size on atrazine and trifluralin leaching. Bull Environ Contam Toxicol 66:514–521

    CAS  Google Scholar 

  • Novak SM, Portal JM, Schiavon M (2001b) Effects of soil type upon metolachlor losses in subsurface drainage. Chemosphere 42:235–244

    CAS  Google Scholar 

  • O’Dell JD, Wolt JD, Jardine PM (1992) Transport of imazethapyr in undisturbed soil columns. Soil Sci Soc Am J 56:1711–1715

    Google Scholar 

  • OECD (2000) Guidance document for the performance of out-door monolith lysimeter studies. In: OECD Environmental health and safety publications. Series on testing and assessment. No 22. Environment Directorate, Paris, pp 25

    Google Scholar 

  • OECD (2004) OECD Guideline for the testing of chemicals, Leaching in soil columns. No 312. OECD Publishing, Brussels, p 15

    Google Scholar 

  • Ohkawa H, Nambu K, Inui H, Miyamoto J (1978) Metabolic fate of fenvalerate (Sumicidin®) in soil and by soil organisms. J Pestic Sci 3:129–141

    CAS  Google Scholar 

  • Ohkawa H, Shibaike R, Okihara Y, Morikawa M, Miyamoto J (1976) Degradation of the fungicide Denmart® (S-n-butyl S’-p-tert-butylbenzyl N-3-pyridyldithiocarbon imidate, S-1358) by plants, soils and light. Agric Biol Chem 40:943–951

    CAS  Google Scholar 

  • Ohmes GA, Mueller TC (2007) Sulfentrazone adsorption and mobility in surface soil of the Southern United States. Weed Technol 21:796–800

    CAS  Google Scholar 

  • Oi M (1999) Time-dependent sorption of imidacloprid in two different soils. J Agric Food Chem 47:327–332

    CAS  Google Scholar 

  • Ouyang Y, Shinde D, Mansell RS, Harris W (1996) Colloid-enhanced transport of chemicals in subsurface environments: A review. Crit Rev Environ Sci Technol 26:189–204

    CAS  Google Scholar 

  • Park BJ, Kyung KS, Choi JH, Im GJ, Kim IS, Shim JH (2005) Environmental fate of the herbicide molinate in a rice-paddy-soil lysimeter. Bull Environ Contam Toxicol 75:937–944

    CAS  Google Scholar 

  • Parsons RG, Wicks RJ, Gatzweiler EW, Jones RJ (1995) Variability in lysimeter results. In: Pesticide movement to water. Walker A, Allen R, Bailey SW, Blair AM, Brown CD, Günther P, Leake CR, Nichollas PH (eds) BCPC Monograph No. 62, British Crop Protection Council, Brighton, 4–11, pp 257–262

    Google Scholar 

  • Pearson RJ, Inskeep WP, Wraith JM, Gaber HM, Comfort SD (1996) Observed and simulated solute transport under varying water regimes: II. 2,6-Difluorobenzoic acid and dicamba. J Environ Qual 25:654–661

    CAS  Google Scholar 

  • Perret J, Prasher SO, Kantzas A, Langford C (2000) Preferential solute flow in intact soil columns measured by SPECT scanning. Soil Sci Soc Am J 64:469–477

    CAS  Google Scholar 

  • Perret J, Prasher SO, Kantzas A, Hamilton K, Langford C (1999) Three-dimensional quantitation of macropore networks in undisturbed soil cores. Soil Sci Soc Am J 63:1530–1543

    Google Scholar 

  • Persson L, Bergström L (1991) Drilling method for collection of undisturbed soil monoliths. Soil Sci Soc Am J 55:285–287

    Google Scholar 

  • Peters B, Feyerabend M, Schmidt B (2002) Design of a terrestrial field leaching and dissipation study within the European registration process. In: Authur EL, Barefoot AC, Clay VE (eds) Terrestrial field dissipation studies—purpose, design and interpretation. ACS Symp Ser 842, American Chemical Society, Washington DC, chap 3, pp 31–42

    Google Scholar 

  • Petersen CT, Holm J, Koch CB, Jensen HE, Hansen S (2002) Movement of pendimethalin, ioxynil and soil particles to field drainage tiles. Pestic Manag Sci 59:85–96

    Google Scholar 

  • Petrovic AM, Barrett WC, Larsson-Kovach IM, Reid CM, Lisk DJ (1996) The influence of a peat amendment and turf density on downward migration of metalaxyl fungicide in creeping bentgrass sand lysimeters. Chemosphere 33:2335–2340

    CAS  Google Scholar 

  • Pignatello JJ (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv Agronomy 69:1–73

    CAS  Google Scholar 

  • Pignatello JJ, Ferrandino FJ, Huang LQ (1993) Elution of aged and freshly added herbicides from a soil. Environ Sci Technol 27:1563–1571

    CAS  Google Scholar 

  • Pot V, Šimůnek J, Benoit P, Coquet Y, Yra A, Martínez-Cordón MJ (2005) Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores. J Contam Hydrol 81:63–88

    CAS  Google Scholar 

  • Poulsen TG, Moldrup P, de Jonge LW, Komatsu T (2006) Colloid and bromide transport in undisturbed soil columns: Application of two-region model. Vadose Zone J 5:649–656

    CAS  Google Scholar 

  • PPDB (2009) The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, funded by UK national sources and the EU-funded FOOTPRINT project (FP6-SSP-022704)

    Google Scholar 

  • Pütz T, Mittelstaedt W, Führ F (1998) Seasonal changes of [Phenyl-14C]methabenzthiazuron loads in soil solution under practical farming conditions. Chemosphere 37:1531–1545

    Google Scholar 

  • Rao PSC, Hornby AG, Jessup RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Proc Soil Crop Sci Soc Fla 44:1–8

    CAS  Google Scholar 

  • Rao PSC, Edvardsson KSV, Ou LT, Jessup RE, Nkedi-Kizza P, Hornsby AG (1986) Spatial variability of pesticide sorption and degradation parameters. In: Garner WY, Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in ground water. ACS Symp Ser 315, American Chemical Society, Washington DC, chap 6, pp 100–115

    Google Scholar 

  • Raturi S, Carroll MJ, Hill RL (2003) Turfgrass thatch effects on pesticide leaching: A laboratory and modeling study. J Environ Qual 32:215–223

    CAS  Google Scholar 

  • Reemtsma T, Mehrtens J (1997) Determination of polycyclic aromatic hydrocarbon (PAH) leaching from contaminated soil by a column test with on-line solid phase extraction. Chemosphere 35:2491–2501

    CAS  Google Scholar 

  • Reemtsma T, Bredow A, Gehring M (1999) The nature and kinetics of organic matter release from soil by salt solutions. Eur J Soil Sci 50:53–64

    CAS  Google Scholar 

  • Regitano JB, Da Rocha WSD, Alleoni LRF (2005) Soil pH on mobility of imazaquin in oxisols with positive balance of charges. J Agric Food Chem 53:4096–4102

    CAS  Google Scholar 

  • Regitano JB, Prata F, Rocha WSD, Tornisielo VL, Lavorenti A (2002) Imazaquin mobility in tropical soils in relation to soil moisture and rainfall timing. Weed Res 42:271–279

    CAS  Google Scholar 

  • Reinken G, Führ F, Zadgorsky N, Halling H, Schult O (1995) Application of a novel high-resolution tomographic method for non-destructive characterization of pore structure in soil column. In: Walker A, Allen R, Bailey SW, Blair AM, Brown CD, Günther P, Leake CR, Nichollas PH (eds) Pesticide movement to water. BCPC Monograph No. 62, British Crop Protection Council, Brighton, 1–6, pp 39–44

    Google Scholar 

  • Renaud FG, Brown CD, Fryer CJ, Walker A (2004) A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching. Environ Pollut 131:81–91

    CAS  Google Scholar 

  • Riise G, Eklo OM, Lode O, Pettersen MN (1992) Mobility of dichlorprop in the soil-water system as a function of different environmental factors. II. A lysimeter experiment. Sci Total Environ 123(124):411–420

    Google Scholar 

  • Riise G, Eklo OM, Lode O, Pettersen MN (1994) Mobility of atrazine and tribenuron-methyl in the soil-water system—Lysimeter experiments. Norw J Agric Sci, Suppl, pp 31–41

    Google Scholar 

  • Roberts TR, Hutson DH, Lee PW, Nicholls PH, Plimmer JR (1998) Metabolic pathways of agrochemicals. Part 1 and 2, The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Rodríguez-Cruz MS, Jones JE, Bending GD (2006) Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics. Soil Biol Biochem 38:2910–2918

    Google Scholar 

  • Rodríguez-Cruz MS, Jones JE, Bending GD (2008) Study of the spatial variation of the biodegradation rate of the herbicide bentazon with soil depth using contrasting incubation methods. Chemosphere 73:1211–1215

    Google Scholar 

  • Romero E, Sánchez-Rasero F, Peña A, de la Colina C, Dios G (1996) Bentazone leaching in Spanish soils. Pestic Sci 47:7–15

    CAS  Google Scholar 

  • Rosenbom AE, Kjær J, Olsen P (2010) Long-term leaching of rimsulfuron degradation products through sandy agricultural soils. Chemosphere 79:830–838

    CAS  Google Scholar 

  • Roulier S, Jarvis N (2003) Modeling macropore flow effects on pesticide leaching: Inverse parameter estimation using microlysimeters. J Environ Qual 32:2341–2353

    CAS  Google Scholar 

  • Roy JW, Hall JC, Parkin GW, Wagner-Riddle C, Clegg BS (2001) Seasonal leaching and biodegradation of dicamba in turfgrass. J Environ Qual 30:1360–1370

    CAS  Google Scholar 

  • Rüdel H, Schmidt S, Kördel W, Klein W (1993) Degradation of pesticides in soil: comparison of laboratory experiments in a biometer system and outdoor lysimeter experiments. Sci Total Environ 132:181–200

    Google Scholar 

  • Russell MH (1995) Recommended approaches to assess pesticide mobility in soil. In: Roberts TR, Kearney PC (eds) Progress in pesticide biochemistry and toxicology. Environmental behavior of agrochemicals. vol 9, John Wiley & Sons, Inc., Chichester, chap 2, pp 57–129

    Google Scholar 

  • Sabbagh GJ, Fox GA, Ma L, Malone RW, Arthur EL, Dyer DG (2007) Modeling pesticide fate and nonideal transport from seed treated with a slow-release pesticide in a laboratory soil column. Trans Am Soc Agric Biol Eng 50:523–532

    CAS  Google Scholar 

  • Sadeghi AM, Isensee AR, Shirmohammadi A (2000) Influence of soil texture and tillage on herbicide transport. Chemosphere 41:1327–1332

    CAS  Google Scholar 

  • Saison C, Cattan P, Louchart X, Voltz M (2008) Effect of spatial heterogeneities of water fluxes and application pattern on cadusafos fate on banana-cultivated andosols. J Agric Food Chem 56:11947–11955

    CAS  Google Scholar 

  • Sakaliene O, Papiernik SK, Koskinen WC, Kavoliūnaite I, Brazenaitei J (2009) Using lysimeters to evaluate the relative mobility and plant uptake of four herbicides in a rye production system. J Agric Food Chem 57:1975–1981

    CAS  Google Scholar 

  • Sakata S, Mikami N, Matsuda T, Miyamoto J (1986) Degradation and leaching behavior of the pyrethroid insecticide cypermethrin in soils. J Pestic Sci 11:71–79

    CAS  Google Scholar 

  • Sakata S, Yoshimura J, Nambu K, Mikami N, Yamada H (1990) Degradation and leaching behavior of the pyrethroid insecticide fenpropathrin in soils. J Pestic Sci 15:363–373

    CAS  Google Scholar 

  • Sánchez L, Romero E, Peña A (2003) Ability of biosolids and a cationic surfactant to modify methidathion leaching. Modelling with pescol. Chemosphere 53:843–850

    Google Scholar 

  • Sánchez-Camazano M, Sánchez-Martín MJ, Delgado-Pascual R (2000) Adsorption and mobilities of linuron in soils as influenced by soil properties, organic amendments and surfactants. J Agric Food Chem 48:3018–3026

    Google Scholar 

  • Sánchez-Camazano M, Gonzalez-Pozuelo JM, Sánchez-Martín MJ, Crisanto T (1994) Adsorption and mobility of acephate in soils. Ecotox Environ Safety 29:61–69

    Google Scholar 

  • Sánchez-Martín MJ, Piccolo A, Sánchez-Camazano M, Arienzo M (1997) Diazinon leaching through a sandy soil amended with different humic materials. Toxicol Environ Chem 62:21–33

    Google Scholar 

  • Sander T, Gerke HH (2007) Preferential flow patterns in paddy fields using a dye tracer. Vadose Zone J 6:105–115

    Google Scholar 

  • Schiavon M (1988) Studies of the leaching of atrazine, of its chlorinated derivatives, and of hydroxyatrazine from soil using 14C ring-labeled compounds under outdoor conditions. Ecotox Environ Safety 15:46–54

    CAS  Google Scholar 

  • Schnitzler F, Lavorenti A, Berns AE, Drewes N, Vereecken H, Burauel P (2007) The influence of maize residues on the mobility and binding of benazolin: Investigating physically extracted soil fractions. Environ Pollut 147:4–13

    CAS  Google Scholar 

  • Schoen R, Gaudet JP, Bariac T (1999a) Preferential flow and solute transport in a large lysimeter, under controlled boundary conditions. J Hydrol 215:70–81

    Google Scholar 

  • Schoen R, Gaudet JP, Elrick DE (1999b) Modelling of solute transport in a large undisturbed lysimeter, during steady-state water flux. J Hydrol 215:82–93

    Google Scholar 

  • Schroll R, Kühn S (2004) Test system to establish mass balances for 14C-labeled substances in soil-plant-atmosphere systems under field conditions. Environ Sci Technol 38:1537–1544

    CAS  Google Scholar 

  • Schroll R, Dörfler U, Scheunert I (1999) Volatilization and mineralization of 14C-labeled pesticides on lysimeter surfaces. Chemosphere 39:595–602

    CAS  Google Scholar 

  • Schroll R, Grundmann S, Dörfler U, Ruth B, Munch JC (2008) Lysimeter experiments to investigate the fate of chemicals in soils – comparison of five different lysimeter systems. Water Air Soil Pollut: Focus 8:209–216

    Google Scholar 

  • Schroll R, Langenbach T, Cao G, Dörfler U, Schneider P, Scheunert I (1992) Fate of [14C]terbutylazine in soil-plant system. Sci Total Environ 123(124):377–389

    Google Scholar 

  • Schwartz RC, McInnes KJ, Juo ASR, Cervantes CE (1999) The vertical distribution of a dye tracer in a layered soil. Soil Sci 164:561–572

    CAS  Google Scholar 

  • Scorza Júnior RP, Smelt JH, Boesten JJTI, Hendriks RFA, van der Zee SEATM (2004) Preferential flow of bromide, bentazon and imidacloprid in a Dutch clay soil. J Environ Qual 33:1473–1486

    Google Scholar 

  • Selim HM, Zhu H (2002) Retention and mobility of deltamethrin in soils: 2. Transport. Soil Sci 167:580–589

    CAS  Google Scholar 

  • Selim HM, Zhou L, Xue SK (2002) Alachlor transport during transient water flow in unsaturated soils. Soil Sci Soc Am J 66:1773–1783

    CAS  Google Scholar 

  • Seta AK, Karathanasis AD (1996) Colloid-facilitated transport of metolachlor through intact soil columns. J Environ Sci Health 31B:949–968

    Google Scholar 

  • Seta AK, Karathanasis AD (1997a) Stability and transportability of water-dispersible soil colloids. Soil Sci Soc Am J 61:604–611

    CAS  Google Scholar 

  • Seta AK, Karathanasis AD (1997b) Atrazine adsorption by soil colloids and co-transport through subsurface environments. Soil Sci Soc Am J 61:612–617

    CAS  Google Scholar 

  • Seyfried MS, Rao PSC (1987) Solute transport in undisturbed columns of an aggregated tropical soil: Preferential flow effects. Soil Sci Soc Am J 51:1434–1444

    Google Scholar 

  • Shaw LJ, Burns RG (1998) Biodegradation—transport interactions of pulse applied 2,4-D in repacked soil microcosms. J Environ Qual 27:1472–1478

    CAS  Google Scholar 

  • Shipitalo MJ, Edwards WM, Dick WA, Owens LB (1990) Initial storm effects on macropore transport of surface-applied chemicals in no-till soil. Soil Sci Soc Am J 54:1530–1536

    CAS  Google Scholar 

  • Shukla S, Mostaghimi S, Shanholt VO, Collins MC, Ross BB (2000) A county-level assessment of ground water contamination by pesticides. Ground Water Monit Remed 20:104–119

    CAS  Google Scholar 

  • Si Y, Wang S, Zhou J, Hua R, Zhou D (2005) Leaching and degradation of ethametsulfuron-methyl in soil. Chemosphere 60:601–609

    CAS  Google Scholar 

  • Si Y, Zhang J, Wang S, Zhang L, Zhou D (2006) Influence of organic amendments on the adsorption and leaching of ethametsufuron-methyl in acidic soils in China. Geoderma 130:66–76

    CAS  Google Scholar 

  • Siczek A, Kotowska U, Lipiec J, Nosalewicz A (2008) Macro-porosity and leaching of atrazine in tilled and orchard loamy soils. Chemosphere 70:1973–1978

    CAS  Google Scholar 

  • Sigua GC, Isensee AR, Sadeghi AM, Im GJ (1995) Distribution and transport of atrazine as influenced by surface cultivation, earthworm population and rainfall pattern. Chemosphere 31:4237–4242

    CAS  Google Scholar 

  • Simunek J, van Genuchten M, Sejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0. U.S. Salinity Laboratory, Agricultural Research Service. U.S. Department of Agriculture, Riverside, p 119

    Google Scholar 

  • Singh N (2003) Organic manure and urea effect on metolachlor transport through packed soil columns. J Environ Qual 32:1743–1749

    CAS  Google Scholar 

  • Singh N (2005) Mobility of four triazole fungicides in two Indian soils. Pestic Manag Sci 61:191–196

    CAS  Google Scholar 

  • Singh N (2006) Metribuzin mobility in soil columns as affected by urea fertilizer. Pestic Manag Sci 62:402–406

    CAS  Google Scholar 

  • Singh N, Kloeppel H, Klein W (2002) Movement of metolachlor and terbuthylazine in core and packed soil columns. Chemosphere 47:409–415

    CAS  Google Scholar 

  • Singh P, Kanwar RS (1991) Preferential solute transport through macropores in large undisturbed saturated soil columns. J Environ Qual 20:295–300

    Google Scholar 

  • Smetnik A, Frost M (1999) Simulation of 14C-triadimenol leaching in lysimeter studies with PELMO. In: Del Re AAM, Brown C, Capri E, Errera G, Evans SP, Trevisan M (eds) Human and Environmental Exposure to Xenobiotics. Proceeding, XI Symp Pestic Chem, La Goliardica Pavese srl, Viale Golgi, pp 449–455

    Google Scholar 

  • Smith S, Willis GH (1985) Movement of pesticides in soil columns as affected by anhydrous ammonia. Environ Toxicol Chem 4:425–434

    CAS  Google Scholar 

  • Socías-Viciana MM, Fernández-Pérez M, Villafranca-Sánchez M, González-Pradas E, Flores-Céspedes F (1999) Sorption and leaching of atrazine and MCPA in neutral and peat-amended calcareous soils from Spain. J Agric Food Chem 47:1236–1241

    Google Scholar 

  • Song NH, Chen L, Yang H (2008) Effect of dissolved organic matter on mobility and activation of chlortoluron in soil and wheat. Geoderma 146:344–352

    CAS  Google Scholar 

  • Sonon LS, Schwab AP (2004) Transport and persistence of nitrate, atrazine and alachlor in large intact soil columns under two levels of moisture content. Soil Sci 169:541–553

    CAS  Google Scholar 

  • Sorenson BA, Koskinen WC, Buhler DD, Wyse DL, Lueschen WE, Jorgenson MD (1994) Formation and movement of 14C-atrazine degradation products in a clay loam soil in the field. Weed Sci 42:618–624

    CAS  Google Scholar 

  • Spadotto CA (2002) Screening method for assessing pesticide leaching potential. Pesticidas: Revista Ecotoxicol Meio Ambiente 12:69–78

    CAS  Google Scholar 

  • Spark KM, Swift RS (1998) Effect of dissolved organic matter on the movement of pesticides in soil columns. In: Davies G, Ghabbour EA (eds) Humic substances: structure, properties and uses. Special Publ. Royal Soc Chem 228: 195–201

    Google Scholar 

  • Sprague LA, Herman JS, Hornberger GM, Mills AL (2000) Atrazine adsorption and colloid-facilitated transport through the unsaturated zone. J Environ Qual 29:1632–1641

    CAS  Google Scholar 

  • Spurlock FC, Biggar JW (1990) Effect of naturally occurring soluble organic matter on the adsorption and movement of simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] in Hanford sandy loam. Environ Sci Technol 24:736–741

    CAS  Google Scholar 

  • Spurlock FC, Huang K, van Genuchten MT (1995) Isotherm nonlinearity sorption effects on transport of fenuron and monuron in soil columns. Environ Sci Technol 29:1000–1007

    CAS  Google Scholar 

  • Srivastava A, Agarwal V, Srivastava PC, Guru SK, Singh G (2006) Leaching of sulfosulfuron from two textually different soils under saturated moisture regime. J Food Agric Environ 4:287–290

    CAS  Google Scholar 

  • Starrett SK, Christians NE, Al-Austin T (1996) Movement of pesticides under two irrigation regimes applied to turfgrass. J Environ Qual 25:566–571

    CAS  Google Scholar 

  • Steenhuis TS, Staubitz W, Andreini MS, Surface J, Richard TL, Paulsen R, Pickering NB, Hagerman JR, Geohring LD (1990) Preferential movement of pesticides and tracers in agricultural soils. J Irrig Drain Engineer 116:50–66

    Google Scholar 

  • Stehouwer RC, Dick WA, Traina SJ (1993) Characteristics of earthworm burrow lining affecting atrazine sorption. J Environ Qual 22:181–185

    CAS  Google Scholar 

  • Stehouwer RC, Dick WA, Traina SJ (1994) Sorption and retention of herbicides in vertically oriented earthworm and artificial burrows. J Environ Qual 23:286–292

    CAS  Google Scholar 

  • Stenrød M, Charnay MP, Benoit P, Eklo OM (2006) Spatial variability of glyphosate mineralization and soil microbial characterization in two Norwegian sandy loam soils as affected by the surface topological features. Soil Biol Biochem 38:962–971

    Google Scholar 

  • Stockmaier M, Kreuzig R, Bahadir M (1996) Investigations on the behavior of fenpropimorph and its metabolite fenpropimorphic acid in soils. Pestic Sci 46:361–367

    CAS  Google Scholar 

  • Stone DM, Harris AR, Koskinen WC (1993) Leaching of soil-active herbicides in acid, low base saturated sands: Worst-case conditions. Environ Toxicol Chem 12:399–404

    CAS  Google Scholar 

  • Strömqvist J, Jarvis N (2005) Sorption, degradation and leaching of the fungicide iprodione in a golf green under Scandinavian conditions: measurements, modeling and risk assessments. Pestic Manag Sci 61:1168–1178

    Google Scholar 

  • Sundaram KMS (1997) Mobility and metabolic fate of mexacarbate in soil columns containing sandy and clay loam forest soils. J Environ Sci Health 32B:147–175

    Google Scholar 

  • Suárez F, Bachmann J, Muñoz JF, Oritz C, Tyler SW, Alister C, Kogan M (2007) Transport of simazine in unsaturated sandy soil and prediction of its leaching under hypothetical field conditions. J Contam Hydrol 94:166–177

    Google Scholar 

  • Suzuki S (2000) Leaching of several pesticides in andosol upland field under natural rain conditions. J Pestic Sci 25:1–9

    CAS  Google Scholar 

  • Suzuki T, Kondo H, Yaguchi K, Maki T, Suga T (1998) Estimation of leachability and persistence of pesticides as golf courses from point-source monitoring and model to predict pesticide leaching to groundwater. Environ Sci Technol 32:920–929

    CAS  Google Scholar 

  • Swoboda AR, Thomas GW (1968) Movement of parathion in soil columns. J Agric Food Chem 16:923–927

    CAS  Google Scholar 

  • Taboada ER, Dekker A, van Kammen-Polman A, Smelt JH, Boesten JJTI, Leistra M (1994) Adsorption, degradation and leaching of pirimicarb in orchard soils. Sci Total Environ 153:253–260

    CAS  Google Scholar 

  • Takamatsu T, Koshikawa MK, Watanabe M, Hou H, Murata T (2007) Design of a meso-scale indoor lysimeter for undisturbed soil to investigate the behaviour of solutes in soil. Eur J Soil Sci 58:329–334

    Google Scholar 

  • Takimoto Y, Hirota M, Inui H, Miyamoto J (1976) Decomposition and leaching of radioactive Sumithion in 4 different soils under laboratory conditions. J Pestic Sci 1:131–143

    CAS  Google Scholar 

  • Tames RS, Hance RJ (1969) The adsorption of herbicides by roots. Plant Soil 30:221–226

    CAS  Google Scholar 

  • Tan S, Singh M (1995) Effects of cationic surfactants on leaching of bromacil and norflurazon. Bull Environ Contam Toxicol 55:359–365

    CAS  Google Scholar 

  • Thevenot M, Dousset S, Rousseaux S, Andreux F (2008) Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters. Environ Pollut 153:148–156

    CAS  Google Scholar 

  • Thevenot M, Dousset S, Hertkorn N, Schmitt-Kopplin P, Andreux F (2009) Interactions of diuron with dissolved organic matter from organic amendments. Sci Total Environ 407:4297–4302

    CAS  Google Scholar 

  • Tiktak A, Boesten JJTI, van der Linden AMA, Vanclooster M (2006) Mapping ground water vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL. J Environ Qual 35:1213–1216

    CAS  Google Scholar 

  • Tindall JA, Vencill WK (1995) Transport of atrazine, 2,4-D and dicamba through preferential flowpaths in an undisturbed claypan soil near Centrolia, Missouri. J Hydrol 166:37–59

    CAS  Google Scholar 

  • Tingle CH, Shaw DR, Gerard PD (1999) Flumetsulam mobility in two Mississippi soils as influenced by irrigation timing. Weed Sci 47:349–352

    CAS  Google Scholar 

  • Topp E, Smith WN, Reynolds WD, Khan SU (1994) Atrazine and metolachlor dissipation in soils incubated in undisturbed cores, repacked cores and flasks. J Environ Qual 23:693–700

    CAS  Google Scholar 

  • Traub-Eberhard U, Kördel W, Klein W (1994) Pesticide movement into subsurface drains on a loamy silt soil. Chemosphere 28:273–284

    CAS  Google Scholar 

  • Tsegaye T, Johnson A, Mersier W, Dennis S, Golson K (2007) Transport of atrazine through soil columns with or without switchgrass roots. J Food Agric Environ 5:345–350

    CAS  Google Scholar 

  • Undabeytia T, Sanchez-Verdejo T, Morillo E, Maqueda C (2004) Effect of organic amendments on the retention and mobility of imazaquin in soils. J Agric Food Chem 52:4493–4500

    CAS  Google Scholar 

  • USEPA (2008a) Fate, transport and transformation test guidelines. Leaching studies. OPPTS 835.1240, EPA 712-c-08-010. US Environmental Protection Agency, Washington DC, p 14

    Google Scholar 

  • USEPA (2008b) Guidance for prospective ground-water monitoring studies. Environmental fate and effects division, Office of pesticide programs. USEPA, Washington DC, p 87

    Google Scholar 

  • USEPA (2008c) Fate, transport and transformation test guidelines. Terrestrial field dissipation. OPPTS 835.6100, EPA 712-c-08-020. US Environmental Protection Agency, Washington DC, p 50

    Google Scholar 

  • USEPA (2011) Pesticides, Science and Policy, Aquatic models. http://www.epa.gov/pesticides/ science/models_pg.htm#aquatic. US EPA, Washington, DC

  • Beinum V, Beulke S, Brwon CD (2005) Pesticide sorption and diffusion in natural clay loam aggregates. J Agric Food Chem 53:9146–9154

    Google Scholar 

  • Van Beinum W, Beulke S, Fryer C, Brown C (2006) Lysimeter experiment to investigate the potential influence of diffusion-limited sorption on pesticide availability for leaching. J Agric Food Chem 54:9152–9159

    Google Scholar 

  • Van der Linden AMA, Tiktak A, Boesten JJTI, Leijnse A (2009) Influence of pH-dependent sorption and transformation on simulated pesticide leaching. Sci Total Environ 407:3415–3420

    Google Scholar 

  • Van Genuchten MT, Wagenet RJ (1989) Two-site/two-region models for pesticide transport and degradation: Theoretical development and analytical solutions. Soil Sci Soc Am J 53:1303–1310

    Google Scholar 

  • Van Leemput L, Swysen E, Meuldermans W, Heykants J (1986) On the leaching of imazalil and its transformation products in soil. Med Fac Landbouww Rijksuniv Gent 51/2a: 245–257

    Google Scholar 

  • Vanderborght J, Gähwiller P, Flühler H (2002) Identification of transport processes in soil cores using fluorescence tracers. Soil Sci Soc Am J 66:774–787

    CAS  Google Scholar 

  • Veeh RH, Inskeep WP, Roe FL, Ferguson AH (1994) Transport of chlorsulfuron through soil columns. J Environ Qual 23:542–549

    CAS  Google Scholar 

  • Villaverde J, van Beinum W, Beulke S, Brown CD (2009) The kinetics of sorption by retarded diffusion into soil aggregate pores. Environ Sci Technol 43:8227–8232

    CAS  Google Scholar 

  • Villholth KG, Jarvis NJ, Jacobsen OH, de Jonge H (2000) Field investigation and modeling of particle-facilitated pesticide transport in macroporous soil. J Environ Qual 29:1298–1309

    CAS  Google Scholar 

  • Vincent A, Benoit P, Pot V, Madrigal I, Delgado-Moreno L, Labat C (2007) Impact of different land uses on the migration of two herbicides in a silt loam soil: unsaturated soil column displacement studies. Eur J Soil Sci 58:320–328

    CAS  Google Scholar 

  • Vink JPM, Gottesbüren B, Diekkrüger B, van der Zee SEATM (1997) Simulation and model comparison of unsaturated movement of pesticides from a large clay lysimeter. Ecol Modelling 105:113–127

    CAS  Google Scholar 

  • Vinten AJA, Yaron B, Nye PH (1983) Vertical transport of pesticides into soil when adsorbed on suspended particles. J Agric Food Chem 31:662–664

    CAS  Google Scholar 

  • Vinther FP, Eiland F, Lind AM, Elsgaard L (1999) Microbial biomass and numbers of detrifiers related to macropore channels in agricultural and forest soils. Soil Biol Biochem 31:603–611

    CAS  Google Scholar 

  • Vinther FP, Brinch UC, Elsgaard L, Fredslund L, Iversen V, Top S, Jacobsen CS (2008) Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil. J Environ Qual 37:1710–1718

    CAS  Google Scholar 

  • Vischetti C, Businelli M (1992) Evaluation of a simulation model for prediction of chlorsulfuron fate in an Umbrian soil. Sci Total Environ 123(124):561–569

    Google Scholar 

  • Vischetti C, Marucchini C, Leita L, Ceccon P, Giovanardi R (1997) Soil behavior of metanitron in laboratory and lysimeter studies. Agronomie 17:367–373

    Google Scholar 

  • Vischetti C, Marucchini C, Leita L, Cantone P, Danuso F, Giovanardi R (2002) Behavior of two sunflower herbicides (metbromuron, aclonifen) in soil. Eur J Agronomy 16:231–238

    CAS  Google Scholar 

  • Walker A (1974) A simulation model for prediction of herbicide persistence. J Environ Qual 3:396–401

    CAS  Google Scholar 

  • Walker A, Welch SJ (1989) The relative movement and persistence in soil of chlorsulfuron, metsulfuron-methyl and triasulfuron. Weed Res 29:375–383

    CAS  Google Scholar 

  • Walker A, Cotterill EG, Welch SJ (1989) Adsorption and degradation of chlorsulfuron and metsulfuron-methyl in soils from different depths. Weed Res 29:281–287

    CAS  Google Scholar 

  • Walker A, Rodriguez-Cruz MS, Mitchell MJ (2005) Influence of ageing of residues on the availability of herbicides for leaching. Environ Pollut 133:43–51

    CAS  Google Scholar 

  • Walker A, Welch SJ, Melacini A, Moon YH (1996) Evaluation of three pesticide leaching models with experimental data for alachlor, atrazine and metribuzin. Weed Res 36:37–47

    CAS  Google Scholar 

  • Walker A, Turner IJ, Cullington JE, Welch SJ (1999) Aspects of the adsorption and degradation of isoproturon in a heavy clay soil. Soil Use Manag 15:9–13

    Google Scholar 

  • Walker A, Jurado-Exposito M, Bending GD, Smith VJR (2001) Spatial variability in the degradation rate of isoproturon in soil. Environ Pollut 111:407–415

    CAS  Google Scholar 

  • Wang YS, Chen SW, Yen JH, Chen YL (1994) Dissipation and movement of acaricide chlorobenzilate in the environment. Ecotox Environ Safety 28:193–200

    CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders JBHJ, Kloskowski R, Tanaka K, Rubin B, Katayama A, Kördel W, Gerstl Z, Lane M, Unsworth JB (2002) Review: Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pestic Manag Sci 58:419–445

    CAS  Google Scholar 

  • Weber JB, Peeper TF (1982) Mobility and distribution of buthidazole and metabolites in four leached soils. Weed Sci 30:585–588

    CAS  Google Scholar 

  • Weber JB, Whitacre DM (1982) Mobility of herbicides in soil columns under saturated- and unsaturated-flow conditions. Weed Sci 30:579–584

    CAS  Google Scholar 

  • Weber JB, Strek HJ, Sartori JL (1993) Mobility of fomesafen and atrazine in soil columns under saturated- and unsaturated-flow conditions. Pestic Sci 39:39–46

    CAS  Google Scholar 

  • Weber JB, Jane McKinnon E, Swain LR (2003) Sorption and mobility of 14C-labeled imazaquin and metolachlor in four soils as influenced by soil properties. J Agric Food Chem 51:5752–5759

    CAS  Google Scholar 

  • Weber JB, Taylor KA, Wilkerson GG (2006) Soil and herbicide properties influenced mobility of atrazine, metolachlor, and primisulfuron-methyl in field lysimeters. Agron J 98:8–18

    CAS  Google Scholar 

  • Weber JB, Swain LR, Strek HJ, Sartori JL (1986) Herbicide mobility in soil leaching columns. In: Camper ND (ed) Research methods in weed science. Southern Weed Science Society, chap IX, pp 189–200

    Google Scholar 

  • Weber JB, Warren RL, Swain LR, Yelverton FH (2007) Physicochemical property effects of three herbicides and three soils on herbicide mobility in field lysimeters. Crop Protect 26:299–311

    CAS  Google Scholar 

  • Wells DA, Waldman E, Behl E (1995) Groundwater monitoring studies for agrochemicals: Directions and guidelines. In: Leng ML, Leovey EMK, Zubkoff PL (eds) Agrochemical environmental fate, state of the art. CRC, Boca Raton, chap 25, pp 263–272

    Google Scholar 

  • White RE (1985) The influence of macropores on the transport of dissolved and suspended matter through soil. Adv Soil Sci 3:95–120

    Google Scholar 

  • Wietersen RC, Daniel TC, Fermanich KJ, Girard BD, Mc Sweeney K, Lowery B (1993) Atrazine, alachlor and metolachlor mobility through two sandy Wisconsin soils. J Environ Qual 22:811–818

    CAS  Google Scholar 

  • Williams CF, Letey J, Farmer WJ (2002) Molecular weight of dissolved organic matter-napropamide complex transported through soil column. J Environ Qual 31:619–627

    CAS  Google Scholar 

  • Williams CF, Letey J, Farmer WJ (2006) Estimating the potential for facilitated transport of napropamide by dissolved organic matter. Soil Sci Soc Am J 70:24–30

    CAS  Google Scholar 

  • Williams CF, Agassi M, Letey J, Farmer WJ, Nelson SD, Ben-Hur M (2000) Facilitated transport of napropamide by dissolved organic matter through soil columns. Soil Sci Soc Am J 64:590–594

    CAS  Google Scholar 

  • Wilson GV, Yunsheng L, Selim HM, Essington ME, Tyler DD (1998) Tillage and cover crop effects on saturated and unsaturated transport of fluometuron. Soil Sci Soc Am J 62:46–55

    CAS  Google Scholar 

  • Wolt JD, Nelson HP Jr, Cleveland CB, van Wesenbeeck IJ (2001) Biodegradation kinetics for pesticide exposure assessment. Rev Environ Contam Toxicol 169:123–164

    CAS  Google Scholar 

  • Wolters A, Linnemann V, Herbst M, Klein M, Schäffer A, Vereecken H (2003) Pesticide volatilization from soil: lysimeter measurements versus predictions of European registration models. J Environ Qual 32:1183–1193

    CAS  Google Scholar 

  • Wood AL, Bouchard DC, Brusseau ML, Rao PSC (1990) Cosolvent effects on sorption and mobility of organic contaminants in soils. Chemosphere 21:575–587

    CAS  Google Scholar 

  • Wood LS, Scott HD, Marx DB, Lavy TL (1987) Variability in sorption coefficients of metolachlor on a Captina silt loam. J Environ Qual 16:251–256

    CAS  Google Scholar 

  • Worrall F, Parker A, Rae JE, Johnson AC (1999) A study of suspended and colloidal matter in the leachate from lysimeters and its role in pesticide transport. J Environ Qual 28:595–604

    CAS  Google Scholar 

  • Worrall F, Fernandez-Perez M, Johnson AC, Flores-Cesperedes F, Gonzalez-Pradas E (2001) Limitations on the role of incorporated organic matter in reducing pesticide leaching. J Contam Hydrol 49:241–262

    CAS  Google Scholar 

  • Wu CH, Santelmann PW (1975) Comparison of different soil leaching technique. Weed Sci 23:508–511

    CAS  Google Scholar 

  • Wu L, Green RL, Liu G, Yates MV, Pacheco P, Gan J, Yates SR (2002a) Partitioning and persistence of trichlorfon and chlorpyrifos in a creeping bentgrass putting green. J Environ Qual 31:889–895

    CAS  Google Scholar 

  • Wu L, Liu G, Yates MV, Green RL, Pacheco P, Gan J, Yates SR (2002b) Environmental fate of metalaxyl and chlorothalonil applied to a bentgrass putting green under southern California climate conditions. Pestic Manag Sci 58:335–342

    CAS  Google Scholar 

  • Xu F, Liang XM, Lin B, Su F, Zhong H, Schramm KW, Kettrup A (1999) Soil leaching column chromatographic technique for estimation of leaching behavior of atrazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine on soil. Bull Environ Contam Toxicol 63:87–93

    CAS  Google Scholar 

  • Yen JH, Hsiao FL, Wang YS (1997) Assessment of the insecticide carbofuran’s potential to contaminate groundwater through soils in the subtropics. Ecotox Environ Safety 38:260–265

    CAS  Google Scholar 

  • Yen JH, Lin KH, Wang YS (2000) Potential of the insecticide acephate and methamidophos to contaminate groundwater. Ecotox Environ safety 45:79–86

    CAS  Google Scholar 

  • Yen JH, Sheu WS, Wang YS (2003) Dissiaption of the herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater. Ecotox Environ safety 54:151–156

    CAS  Google Scholar 

  • Yen JH, Tsai PW, Chen WC, Wang YS (2008) Fate of anilide and aniline herbicides in plant-materials-amended soils. J Environ Sci Health 43B:382–389

    Google Scholar 

  • Yon DA (1992) The Letcombe lysimeter station. In: Führ F, Hance RJ (eds) Lysimeter studies of pesticides in the soil. BCPC Monograph No. 53, The Lavenham: Lavenham, Suffolk, pp 65–71

    Google Scholar 

  • Zhou Y, Wang Y, Hunkeler D, Zwahlen F, Boillat J (2010) Differential transport of atrazine and glyphosate in undisturbed sandy soil column. Soil Sed Contam 19:365–377

    CAS  Google Scholar 

  • Zins AB, Wyse DL, Koskinen WC (1991) Effect of alfalfa (Medicago sativa) roots on movement of atrazine and alachlor through soil. Weed Sci 39:262–269

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Katagi .

Editor information

Editors and Affiliations

Appendix 1: Chemical Structures

Appendix 1: Chemical Structures

Organophosphorus pesticides

(1) Parathion

(2) Fenitrothion

(3) Diazinon

(4) Chlorpyrifos

(5) Azinphos-methyl

(6) Methidathion

(7) Fosthiazate

(8) Fenamiphos

(9) Phorate

(10) Terbufos

(11) Acephate

(12) Methamidophos

(13) Trichlorfon

(14) Cadusafos

(15) Glyphosate

(16) Glufosinate

    

    

Carbamates

(17) Carbofuran

(18) Carbaryl

(19) Mexacarbate

(20) Aldicarb

(21) Benthiocarb

(22) Molinate

(23) Pirimicarb

(24) Carbendazim

  

  

Pyrethroid insecticides

(25) Phenothrin

(26) Permethrin

(27) Bifenthrin (Z)-(1RS)-cis

(28) Fenpropathrin

(29) Cypermethrin

(30) β-Cyfluthrin

(31) Deltamethrin

(32) Fenvalerate

  

(1R)-cis,trans-(αS), (1 S)-cis,trans-(αR)

(1R)-cis-(αS)

   

  

Urea herbicides

(33) Fenuron

(34) Monuron

(35) Diuron

(36) Chlortoluron

(37) Fluometuron

(38) Isoproturon

(39) Linuron

(40) Metobromuron

(41) Chloroxuron

(42) Difenoxuron

(43) Thiazafluron

(44) Tebuthiuron

(45) Buthidazole

  

  

Sulfonylurea herbicides

(46) Chlorsulfuron

(47) Metsulfuron-methyl (Me)

(48)Sulfometuron-methyl(Me)

(49) Triasulfuron

(50)Primisulfuron-methyl(Me)

(51) Tribenuron-methyl (Me)

(52) Ethametsulfuron

(53) Cinosulfuron

(54) Nicosulfuron

(55) Rimsulfuron

(56) Azimsulfuron

(57) Sulfosulfuron

(58) Imazosulfuron

  

  

Arylalkanoate herbicides

(59) 2,4-D

(60) Dichlorprop

(61) MCPA

(62) Mecoprop

(63) Triclopyr

(64) Cyhalofop (R)

    

    

Acetoanilide herbicides

(65) Alachlor

(66) Acetochlor

(67) Metolachlor

(68) Butachlor

(69) Metalaxyl

Diphenylether herbicides

(70) Acifluorfen

(71) Chlomethoxyfen

(72) Fomesafen

(73) Oxyfluorfen

 

 

Triazine herbicides

(74) Atrazine

(75) Simazine

(76) Cyanazine

(77) Prometon

(78) Terbuthylazine

(79) Prometryn

(80) Terbutryn

(81) Terbumeton

  

  

Miscellaneous pesticides

(82) Bromoxynil

(83) Dicamba

(84) Picloram

(85) Clopyralid

(86) Pyrithiobac

Miscellaneous pesticides

(87) Imazethapyr

(88) Imazaquin

(89) Bromacil

(90) Terbacil

(91) Lenacil

(92) Hexazinone

(93) Bentazon

(94) Metribuzin

(95) Metamitron

(96) Chloridazon

(97) Norflurazon

(98) Trifluralin

(99) Pendimethalin

(100) Oryzalin

(101) DDT

(102) Chlorobenzilate

(103) Endosulfan

(104) Toxaphene

(105) Flurtamone

(106) Dithiopyr

(107) Benazolin-ethyl

(108) Azoxystrobin (E)

(109) Fipronil

(110) Flumetsulam

(111) Sulfentrazone

(112) Buthiobate

(113) Thifluzamide

(114) Napropamide

(115) Procymidone

(116) Iprodione

(117) Imidacloprid

(118) Thiamethoxam (E)

(119) Etofumesate

(120) Sulcotrione

(121) Metazoxolon

(122) Halofenozide

(123) Fenpropimorph (cis)

(124) Fentin acetate

(125) Imazalil

(126) Procloraz

(127) Tebuconazole

(128) Triadimefon

(129) Triadimenol

(130) Triticinazole (E)

(131) Propiconazole

(132) Tricyclazole

(133) Paraquat

   

   

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katagi, T. (2013). Soil Column Leaching of Pesticides. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 221. Reviews of Environmental Contamination and Toxicology, vol 221. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4448-0_1

Download citation

Publish with us

Policies and ethics