Skip to main content

New Insight into the Toughening Mechanisms of Nacre

  • Conference paper
  • First Online:
Mechanics of Biological Systems and Materials, Volume 5

Abstract

Many living organisms form biogenic minerals, or biominerals, which are composite materials containing an organic matrix and nano- or micro-scale minerals assembled in a hierarchical architecture. These biogenic composites possess excellent mechanical properties in comparison to their abiogenic architectures (on the order of 3,000 times greater), which make them attractive for mechanically protective applications. One biogenic material that has garnered a lot of attention is Nacre, or “Mother of Pearl,” found in many Mollusk shells. The Nacre architecture has been well studied the past decade, however little work has focused on the fact that the Nacre composite is also itself a component of another composite architecture in the shells. In between thick layers of Nacre is a thin layer of an organic matrix that marks the seasonal growth patterns of the shells, analogous to tree rings. No work has focused on how these two layers interact to determine mechanical properties, which are likely as important as the tablet sliding itself. Determining this relationship would have a great impact on designing composite architectures that can improve the performance of mechanically protective armor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58

    Article  Google Scholar 

  2. Belcher AM, Margolese D, Hansma PK, Morse DE, Stucky GD (1996) Protein-inorganic assembly to form biocomposite materials. In: Abstracts of Papers of the American Chemical Society, vol 212, pp 177-INOR, Aug 1996

    Google Scholar 

  3. Daw R (2004) Materials science – give a shell a break. Nature 427:691–691

    Article  Google Scholar 

  4. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  Google Scholar 

  5. Zaremba CM, Belcher AM, Fritz M, Li YL, Mann S, Hansma PK, Morse DE, Speck JS, Stucky GD (1996) Critical transitions in the biofabrication of abalone shells and flat pearls. Chem Mater 8:679–690

    Article  Google Scholar 

  6. Liu Y, Shigley JE, Hurwit KN (1999) Iridescence color of a shell of the mollusk Pinctada margaritifera caused by diffraction. Opt Express 4:177–182

    Article  Google Scholar 

  7. Snow MR, Pring A, Self P, Losic D, Shapter J (2004) The origin of the color of pearls in iridescence from nano-composite structures of the nacre. Am Mineral 89:1353–1358

    Google Scholar 

  8. Wang YM, Sun CW, Lee CK, Lu CW, Tsai MT, Yang CC, Kiang YW (2004) Comparisons of the transmitted signals of time, aperture, and angle gating in biological tissues and a phantom. Opt Express 12:1157–1168

    Article  Google Scholar 

  9. Barthelat F (2009) Structure and properties of mineralized tissues: the deformation and fracture of nacre from mollusc shells. Integr Comp Biol 49:E10–E10

    Google Scholar 

  10. Barthelat F (2010) Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir Biomim 5:035001

    Article  Google Scholar 

  11. Barthelat F, Espinosa HD (2007) An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp Mech 47:311–324

    Article  Google Scholar 

  12. Barthelat F, Li CM, Comi C, Espinosa HD (2006) Mechanical properties of nacre constituents and their impact on mechanical performance. J Mater Res 21:1977–1986

    Article  Google Scholar 

  13. Barthelat F, Zhu DJ (2011) A novel biomimetic material duplicating the structure and mechanics of natural nacre. J Mater Res 26:1203–1215

    Article  Google Scholar 

  14. Bezares J, Asaro RJ, Hawley M (2010) Macromolecular structure of the organic framework of nacre in Haliotis rufescens: implications for mechanical response. J Struct Biol 170:484–500

    Article  Google Scholar 

  15. Bruet BJF, Qi HJ, Boyce MC, Panas R, Tai K, Frick L, Ortiz C (2005) Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J Mater Res 20:2400, 3157–3157

    Article  Google Scholar 

  16. Dashkovskiy S, Suhr B, Tushtev K, Grathwohl G (2007) Nacre properties in the elastic range: Influence of matrix incompressibility. Comput Mater Sci 41:96–106

    Article  Google Scholar 

  17. Fritz M, Belcher AM, Radmacher M, Walters DA, Hansma PK, Stucky GD, Morse DE, Mann S (1994) Flat pearls from biofabrication of organized composites on inorganic substrates. Nature 371:49–51

    Article  Google Scholar 

  18. Hamamoto Y, Okumura K (2009) Analytical studies on a crack in layered structures mimicking nacre. J Eng Mech Asce 135:461–467

    Article  Google Scholar 

  19. Katti KS, Mohanty B, Katti DR (2006) Nanomechanical properties of nacre. J Mater Res 21:1237–1242

    Article  Google Scholar 

  20. Lin AYM, Chen PY, Meyers MA (2008) The growth of nacre in the abalone shell. Acta Biomater 4:131–138

    Article  Google Scholar 

  21. Lin AYM, Meyers MA (2009) Interfacial shear strength in abalone nacre. J Mech Behav Biomed Mater 2:607–612

    Article  Google Scholar 

  22. Lopez E, Milet C, Lamghari M, Mouries LP, Borzeix S, Berland S The dualism of nacre. Bioceramics 16. Barbosa MA, Monteiro FJ, Correia R, Leon B (eds) (2004) vol 254–2, pp 733–736

    Google Scholar 

  23. Meyers MA, Lin AYM, Chen PY, Muyco J (2008) Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 1:76–85

    Article  Google Scholar 

  24. Mohanty B, Katti KS, Katti DR (2008) Experimental investigation of nanomechanics of the mineral-protein interface in nacre. Mech Res Commun 35:17–23

    Article  Google Scholar 

  25. Nukala P, Simunovic S (2005) A continuous damage random thresholds model for simulating the fracture behavior of nacre. Biomaterials 26:6087–6098

    Article  Google Scholar 

  26. Okumura K (2002) Why is nacre strong? II. Remaining mechanical weakness for cracks propagating along the sheets. Eur Phys J E 7:303–310

    Google Scholar 

  27. Pokroy B, Demensky V, Zolotoyabko E (2011) Inhomogeneous strain/stress profiles in the nacre layer of mollusk shells. Metall Mater Trans A Phys Metall Mater Sci 42A:554–558

    Article  Google Scholar 

  28. Rabiei R, Bekah S, Barthelat F (2010) Failure mode transition in nacre and bone-like materials. Acta Biomater 6:4081–4089

    Article  Google Scholar 

  29. Ren FZ, Wan XD, Ma ZH, Su JH (2009) Study on microstructure and thermodynamics of nacre in mussel shell. Mater Chem Phys 114:367–370

    Article  Google Scholar 

  30. Richter BI, Kellner S, Menzel H, Behrens P, Denkena B, Ostermeier S, Hurschler C (2011) Mechanical characterization of nacre as an ideal-model for innovative new endoprosthesis materials. Arch Orthop Trauma Surg 131:191–196

    Article  Google Scholar 

  31. Rousseau M, Meibom A, Geze M, Bourrat X, Angellier M, Lopez E (2009) Dynamics of sheet nacre formation in bivalves. J Struct Biol 165:190–195

    Article  Google Scholar 

  32. Saruwatari K, Matsui T, Mukai H, Nagasawa H, Kogure T (2009) Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata. Biomaterials 30:3028–3034

    Article  Google Scholar 

  33. Sealy C (2008) Taking a nacre-inspired approach to composites. Mater Today 11:15–15

    Google Scholar 

  34. Song F, Bai YL (2001) Mineral bridges of nacre and its effects. Acta Mech Sinica 17:251–257

    Article  Google Scholar 

  35. Rosen G, Langdon CJ, Evans F (2000) The nutritional value of Palmaria mollis cultured under different light intensities and water exchange rates for juvenile red abalone Haliotis rufescens. Aquaculture 185:121–136

    Article  Google Scholar 

  36. Lopez MI, Chen PY, McKittrick J, Meyers MA (2011) Growth of nacre in abalone: seasonal and feeding effects. Mater Sci Eng C Mater Biol Appl 31:238–245

    Article  Google Scholar 

  37. Fritz M, Morse DE (1998) The formation of highly organized biogenic polymer/ceramic composite materials: the high-performance microaluminate of molluscan nacre. Curr Opin Colloid Interface Sci 3:55–62

    Article  Google Scholar 

  38. Schaffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem Mater 9:1731–1740

    Article  Google Scholar 

  39. Simkiss K, Wada K (1980) Cultured pearls – commercialized biomineralization. Endeavour 4:32–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barton C. Prorok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Sullivan, M., Prorok, B.C. (2013). New Insight into the Toughening Mechanisms of Nacre. In: Prorok, B., et al. Mechanics of Biological Systems and Materials, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4427-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4427-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4426-8

  • Online ISBN: 978-1-4614-4427-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics