Long-Range Mechanical Force Enables Self-Assembly of Epithelial Tubules

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Spatiotemporal coordination of cell positioning and differentiation is critical in morphogenesis. Loss of coordination is often a hallmark of tissue abnormality and tumorigenesis. Recent studies indicate the importance of mechanical force in morphogenesis such as tubular pattern formation. However, how cells coordinate mechanical interactions between each other and with extracellular matrix (ECM), to initiate, regulate, or maintain long-range tubular patterns is unclear. Using a two-step process to quantitatively control cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various patterns resembling those observed in tubulo-lobular organs. In contrast with conventional thought, these patterns arise through mechanical interactions between cells, but not through gradients of diffusible biochemical factors. Remarkably, a very large spatial scale of tubular patterns is found by cell-COL self-organization in the liquid phase, leading to the formation of long-range (~1 cm) epithelial tubule. Our results suggest a potential mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate tubular organs.

Keywords

Mechanical force Long-range Extracellular matrix Spatial pattern 

References

  1. 1.
    Martin-Belmonte F, Yu W, Rodriguez-Fraticelli AE et al (2008) Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol 18(7):507–513CrossRefGoogle Scholar
  2. 2.
    Horowitz A, Simons M (2008) Branching morphogenesis. Circ Res 103(8):784–795CrossRefGoogle Scholar
  3. 3.
    Shah MM, Sampogna RV, Sakurai H et al (2004) Branching morphogenesis and kidney disease. Development 131(7):1449–1462CrossRefGoogle Scholar
  4. 4.
    Warburton D, Schwarz M, Tefft D et al (2000) The molecular basis of lung morphogenesis. Mech Dev 92(1):55–81CrossRefGoogle Scholar
  5. 5.
    Gjorevski N, Nelson CM (2010) Branch formation during organ development. Wiley Interdiscip Rev Syst Biol Med 2(6):734–741CrossRefGoogle Scholar
  6. 6.
    Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18(5):698–712CrossRefGoogle Scholar
  7. 7.
    Horowitz A, Simons M (2009) Branching morphogenesis. Circ Res 104(2):e21CrossRefGoogle Scholar
  8. 8.
    Bridgewater D, Rosenblum ND (2009) Stimulatory and inhibitory signaling molecules that regulate renal branching morphogenesis. Pediatr Nephrol 24(9):1611–1619CrossRefGoogle Scholar
  9. 9.
    Sternlicht MD, Kouros-Mehr H, Lu P et al (2006) Hormonal and local control of mammary branching morphogenesis. Differentiation 74(7):365–381CrossRefGoogle Scholar
  10. 10.
    Yevtodiyenko A, Schmidt JV (2006) Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta. Dev Dyn Off Publ Am Assoc Anat 235(4):1115–1123Google Scholar
  11. 11.
    Patel VN, Rebustini IT, Hoffman MP (2006) Salivary gland branching morphogenesis. Differentiation 74(7):349–364CrossRefGoogle Scholar
  12. 12.
    Moore KA, Polte T, Huang S et al (2005) Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 232(2):268–281CrossRefGoogle Scholar
  13. 13.
    Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6(1):1–11Google Scholar
  14. 14.
    Bush KT, Sakurai H, Steer DL et al (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266(2):285–298CrossRefGoogle Scholar
  15. 15.
    Berdichevsky F, Alford D, D’Souza B et al (1994) Branching morphogenesis of human mammary epithelial cells in collagen gels. J Cell Sci 107(Pt 12):3557–3568Google Scholar
  16. 16.
    Fratzl P (2008) Collagen: structure and mechanics. Springer, New YorkGoogle Scholar
  17. 17.
    Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27(1–2):93–127Google Scholar
  18. 18.
    Hinck L, Silberstein GB (2005) Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 7(6):245–251CrossRefGoogle Scholar
  19. 19.
    Silberstein GB, Strickland P, Coleman S et al (1990) Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol 110(6):2209–2219CrossRefGoogle Scholar
  20. 20.
    Wicha MS, Liotta LA, Vonderhaar BK et al (1980) Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol 80(2):253–256CrossRefGoogle Scholar
  21. 21.
    Dhimolea E, Maffini MV, Soto AM et al (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials 31(13):3622–3630CrossRefGoogle Scholar
  22. 22.
    Wozniak MA, Desai R, Solski PA et al (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3):583–595CrossRefGoogle Scholar
  23. 23.
    Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254CrossRefGoogle Scholar
  24. 24.
    Muthuswamy SK, Li D, Lelievre S et al (2001) ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3(9):785–792CrossRefGoogle Scholar
  25. 25.
    Blaschke RJ, Howlett AR, Desprez PY et al (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535–556CrossRefGoogle Scholar
  26. 26.
    Kim SH, Park S, Mostov K et al (2009) Computational investigation of epithelial cell dynamic phenotype in vitro. Theor Biol Med Model 6:8CrossRefGoogle Scholar
  27. 27.
    Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4(4):359–365CrossRefGoogle Scholar
  28. 28.
    Martin-Belmonte F, Mostov K (2008) Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20(2):227–234CrossRefGoogle Scholar
  29. 29.
    Bellusci S, Furuta Y, Rush MG et al (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124(1):53–63Google Scholar
  30. 30.
    Bellusci S, Grindley J, Emoto H et al (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124(23):4867–4878Google Scholar
  31. 31.
    Chuang PT, McMahon AP (2003) Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 13(2):86–91CrossRefGoogle Scholar
  32. 32.
    Grosberg A, Kuo PL, Guo CL et al (2011) Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2):e1001088CrossRefGoogle Scholar
  33. 33.
    Garner OB, Bush KT, Nigam KB, Yamaguchi Y, Xu D, Esko JD, Nigam SK (2011) Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Dev Biol 355(2):394–403Google Scholar
  34. 34.
    Lu P, Werb Z (2008) Patterning mechanisms of branched organs. Science 322(5907):1506–1509CrossRefGoogle Scholar
  35. 35.
    Ozdamar B, Bose R, Barrios-Rodiles M et al (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609CrossRefGoogle Scholar
  36. 36.
    Coleman S, Silberstein GB, Daniel CW (1988) Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 127(2):304–315CrossRefGoogle Scholar
  37. 37.
    Affolter M, Zeller R, Caussinus E (2009) Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol 10(12):831–842CrossRefGoogle Scholar
  38. 38.
    Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904CrossRefGoogle Scholar
  39. 39.
    Friedl P, Maaser K, Klein CE et al (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res 57(10):2061–2070Google Scholar
  40. 40.
    Pathak A, Kumar S (2011) Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb) 3(4):267–278CrossRefGoogle Scholar
  41. 41.
    Daniel CW, Silberstein GB, Van Horn K et al (1989) TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol 135(1):20–30CrossRefGoogle Scholar
  42. 42.
    Vogel WF, Aszodi A, Alves F et al (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21(8):2906–2917CrossRefGoogle Scholar
  43. 43.
    Jakab K, Norotte C, Marga F et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001CrossRefGoogle Scholar
  44. 44.
    Proulx S, d’Arc Uwamaliya J, Carrier P et al (2010) Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Mol Vis 16:2192–2201Google Scholar
  45. 45.
    Bryant DM, Datta A, Rodriguez-Fraticelli AE et al (2010) A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 12(11):1035–1045CrossRefGoogle Scholar
  46. 46.
    Chung WJ, Oh JW, Kwak K et al (2011) Biomimetic self-templating supramolecular structures. Nature 478(7369):364–368CrossRefGoogle Scholar
  47. 47.
    Aufderheide AC, Athanasiou KA (2007) Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng 13(9):2195–2205CrossRefGoogle Scholar
  48. 48.
    Steinberg MS (1962) Mechanism of tissue reconstruction by dissociated cells. II. Time-course of events. Science 137(3532):762–763CrossRefGoogle Scholar
  49. 49.
    Wei C, Larsen M, Hoffman MP et al (2007) Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng 13(4):721–735CrossRefGoogle Scholar
  50. 50.
    Chanson L, Brownfield D, Garbe JC et al (2011) Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proc Natl Acad Sci USA 108(8):3264–3269CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  1. 1.Department of bioengineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations