Advertisement

Intramammary Delivery Technologies for Cattle Mastitis Treatment

  • Raid G. Alany
  • Sushila Bhattarai
  • Sandhya Pranatharthiharan
  • Padma V. Devarajan
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Mastitis is an infection of the udder caused by bacterial pathogens entering the mammary gland via the teat canal. It is the most prevalent infectious disease in adult dairy cattle. This chapter provides an overview covering the classification of mastitis, anatomy and physiology of the bovine udder, economic impact of mastitis, internal features and histology of the mammary gland, and therapeutic strategies with emphasis on the role of controlled drug release technologies in cattle mastitis prevention and control.

Keywords

Mammary Gland Somatic Cell Count Clinical Mastitis Subclinical Mastitis Teat Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Craven N (1987) Efficacy and financial value of antibiotic treatment of bovine clinical ­mastitis during lactation—a review. Br Vet J 143:410–414PubMedCrossRefGoogle Scholar
  2. 2.
    DeGrave FJ, Fetrow J (1993) Economic of mastitis and mastitis control. Vet Clin North Am Food Anim Pract 9:421–517Google Scholar
  3. 3.
    Gruet P, Maincent P, Berthelot X, Kaltsatos V (2001) Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev 50(3):245–259PubMedCrossRefGoogle Scholar
  4. 4.
    Erskine RJ, Kirk JH, Tyler JW, DeGraves FJ (1993) Advances in the therapy for mastitis. Vet Clin North Am Food Anim Pract 9:499–517PubMedGoogle Scholar
  5. 5.
    Jones TO (1990) Escherichia coli mastitis in dairy cattle—a review of the literature. Vet Bull 60:205–214Google Scholar
  6. 6.
    Guterbock WM, Eenennaam VAL, Anderson RJ, Gardner IA, Cullor JS, Holmberg CA (1993) Efficacy of intramammary antibiotic therapy for treatment of clinical mastitis caused by environmental pathogens. J Dairy Sci 76:3437–3444PubMedCrossRefGoogle Scholar
  7. 7.
    Erskine RJ, Wagner S, DeGraves FJ (2003) Mastitis therapy and pharmacology. Vet Clin North Am Food Anim Pract 19(1):109–138PubMedCrossRefGoogle Scholar
  8. 8.
    Huxley JN, Greent MJ, Green LE, Bradley AJ (2002) Evaluation of the efficacy of an internal teat sealer during the dry period. J Dairy Sci 85(3):551–61PubMedCrossRefGoogle Scholar
  9. 9.
    Piddock LJV (1996) Does the use of antimicrobial agents in veterinary medicine and animal husbandry select antibiotic-resistant bacteria that infect man and compromise antimicrobial chemotherapy? J Antimicrob Chemother 38(1):1–3PubMedCrossRefGoogle Scholar
  10. 10.
    Stelwagen K (2004) What future after antibiotics? Dairy Exporters, p 92Google Scholar
  11. 11.
    Erskine R, Cullor J, Schaellibaum M, Yancey B, Zecconi A (2004) Bovine mastitis pathogens and trends in resistant to antibacterial drugs. National Mastitis Council, Inc, Verona, Wisconsin, pp 400–414Google Scholar
  12. 12.
    Berry EA, Hillerton JE (2002) The effect of an intramammary teat seal on new intramammary infections. J Dairy Sci 85:2512–2520PubMedCrossRefGoogle Scholar
  13. 13.
    Hillerton JE, Berry EA (2003) The management and treatment of environmental streptococcal mastitis. Vet Clin North Am Food Anim Pract 19(1):157–169PubMedCrossRefGoogle Scholar
  14. 14.
    Máire PR, William JM, Ross Paul R, Hill AC (1998) Evaluation of Lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl Environ Microbiol 64(6):2287–2290Google Scholar
  15. 15.
    Meaney WJ (1977) Effect of dry period teat sealant on bovine udder infections. Ir J Agr Res 16:293–299Google Scholar
  16. 16.
    Twomey DP, Wheelock A, Flynn J, Meaney WJ, Hill C, Ross R (2000) Protection against Staphylococcus aureus mastitis in dairy cows using bismuth based teat seal containing the bacteriocin, lacticin 3147. J Dairy Sci 83:1981–1988PubMedCrossRefGoogle Scholar
  17. 17.
    Woolford MW, Williamson JH, Day AM, Copeman PJA (1998) The prophylactic effect of a teat sealer on bovine mastitis during the dry period and the following lactation. N Z Vet J 46:12–19PubMedCrossRefGoogle Scholar
  18. 18.
    Meaney WJ, Twomey DP, Flynn J, Hilla C, Ross RP (2001) The use of a bismuth based teat seal and the bacteriocin lacticin 3147 to prevent dry period mastitis in dry cows. In: Council Loahmd (ed) Proceedings of the British Mastitis Conference 2001 Garstang, Lancashire UK. Institute of Animal Health, Newbury UK, pp 24–32Google Scholar
  19. 19.
    Bismuth subnitrate summary report (1999) In: The European Agency for the evaluation of Medicinal products (EMEA). Committee for veterinary medicinal productsGoogle Scholar
  20. 20.
    Hemling TM, Henderson KE, Leslie KE, Lim GH, Timms LL (2000) Experimental models for the evaluation of the adherence of dry cow teat sealants. In: Proceedings of 39th Annual Meeting, National Mastitis Council, Atlanta, Georgia, pp 248–249Google Scholar
  21. 21.
    Carter DH, Luttinger M, Gardner DL (1988) Controlled release parenteral systems for veterinary applications. J Control Release 8(1):15–22CrossRefGoogle Scholar
  22. 22.
    Matschke C, Isele U, van Hoogevest P, Fahr A (2002) Sustained-release injectables formed in situ and their potential use for veterinary products. J Control Release 85(1–3):1–15PubMedCrossRefGoogle Scholar
  23. 23.
    Nickerson SC (1992) Anatomy and physiology of the udder. In: Bramley A, Dodd F, Mein G, Bramley J (eds) Machine milking and lactation. Insight Books, Burlington, USA, p 37–68Google Scholar
  24. 24.
    Preez JHD (1988) Treatment of various forms of bovine mastitis with consideration of udder pathology and the pharmacokinetics of appropriate drugs: a review. J S Afr Vet Assoc 59(3):161–167PubMedGoogle Scholar
  25. 25.
    Watts JL (1988) Etiological agents of bovine mastitis. Vet Microbiol 16(1):41–66PubMedCrossRefGoogle Scholar
  26. 26.
    Bradley AJ (2002) Bovine mastitis: an evolving disease. Vet J 164(2):116–128PubMedCrossRefGoogle Scholar
  27. 27.
    Harmon RJ (1996) Controlling contagious mastitis. In: Presented at the 1996 National mastitis council regional meeting Queretero, Mexico. National Mastitis Council Regional Meeting, Queretero, Mexico, p 11Google Scholar
  28. 28.
    Leigh JA (1999) Streptococcus uberis: a permanent barrier to the control of bovine mastitis? Vet J 157(3):225–238PubMedCrossRefGoogle Scholar
  29. 29.
    Calvinho LF, Oliver SP (1998) Characterization of mechanisms involved in uptake of Streptococcus dysgalactiae by bovine mammary epithelial cells. Vet Microbiol 63(2–4): 261–274PubMedCrossRefGoogle Scholar
  30. 30.
    McDonald JS (1977) Streptococcal and Staphylococcal mastitis. J Am Vet Med Assoc 170:1157–1159PubMedGoogle Scholar
  31. 31.
    Harmon RJ (1996) Controlling contagious mastitis. In: Proceedings of the National mastitis council, Madison, WI, pp 11–19Google Scholar
  32. 32.
    Bradley AJ, Green MJ (2000) A study of the incidence and significance of intramammary enterobacterial infections acquired during the dry period. J Dairy Sci 83(9):1957–1965PubMedCrossRefGoogle Scholar
  33. 33.
    Miller G, Dorn CR (1990) Costs of dairy cattle diseases to producers in Ohio. Prev Vet Med 8:171–182CrossRefGoogle Scholar
  34. 34.
    Miller GY, Bartlett PC, Lance SE, Anderson J, Heider LE (1993) Costs of clinical mastitis and mastitis prevention in dairy herds. J Am Vet Med Assoc 202:1230–1236PubMedGoogle Scholar
  35. 35.
    Schakenraad A, Dijkhuizen A (1990) Economic losses due to bovine mastitis in Dutch dairy herds. J Agr Sci 38:89–92Google Scholar
  36. 36.
    Bennett RH, Christiansen K, Clifton-Hadley RS (1999) Estimating the costs associated with endemic diseases of dairy cows. J Dairy Res 66:455–459PubMedCrossRefGoogle Scholar
  37. 37.
    Ravinderpal G, Wayne HH, El K, Kerry L (1990) Economic of mastitis control. J Dairy Sci 73:3340–3348CrossRefGoogle Scholar
  38. 38.
    Wells SJ, Ott SL, Hillberg Seitzinger A (1998) Key health issues for dairy cattle—new and old symposium: emerging health issues. J Dairy Sci 81:3029–3035PubMedCrossRefGoogle Scholar
  39. 39.
    Hibbit KG, Craven N, Batten EH (1992) Anatomy, physiology and immunology of the udder. In: Andrews AH, Blowey RW, Boyd H, Eddy RG (eds) Bovine Medicines: Diseases and Husbandry of Cattle. Blackwell Scientific Publications, Oxford, pp 273–288Google Scholar
  40. 40.
    Cowie A, Tindal J (1971) The physiology of lactation. Edward Arnold, London, p 1–52Google Scholar
  41. 41.
    Jack LJW, Capuco A, Wood DL, Aschenbrenner RA, Bitman J, Bright SA (1992) Protein composition of teat canal keratin collected from lactating cows before and after milking. J Dairy Sci 75(suppl 1):195Google Scholar
  42. 42.
    Mosdoel G (1978) Mastitis pathology in cows, goats and sheep. A literature review (in Norwegian, English summary). Norw Vet Med 30:489–497Google Scholar
  43. 43.
    Paulrud CO (2005) Basic concepts of the bovine teat canal. Vet Res Commun 29(3):215–245PubMedCrossRefGoogle Scholar
  44. 44.
    Sordillo L, Shafer-Weaver K, DeRosa D (1997) Immunobiology of the mammary gland. J Dairy Sci 80:1851–1865PubMedCrossRefGoogle Scholar
  45. 45.
    Turner CW (1952) The mammary gland. Lucas Brothers, Columbia, MissouriGoogle Scholar
  46. 46.
    Mempham TB (1987) Physiology of Lactation. Open University Press, PhiladelphiaGoogle Scholar
  47. 47.
    Ziv G (1980) Drug selection and use in mastitis: systemic versus local therapy. Vet Med Assoc 176:1109–1115Google Scholar
  48. 48.
    Craven N (1987) Efficacy and financial value of antibiotic treatment of bovine clinical ­mastitis during lactating—a review. Br Vet J 143:410–422PubMedCrossRefGoogle Scholar
  49. 49.
    Sandholm M, Kaartinen L, Pyorala S (1990) Bovine mastitis—why does antibiotic therapy not always work? An overview. J Vet Pharmacol Ther 13(3):248–260PubMedCrossRefGoogle Scholar
  50. 50.
    Pyorala S (1988) Indicators of inflammation to evaluate the recovery from acute bovine mastitis. Res Vet Sci 45(2):166–169PubMedGoogle Scholar
  51. 51.
    Medlicott NJ, Waldron NA, Foster TP (2004) Sustained release veterinary parenteral products. Adv Drug Deliv Rev 56(10):1345–1365PubMedCrossRefGoogle Scholar
  52. 52.
    Deicke A, Suverkrup R (1999) Dose uniformity and redispersibility of pharmaceutical suspensions I: quantification and mechanical modelling of human shaking behaviour. Eur J Pharm Biopharm 48(3):225–232PubMedCrossRefGoogle Scholar
  53. 53.
    Ziv G, Saran-Rosenzuaig A, Gluckmann E (1973) Kinetic considerations of antibiotic persistence in the udders of dry cows. Zentralblatt Fuer Veterinaermedizin Reihe B 20(6):425–434CrossRefGoogle Scholar
  54. 54.
    Gehring R, Smith GW (2006) An overview of factors affecting the disposition of intramammary preparations used to treat bovine mastitis. J Vet Pharmacol Ther 29(4):237–241PubMedCrossRefGoogle Scholar
  55. 55.
    Desmond BJ (1988) Veterinary drug formulations for animal health care: an overview. J Control Release 8(1):5–13CrossRefGoogle Scholar
  56. 56.
    Timms LL, Steffans A, Piggott S, Allen L (1997) Evaluation of a novel persistent barrier teat dip for preventing mastitis during the dry period. In: Proceedings of 36th National Mastitis Council pp 206Google Scholar
  57. 57.
    Treece JM, Morse GE, Levy C (1960) Lipid analyses of bovine teat canal keratin. J Dairy Sci 49:1240–1244CrossRefGoogle Scholar
  58. 58.
    Comalli M, Eberhart RJ, Griel LC Jr, Rothenbacher H (1984) Changes in the microscopic anatomy of the bovine teat canal during mammary involution. Am J Vet Res 45(11):2236–2242PubMedGoogle Scholar
  59. 59.
    McNally V, Morgan JP (2002) Inventors: Bimeda Research and Development LTD; Assignee: System for prophylactic treatment of mammary disorders. US Patent 6,340,469, 22 Jan 2002Google Scholar
  60. 60.
    Williamson JH, Woolford MW, Day AM (1995) The prophylactic effect of a dry cow antibiotic against Streptococcus uberis. N Z Vet J 43:228–234PubMedCrossRefGoogle Scholar
  61. 61.
    Notz C (2005) Is Orbeseal® - an internal teat sealant - the answer to mastitis problems in organic dairy herds? In: Workshop PottS, editor. Systems development: quality and safety in organic livestock products Frick, Switerland: Proceedings of the 4th SAFO Workshop. http://orgprints.org/5965/1/5965.pdfGoogle Scholar
  62. 62.
    Ross J, Switzer RC, Poston MR, Lawhorn GT (1996) Distribution of bismuth in the brain after intraperitoneal dosing of bismuth subnitrate in mice: implications for routes of entry of xenobiotic metals into the brain. Brain Res 725(2):137–154PubMedGoogle Scholar
  63. 63.
    Slikkerveer A, de Wolff FA (1989) Pharmacokinetics and toxicity of bismuth compounds. Med Toxicol Adverse Drug Exp 4:303–323PubMedGoogle Scholar
  64. 64.
    Corbellini CN, Mauricio B, Monica W, Carlos AI, Pablo J (2002 ) Efficacy of external teat sealant, applied on pre-calving cows in grazing system. In: National Mastitis Council Annual Meeting Proceedings, NMC, USA. //www.westagro.com/NMC_Presentation_Janowicz.pdf.Google Scholar
  65. 65.
    Hemling T, Henderson M, Leslie K, Lim G, Timms L (2000) Experimental models for the evaluation of the adherence of dry cow teat sealants. In: NMC annual meeting proceedings, NMC, USA, pp 248–249Google Scholar
  66. 66.
    Querengasser J, Geishauser T, Querengasser K, Bruckmaier R, Fehlings K (2002) Comparative evaluation of SIMPL silicone implants and NIT natural teat inserts to keep the teat canal patent after surgery. J Dairy Sci 85(7):1732–1737PubMedCrossRefGoogle Scholar
  67. 67.
    Huston GE, HC W (1983) Effect of the intramammary device on milk infection status, yield, and somatic cell count and on the morphological features of the lactiferous sinus of the bovine udder. Am J Vet Res 44(10):1856–1860PubMedGoogle Scholar
  68. 68.
    Nickerson SC, Boddie RL, Owens WE, Watts JL (1990) Effects of novel intramammary device models on incidence of mastitis after experimental challenge. J Dairy Sci 73(10):2774–2784PubMedCrossRefGoogle Scholar
  69. 69.
    Klink PR, Ferguson TH (1998) Formulation of veterinary dosage forms. In: Hardee GE, Baggot JD (eds) Development and formulation of veterinary dosage forms, 2nd edn. Marcel Dekker. Inc, New York, pp 145–229Google Scholar
  70. 70.
    Cherng-Ju K (2000) Controlled release dosage form design. CRC Press, Boca Raton, FLGoogle Scholar
  71. 71.
    Ding X, Alani, Adam, WG, Robinson, Joseph, R (2005) Extended-release and targeted drug delivery systems. Remington: the science and practice of pharmacy, 21 ed. Lippincott Williams and Wilkins: Baltimore, MD, pp 939–964. Available from http://books.google.co.uk/books?id=NFGSSSbaWjwC&printsec=frontcover#v=onepage&q&f=false
  72. 72.
    Brannon-Peppas L (1997) Polymers in controlled drug delivery. In: Medical Plastic and Biomaterials Magazine. http://www.mddionline.com/article/polymers-controlled-drug-delivery
  73. 73.
    Rathbone MJ, Ogle CR (2000) Mechanism of drug release from veterinary drug delivery systems. In: Rathbone MJ, Gurney R (eds) Controlled release veterinary drug delivery. Elsevier Science, Amsterdam, pp 17–50CrossRefGoogle Scholar
  74. 74.
    Ron E, Langer R (1992) Erodible systems. In: Kydonieus A (ed) Treatise on controlled drug delivery. Marcel Dekker, New York, pp 199–224Google Scholar
  75. 75.
    Gopferich A, Tessmar J (2002) Polyanhydride degradation and erosion. Adv Drug Deliv Rev 54(7):911–931PubMedCrossRefGoogle Scholar
  76. 76.
    Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R (1983) Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4(2):131–133PubMedCrossRefGoogle Scholar
  77. 77.
    Shah SS, Kulkarni MG, Mashelkar RA (1991) Swellable hydrogel matrices for the release of the pendent chain-linked active ingredients over extended time periods. J Appl Polym Sci 43(10):1879–1884CrossRefGoogle Scholar
  78. 78.
    Jantzen GM, Robinson JR (1995) Christopher T. In: Banker GSR (ed) Modern pharmaceutics, 3rd edn. Marcel Dekker Inc, New York, pp 575–609Google Scholar
  79. 79.
    Aarestrup FM, Larsen HD, Jensen NE (1999) Characterization of Staphylococcus simulans strains isolated from cases of bovine mastitis. Vet Microbiol 66(2):165–170PubMedCrossRefGoogle Scholar
  80. 80.
    Colombo P, Santi P, Bettini R, Peppas NA CSB (2000) Drug release from swelling-controlled system. In: Wise D (ed) Hand Book of Pharmaceutical Controlled Release Technology. Marcel Dekker, Inc., New York, pp 183–209Google Scholar
  81. 81.
    Kim SW, Bae YH, Okano T (1992) Hydrogels: swelling, drug loading and release. Pharm Res 9(3):283–290PubMedCrossRefGoogle Scholar
  82. 82.
    Bettini R, Colombo P, Massimo G, Catellani P, Vitali T (1994) Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects. Eur J Pharm Sci 2:213–219CrossRefGoogle Scholar
  83. 83.
    Nam KW, Watanabe J, Ishihara K (2002) pH-modulated release of insulin entrapped in a spontaneously formed hydrogel system composed of two water-soluble phospholipid polymers. J Biomater Sci Polym Ed 13(11):1259–1269PubMedCrossRefGoogle Scholar
  84. 84.
    Namkung S, Chu C (2006) Effect of solvent mixture on the properties of temperature- and pH-sensitive polysaccharide-based hydrogels. J Biomater Sci Polym Ed 17(5):519–546PubMedCrossRefGoogle Scholar
  85. 85.
    Pei Y, Chen J, Yang L, Shi L, Tao Q, Hui B (2004) The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide- co-acrylic acid. J Biomater Sci Polym Ed 15(5):585–594PubMedCrossRefGoogle Scholar
  86. 86.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339PubMedCrossRefGoogle Scholar
  87. 87.
    Saslawski O, Weingarten C, Benoit JP, Couvreur P (1988) Magnetically responsive microspheres for the pulsed delivery of insulin. Life Sci 42(16):1521–1528PubMedCrossRefGoogle Scholar
  88. 88.
    Lavon I, Kost J (1998) Mass transport enhancement by ultrasound in non-degradable polymeric controlled release systems. J Control Release 54(1):1–7PubMedCrossRefGoogle Scholar
  89. 89.
    Graham NB, McNeill ME (1984) Hydrogels for drug delivery. Biomaterials 5:27–36PubMedCrossRefGoogle Scholar
  90. 90.
    Jain RA, Rhodes CT, Railkar AM, Malick AW, Shah NH (2000) Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Eur J Pharm Biopharm 50(2):257–62PubMedCrossRefGoogle Scholar
  91. 91.
    Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1–3):9–28PubMedCrossRefGoogle Scholar
  92. 92.
    Haglund BO, Joshi R, Himmelstein KJ (1996) An in situ gelling system for parenteral delivery. J Control Release 41(3):229–235CrossRefGoogle Scholar
  93. 93.
    Ruel-Gariepy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-­sensitive systems. Eur J Pharm Biopharm 58(2):409–426PubMedCrossRefGoogle Scholar
  94. 94.
    Tipton AJ, Dunn RL (2000) In-situ gelling systems. In: Senior JH, Radomsky M (eds) Sustained Release Injectable Products. Interpharm Press, Denver, CO, pp 71–102Google Scholar
  95. 95.
    Dunn R, English J, Cowsar DA, Vanderbilt DV (1990) Inventors: Atrix laboratories; Assignee: Biodegradable in-situ forming implants and methods of producing the same. US Patent 4,938,763Google Scholar
  96. 96.
    Rathi RC, Zentner, GM, Jeong, B (2001) Inventor: MacroMed, Inc. (Sandy, UT), USA; Assignee: Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties. US Patent 6,201,072Google Scholar
  97. 97.
    Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 63(1–2):155–163PubMedCrossRefGoogle Scholar
  98. 98.
    Amiji MM, Lai PK, Shenoy DB, Rao M (2002) Intratumoral administration of paclitaxel in an in situ gelling poloxamer 407 formulation. Pharm Dev Technol 7(2):195–202PubMedCrossRefGoogle Scholar
  99. 99.
    Gutowska A, Jeong B, Jasionowski M (2001) Injectable gels for tissue engineering. Anat Rec 263(4):342–349PubMedCrossRefGoogle Scholar
  100. 100.
    Ismail FA, Napaporn J, Hughes JA, Brazeau GA (2000) In situ gel formulations for gene delivery: release and myotoxicity studies. Pharm Dev Technol 5(3):391–397PubMedCrossRefGoogle Scholar
  101. 101.
    Lin H-R, Sung KC (2000) Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release 69(3):379–388PubMedCrossRefGoogle Scholar
  102. 102.
    Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D (2001) In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm 229(1–2):29–36PubMedCrossRefGoogle Scholar
  103. 103.
    Rozier A, Mazuel C, Grove J, Plazonnet B (1989) Gelrite(R): a novel, ion-activated, in-situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. Int J Pharm 57(2):163–168CrossRefGoogle Scholar
  104. 104.
    Kubo W, Miyazaki S, Attwood D (2003) Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int J Pharm 258(1–2):55–64PubMedCrossRefGoogle Scholar
  105. 105.
    Kubo W, Miyazaki S, Dairaku M, Togashi M, Mikami R, Attwood D (2004) Oral sustained delivery of ambroxol from in situ-gelling pectin formulations. Int J Pharm 271(1–2):233–240PubMedCrossRefGoogle Scholar
  106. 106.
    Miyazaki S, Kubo W, Attwood D (2000) Oral sustained delivery of theophylline using in-situ gelation of sodium alginate. J Control Release 67(2–3):275–280PubMedCrossRefGoogle Scholar
  107. 107.
    Miyazaki S, Aoyama H, Kawasaki N, Kubo W, Attwood D (1999) In situ-gelling gellan formulations as vehicles for oral drug delivery. J Control Release 60(2–3):287–295PubMedCrossRefGoogle Scholar
  108. 108.
    Miyazaki S, Kawasaki N, Kubo W, Endo K, Attwood D (2001) Comparison of in situ gelling formulations for the oral delivery of cimetidine. Int J Pharm 220(1–2):161–168PubMedCrossRefGoogle Scholar
  109. 109.
    Miyazaki S, Kawasaki N, Endo K, Attwood D (2001) Oral sustained delivery of theophylline from thermally reversible xyloglucan gels in rabbits. J Pharm Pharmacol 53(9):1185–1191PubMedCrossRefGoogle Scholar
  110. 110.
    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161PubMedCrossRefGoogle Scholar
  111. 111.
    Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux J-C (2002) Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 82(2–3):373–383PubMedCrossRefGoogle Scholar
  112. 112.
    Cohen S, Lobel E, Trevgoda A, Peled Y (1997) A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release 44(2–3):201–208CrossRefGoogle Scholar
  113. 113.
    Takahashi A, Suzuki S, Kawasaki N, Kubo W, Miyazaki S, Loebenberg R (2002) Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. Int J Pharm 246(1–2):179–186PubMedCrossRefGoogle Scholar
  114. 114.
    Lindell K, Engstrom S (1993) In vitro release of timolol maleate from an in situ gelling polymer system. Int J Pharm 95(1–3):219–228CrossRefGoogle Scholar
  115. 115.
    Srividya B, Cardoza RM, Amin PD (2001) Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 73(2–3):205–211PubMedCrossRefGoogle Scholar
  116. 116.
    Liu Z, Li J, Nie S, Liu H, Ding P, Pan W (2006) Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 315(1–2):12–17PubMedCrossRefGoogle Scholar
  117. 117.
    Fawaz F, Koffi A, Guyot M, Millet P (2004) Comparative in vitro-in vivo study of two quinine rectal gel formulations. Int J Pharm 280(1–2):151–162PubMedCrossRefGoogle Scholar
  118. 118.
    Johnston TP, Punjabi MA, Froelich CJ (1992) Sustained delivery of Interleukin-2 from a Poloxamer 407 gel matrix following intraperitoneal injection in mice. Pharm Res 9(3):425–434PubMedCrossRefGoogle Scholar
  119. 119.
    Edsman K, Carlfors J, Petersson R (1998) Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci 6(2):105–112PubMedCrossRefGoogle Scholar
  120. 120.
    Veyries ML, Couarraze G, Geiger S, Agnely F, Massias L, Kunzli B (1999) Controlled release of vancomycin from Poloxamer 407 gels. Int J Pharm 192(2):183–193PubMedCrossRefGoogle Scholar
  121. 121.
    Paavola A, Yliruusi J, Kajimoto Y, Kalso E, Wahlström T, Rosenberg P (1995) Controlled release of lidocaine from injectable gels and efficacy in rat sciatic nerve block. Pharm Res 12(12):1997–2002PubMedCrossRefGoogle Scholar
  122. 122.
    DesNoyer JR, McHugh AJ (2003) The effect of Pluronic on the protein release kinetics of an injectable drug delivery system. J Control Release 86(1):15–24PubMedCrossRefGoogle Scholar
  123. 123.
    De la Torre PM, Torrado S, Torrado S (2003) Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24(8): 1459–1468PubMedCrossRefGoogle Scholar
  124. 124.
    Torrado S, Prada P, de la Torre PM, Torrado S (2004) Chitosan-poly(acrylic) acid polyionic complex: in vivo study to demonstrate prolonged gastric retention. Biomaterials 25(5): 917–923PubMedCrossRefGoogle Scholar
  125. 125.
    Norling T, Lading P, Engstrom S, Larsson K, Krog N, Nissen SS (1992) Formulation of a drug delivery system based on a mixture of monoglycerides and tryglycerides for use in the treatment of periodontal disease. J Clin Periodontol 19:687–692PubMedCrossRefGoogle Scholar
  126. 126.
    Okumu FW, Dao LN, Fielder PJ, Dybdal N, Brooks D, Sane S (2002) Sustained delivery of human growth hormone from a novel gel system: SABERTM. Biomaterials 23(22):4353–4358PubMedCrossRefGoogle Scholar
  127. 127.
    Preul MC, Bichard WD, Muench TR (2003) Toward optimal tissue sealants for neurosurgery: use of a novel hydrogel sealant in a canine durotomy repair model. Neurosurgery 53(5): 1189–1199PubMedCrossRefGoogle Scholar
  128. 128.
    Waring MJ, Parsons D (2001) Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials 22(9):903–912PubMedCrossRefGoogle Scholar
  129. 129.
    Walker M, Hobot JA, Newman GR, Bowler PG (2003) Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL(R)) and alginate dressings. Biomaterials 24(5):883–890PubMedCrossRefGoogle Scholar
  130. 130.
    Scherr GH Inventor; Scherr GH (1998) Assignee. Alginate foam product for wound dressing. US Patent 5,718,916. 19970203Google Scholar
  131. 131.
    Matthew IR, Browne RM, Frame JW, Millar BG (1995) Subperiosteal behaviour of alginate and cellulose wound dressing materials. Biomaterials 16(4):275–278PubMedCrossRefGoogle Scholar
  132. 132.
    Suzuki Y, Nishimura Y, Tanihara M, Suzuki K, Nakamura T, Shimizu Y, Yamawaki Y, Kakimaru Y (1998) Evaluation of a novel alginate gel dressing: cytotoxicity to fibroblasts in vitro and foreign-body reaction in pig skin in vivo. J Biomed Mater Res 39(2):317–322PubMedCrossRefGoogle Scholar
  133. 133.
    Bowler PG, Jones SA, Davies BJ, Coyle E (1999) Infection control properties of some wound dressings. J Wound Care 8(10):499–502PubMedGoogle Scholar
  134. 134.
    Malmsten M, Lindman B (1992) Self-assembly in aqueous block co-polymer solution. Micromolecules 25:5446–5450CrossRefGoogle Scholar
  135. 135.
    Katakam M, Ravis WR, Banga AK (1997) Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels. J Control Release 49(1):21–26CrossRefGoogle Scholar
  136. 136.
    Jeong B, Choi YK, Bae YH, Zentner G, Kim SW (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62(1–2):109–114PubMedCrossRefGoogle Scholar
  137. 137.
    Jeong B, Bae YH, Kim SW (2000) In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 50(2):171–177PubMedCrossRefGoogle Scholar
  138. 138.
    Joshi R, Robinson DH, Himmelstein KJ (1999) In vitro properties of an in situ forming gel for the parenteral delivery of macromolecular drugs. Pharm Dev Technol 4(4):515–522PubMedCrossRefGoogle Scholar
  139. 139.
    Paulsson M, Hagerstrom H, Edsman K (1999) Rheological studies of the gelation of deacetylated gellan gum (Gelrite(R)) in physiological conditions. Eur J Pharm Sci 9(1):99–105PubMedCrossRefGoogle Scholar
  140. 140.
    Tipton AJ (1999) Inventor: Southern BioSystems, Inc. (Birmingham, AL); Assignee: High viscosity liquid controlled delivery system as a device. USAGoogle Scholar
  141. 141.
    Burns PJ, Gibson JW, Tipton AJ (1997) Inventors: Southern BioSystems, Inc. (Birmingham, AL); Assignee: Compositions suitable for controlled release of the hormone GnRH and its analogs. USAGoogle Scholar
  142. 142.
    Dunn R (2005) Application of the ATRIGEL® implant drug delivery technology for patient-friendly, cost-effective product development. Drug Deliv Technol 5(10)Google Scholar
  143. 143.
    Polson AM, Dunn RL, Fulfs JC, Godoski JC, Polson AP, Southard GL, Yewey GL (1993) Periodontal pocket treatment with subgingival doxycycline from a biodegradable system. J Dent Res 72:360Google Scholar
  144. 144.
    Rathi RC, Zentner GM, Jeong B (2000) Inventors: MacroMed, Inc. (Sandy, UT),USA; Assignee: Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reversal thermal gelation properties. US Patent, 6,117949Google Scholar
  145. 145.
    Zentner GM, Rathi R, Shih C, McRea JC, Seo M-H, Oh H (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72(1–3): 203–215PubMedCrossRefGoogle Scholar
  146. 146.
    Matthes K, Enqiang L, Brugge WR (2005) Feasibility of endoscopic ultrasound-guided oncogel (ReGel/Paclitaxel) injection into the pancreas of the pig: preliminary results. Gastrointest Endosc 61(5):AB292Google Scholar
  147. 147.
    Dunn R, English J, Vanderbilt A (1995) Inventors: Atrix Laboratory, Inc.; Assignee: Biodegradable in-situ forming implants and methods of producing the same. United StatesGoogle Scholar
  148. 148.
    Dunn R, English J, Cowsar D, Vanderblit DV (1998) Inventors: Atrix Laboratories, Incorporated; Assignee: Biodegradable in-situ forming implants and methods of producing the same. US Patent 5733950Google Scholar
  149. 149.
    Chogle S, Mickel AK (2003) An in vitro evaluation of the antibacterial properties of barriers used in guided tissue regeneration. J Endod 29(1):1–3PubMedCrossRefGoogle Scholar
  150. 150.
    Polson AM, Dunn RL, Polson AP (1993) Healing patterns associated with an ATRISORB barrier in guided tissue regenerartion. Compendium 14:1162–1172PubMedGoogle Scholar
  151. 151.
    FowlerJr JE, Flanagan M, Gleason DM, Klimberg IW, Gottesman JE, Sharifi R (2000) Evaluation of an implant that delivers leuprolide for 1 year for the palliative treatment of prostate cancer. Urology 55(5):639–642CrossRefGoogle Scholar
  152. 152.
    Ravivarapu HB, Moyer KL, Dunn RL (2000) Parameters affecting the efficacy of a sustained release polymeric implant of leuprolide. Int J Pharm 194(2):181–191PubMedCrossRefGoogle Scholar
  153. 153.
    Gibson JW, Sullivan SA, Middleton JC, Tipton AJ (2002) Inventors: Southern Biosystems, Inc. (Birmingham, AL); Assignee: High viscosity liquid controlled delivery system and medical or surgical device. USAGoogle Scholar
  154. 154.
    Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 87(12):2671–2686PubMedCrossRefGoogle Scholar
  155. 155.
    Shedden AH, Laurence J, Barrish A, Olah TV (2001) Plasma timolol concentrations of timolol maleate: timolol gel-forming solution (TIMOPTIC-XE) once daily versus timolol maleate ophthalmic solution twice daily. Doc Ophthalmol 103(1):73–79PubMedCrossRefGoogle Scholar
  156. 156.
    Polson A, Southard GL, Dunn RL, Polson AP, Yewey GL, Swanbom DD, Fulfs JC, Rodgers PW (1995) Periodontal healing after guided tissue regeneration with Atrisorb barriers in beagle dogs. Int J Periodontics Restorative Dent 15(6):574–589PubMedGoogle Scholar
  157. 157.
    Zhang L, Parsons DL, Navarre C, Kompella UB (2002) Development and in-vitro evaluation of sustained release Poloxamer 407 (P407) gel formulations of ceftiofur. J Control Release 85(1–3):73–81PubMedCrossRefGoogle Scholar
  158. 158.
    Sullivan SA, Gibson JW, Burns PJ, Squires EL, Thompson DL, Tipton AJ (1998) Sustained release of progesteron and estradiol from the SABERTM delivery system: in vitro and in vivo release rates. In: Proceedings of the International Symposium on Controlled Release Bioactive Material, Controlled Release Society, Inc, Boston MA, pp 653–654Google Scholar
  159. 159.
    Fleury J, Squires EL, Betschart R, Gibson J, Sullivan S, Tipton A (1998) Evaluation of the SABERTM delivery system for the controlled release of deslorelin for advancing ovulation in the mare: effect of formulation and dose. Proceedings of the International Symposium on Controlled Release Bioactive Material, Controlled Release Society, Inc, Boston MA, pp 657–658Google Scholar
  160. 160.
    Betschart R, Fleury J, Squires EL, Nett T, Gibson J, Sullivan S (1998) Evaluation of the SABERTM delivery system for the controlled release of the GnRH analogue deslorelin for advancing ovulation in Mares: effect of gamma radiation. Proceedings of the International Symposium on Controlled Release Bioactive Material, Controlled Release Society, Inc, Boston MA655–656Google Scholar
  161. 161.
    Barb R, Kraeling RG, Thompson DJ, Gibson J, Sullivan S, Simon B (1999) Evaluation of the saber delivery system for the controlled release of Deslorelin: effect of dose in estrogen primed ovarectomized gilts. Proceedings of the International Symposium on Controlled Release Bioactive Material, Controlled Release Society, Inc, Boston MA, pp 1170–1171Google Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  • Raid G. Alany
    • 1
    • 2
  • Sushila Bhattarai
    • 3
  • Sandhya Pranatharthiharan
    • 4
  • Padma V. Devarajan
    • 4
  1. 1.School of Pharmacy and ChemistryKingston University LondonKingston upon ThamesUK
  2. 2.School of PharmacyThe University of AucklandAucklandNew Zealand
  3. 3.Bomac Laboratories LimitedBayer Animal Health New ZealandAucklandNew Zealand
  4. 4.Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations