Isolation of Collagen from Cortical Bovine Bone for Preparation of Porous Collagen Sponges

  • Ana B. Castro-Ceseña
  • Ekaterina E. Novitskaya
  • Ameya Phadke
  • Shyni Varghese
  • Joanna McKittrick
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Fabrication of collagen sponges from type I collagen isolated from cortical bovine femur bone is reported. Collagen was extracted with 0.1 M EDTA by refreshing the solution every 24 h for 9 days. Sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE) demonstrated the isolation of intact pure type I collagen. The sponges were fabricated by freeze-drying and heat-dehydration cross-linking of collagen solution. The resulting sponges showed fibrils arranged in a highly porous network. These sponges can be used for tissue engineering as well as for bone-like composite fabrication.

Keywords

Collagen isolation Sponges Scaffolds Cortical bone 

References

  1. 1.
    Benke D, Olah A, Möhler H (2001) Protein-chemical analysis of Bio-Oss bone substitute and evidence on its carbonate content. Biomaterials 22:1005–1012CrossRefGoogle Scholar
  2. 2.
    Carter DH, Scully AJ, Heaton DA, Young MPJ, Aaron JE (2002) Effect of deproteination on bone mineral morphology: implications for biomaterials and ageing. Bone 31:389–395CrossRefGoogle Scholar
  3. 3.
    Stavropoulos A, Karring TJ (2010) Guided tissue regeneration combined with a deproteinized bone mineral (Bio-Oss) in the treatment of intrabony periodontal defects: 6 year results from a randomized-controlled clinical trial. J Clin Periodontol 37:200–210CrossRefGoogle Scholar
  4. 4.
    Hiraoka Y, Kimura Y, Hiroki U, Tabata Y (2003) Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber. Tissue Eng 9(6):1101–1112CrossRefGoogle Scholar
  5. 5.
    Taira M, Sasaki K, Saitoh S, Nezu T, Araki Y (2006) Preparation of highly pore-interconnected porous collagen sponges using chloroform and ammonia. J Oral Tissue Eng 4(2):68–76Google Scholar
  6. 6.
    Kane RJ, Roeder RK (2012) Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. J Mech Behav Biomed Mater 7:41–49CrossRefGoogle Scholar
  7. 7.
    Dombi GW, Halsall HB (1985) Collagen fibril formation in the presence of sodium dodecyl sulphate. Biochem J 228:551–556Google Scholar
  8. 8.
    Pieper JS, Oosterhof A, Dijkstra PJ, Veerkamp JH, van Kuppevelt TH (1999) Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials 20:847–858CrossRefGoogle Scholar
  9. 9.
    Rajan N, Habermehl J, Coté M-F, Doillon CJ, Mantovani D (2006) Preparation of ready-to-use, storable and reconstituted type I collane from rat tail tendón for tissue engineering applications. Nat Protoc 1(6):2753–2758CrossRefGoogle Scholar
  10. 10.
    Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JLC, van der Berg WB, Veerkamp JH, van Kuppevelt TH (2002) Crosslinked type II collafen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 23:3183–3192CrossRefGoogle Scholar
  11. 11.
    Ruangpanit N, Chan D, Holmbeck K, Birkedal-Hansen H, Polarek J, Yang C, Bateman JF, Thompson EW (2001) Gelatinase A (MMP-2) activation by skin fibroblasts: dependence on MT1-MMP expression and fibrillar collagen form. Matrix Biol 20:193–203CrossRefGoogle Scholar
  12. 12.
    Riley GP, Harrall RL, Constant CR, Chard MD, Cawston TE, Hazleman BL (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann Rheum Dis 53:359–366CrossRefGoogle Scholar
  13. 13.
    Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRefGoogle Scholar
  14. 14.
    Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R 58:77–116CrossRefGoogle Scholar
  15. 15.
    Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior I. Dissolution J Biomed Mater Res Part A 27(1):25–34CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  • Ana B. Castro-Ceseña
    • 1
  • Ekaterina E. Novitskaya
    • 1
  • Ameya Phadke
    • 2
  • Shyni Varghese
    • 2
  • Joanna McKittrick
    • 1
    • 3
  1. 1.Materials Science and Engineering ProgramUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations