Skip to main content

The Physiology of Aggression

  • Chapter
  • First Online:
Doves, Diplomats, and Diabetes
  • 1110 Accesses

Abstract

So far I have been arguing at the level of ultimate reasoning to address the question why physical activity, aggression, and other components of the soldier behavior syndrome should have a negative relationship with components of the insulin resistance syndrome. Now we need to look at the proximate mechanisms which execute this relationship. In order to understand the mechanisms and pathways involved in this connection, we need to know the physiology of aggression–dominance syndrome first.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiavegatto S (2006) Using mouse models to unravel aggressive behavior. In: Canli T (ed) Biology of personality and individual differences. The Guilford Press, New York, NY

    Google Scholar 

  2. Gammie SC et al (2007) Altered gene expression in mice selected for high maternal aggression. Genes Brain Behav 6:432–443

    PubMed  CAS  Google Scholar 

  3. Hahn-Holbrook J, Holt-Lunstad J, Holbrook C, Coyne SM, Lawson ET (2011) Maternal defense. Psychol Sci 22:1288–1295

    PubMed  Google Scholar 

  4. Ellis LL, Carney GE (2011) Socially-responsive gene expression in male drosophila melanogaster is influenced by the sex of the interacting partner. Genetics 187:157–169

    PubMed  CAS  Google Scholar 

  5. Belsare PV et al (2010) Metabolic syndrome: aggression control mechanisms gone out of control. Med Hypotheses 74:578–589

    PubMed  CAS  Google Scholar 

  6. Ferrari PF, Van Erp AMM, Tornatzky W, Miczek KA (2003) Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17:371–378

    PubMed  CAS  Google Scholar 

  7. Westergaard GC, Suomi SJ, Higley JD, Mehlman PT (1999) CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology (Berl) 146:440–446

    CAS  Google Scholar 

  8. Cleare AJ, Bond AJ (1997) Does central serotonergic function correlate inversely with aggression? A study using—fenfluramine in healthy subjects. Psychiatry Res 69:89–95

    PubMed  CAS  Google Scholar 

  9. Fachinelli C, Sargo S, Bataller R, Rodríguez Echandía EL (1989) Effect of 5-HTP and ketanserin on the aggressive reaction induced by food competition in dominant and submissive pigeons (Columba livia). Behav Brain Res 35:265–270

    PubMed  CAS  Google Scholar 

  10. Chiavegatto S, Nelson RJ (2003) Interaction of nitric oxide and serotonin in aggressive behavior. Horm Behav 44:233–241

    PubMed  CAS  Google Scholar 

  11. Adams CF, Liley NR, Gorzalka BB (1996) PCPA increases aggression in male firemouth cichlids. Pharmacology 53:328–330

    PubMed  CAS  Google Scholar 

  12. Clotfelter ED, O’Hare EP, McNitt MM, Carpenter RE, Summers CH (2007) Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol Biochem Behav 87:222–231

    PubMed  CAS  Google Scholar 

  13. Höglund E, Bakke MJ, Øverli Ø, Winberg S, Nilsson GE (2005) Suppression of aggressive behaviour in juvenile Atlantic cod (Gadus morhua) by l-tryptophan supplementation. Aquaculture 249:525–531

    Google Scholar 

  14. Peremans K et al (2005) The effect of citalopram hydrobromide on 5-HT2A receptors in the impulsive-aggressive dog, as measured with 123I-5-I-R91150 SPECT. Eur J Nucl Med Mol Imaging 32:708–716

    PubMed  CAS  Google Scholar 

  15. Larson ET, Summers CH (2001) Serotonin reverses dominant social status. Behav Brain Res 121:95–102

    PubMed  CAS  Google Scholar 

  16. Linnoila VM, Virkkunen M (1992) Aggression, suicidality, and serotonin. J Clin Psychiatry 53:46–51

    PubMed  Google Scholar 

  17. Semsar K, Perreault HAN, Godwin J (2004) Fluoxetine-treated male wrasses exhibit low AVT expression. Brain Res 1029:141–147

    PubMed  CAS  Google Scholar 

  18. Higley JD et al (1992) Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Arch Gen Psychiatry 49:436–441

    PubMed  CAS  Google Scholar 

  19. Higley JD et al (1996) Stability of interindividual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuropsychopharmacology 14:67–76

    PubMed  CAS  Google Scholar 

  20. Winberg S, Øverli Ø, Lepage O (2001) Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary l-tryptophan. J Exp Biol 204:3867–3876

    PubMed  CAS  Google Scholar 

  21. Lepage O, Larson ET, Mayer I, Winberg S (2005) Serotonin, but not melatonin, plays a role in shaping dominant-subordinate relationships and aggression in rainbow trout. Horm Behav 48:233–242

    PubMed  CAS  Google Scholar 

  22. Seo D, Patrick CJ, Kennealy PJ (2008) Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress Violent Behav 13:383–395

    PubMed  Google Scholar 

  23. Vickers SP, Dourish CT (2004) Serotonin receptor ligands and the treatment of obesity. Curr Opin Investig Drugs 5:377–388

    PubMed  CAS  Google Scholar 

  24. Butler AA, Cone RD (2001) Knockout models resulting in the development of obesity. Trends Genet 17:S50–S54

    PubMed  CAS  Google Scholar 

  25. Hefti FF, Hadham M (2000). Use of an NK-1 receptor antagonist and an SSRI for treating obesity. US Patent No. 6,162,805

    Google Scholar 

  26. Halford JCG, Harrold JA, Boyland EJ, Lawton CL, Blundell JE (2007) Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 67:27–55

    PubMed  CAS  Google Scholar 

  27. Brown M et al (2001) Sibutramine reduces feeding, body fat and improves insulin resistance in dietary obese male Wistar rats independently of hypothalamic neuropeptide Y. Brit J Pharmacol 132:1898–1904

    CAS  Google Scholar 

  28. Raeder MB, Bjelland I, Emil Vollset S, Steen VM (2006) Obesity, dyslipidemia, and diabetes with selective serotonin reuptake inhibitors: the Hordaland Health Study. J Clin Psychiatry 67:1974–1982

    PubMed  CAS  Google Scholar 

  29. Schwartz TL, Nihalani N, Jindal S, Virk S, Jones N (2004) Psychiatric medication‐induced obesity: a review. Obesity Rev 5:115–121

    CAS  Google Scholar 

  30. Harvey BH, Bouwer CD (2000) Neuropharmacology of paradoxic weight gain with selective serotonin reuptake inhibitors. Clin Neuropharmacol 23:90–97

    PubMed  CAS  Google Scholar 

  31. Smolin B, Klein E, Levy Y, Ben-Shachar D (2007) Major depression as a disorder of serotonin resistance: inference from diabetes mellitus type II. Int J Neuropsychopharmacol 10:839–850

    PubMed  CAS  Google Scholar 

  32. Muldoon MF et al (2004) Low central nervous system serotonergic responsivity is associated with the metabolic syndrome and physical inactivity. J Clin Endocrinol Metab 89:266–271

    PubMed  CAS  Google Scholar 

  33. Muldoon MF et al (2006) The metabolic syndrome is associated with reduced central serotonergic responsivity in healthy community volunteers. J Clin Endocrinol Metab 91:718–721

    PubMed  CAS  Google Scholar 

  34. Luo S, Luo J, Cincotta AH (1999) Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology 70:460–465

    PubMed  CAS  Google Scholar 

  35. Levkovitz Y et al (2007) Antidepressants induce cellular insulin resistance by activation of IRS-1 kinases. Mol Cell Neurosci 36:305–312

    PubMed  CAS  Google Scholar 

  36. Liang Y, Luo S, Cincotta AH (1999) Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism 48:1287–1289

    PubMed  CAS  Google Scholar 

  37. Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: increase following ingestion of carbohydrate diet. Science 174:1023–1025

    PubMed  CAS  Google Scholar 

  38. Calapai G et al (1999) Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J Clin Invest 104:975–982

    PubMed  CAS  Google Scholar 

  39. Haney EM et al (2007) Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med 167:1246–1251

    PubMed  Google Scholar 

  40. Warden SJ, Bliziotes MM, Wiren KM, Eshleman AJ, Turner CH (2005) Neural regulation of bone and the skeletal effects of serotonin (5-hydroxytryptamine). Mol Cell Endocrinol 242:1–9

    PubMed  CAS  Google Scholar 

  41. Warden SJ, Nelson IR, Fuchs RK, Bliziotes MM, Turner CH (2008) Serotonin (5-hydroxytryptamine) transporter inhibition causes bone loss in adult mice independently of estrogen deficiency. Menopause 15:1176–1183

    PubMed  Google Scholar 

  42. Richards JB et al (2007) Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med 167:188–194

    PubMed  CAS  Google Scholar 

  43. McEntee WJ, Crook TH (1991) Serotonin, memory, and the aging brain. Psychopharmacology 103:143–149

    PubMed  CAS  Google Scholar 

  44. Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    PubMed  CAS  Google Scholar 

  45. Amin Z, Canli T, Epperson CN (2005) Effect of estrogen–serotonin interactions on mood and cognition. Behav Cogn Neurosci Rev 4:43–58

    PubMed  Google Scholar 

  46. Schmitt JAJ, Wingen M, Ramaekers JG, Evers EAT, Riedel WJ (2006) Serotonin and human cognitive performance. Curr Pharm Des 12:2473–2486

    PubMed  CAS  Google Scholar 

  47. Luciana M, Collins PF, Depue RA (1998) Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8:218–226

    PubMed  CAS  Google Scholar 

  48. Richter-Levin G, Segal M (1996) Serotonin, aging and cognitive functions of the hippocampus. Rev Neurosci 7:103–113

    PubMed  CAS  Google Scholar 

  49. Majlessi N, Naghdi N (2002) Impaired spatial learning in the Morris water maze induced by serotonin reuptake inhibitors in rats. Behav Pharmacol 13:237–242

    PubMed  CAS  Google Scholar 

  50. Ueda S, Sakakibara S, Yoshimoto K (2005) Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience 135:395–402

    PubMed  CAS  Google Scholar 

  51. Rosen RC, Lane RM, Menza M (1999) Effects of SSRIs on sexual function: a critical review. J Clin Psychopharmacol 19:67–85

    PubMed  CAS  Google Scholar 

  52. Hull EM, Muschamp JW, Sato S (2004) Dopamine and serotonin: influences on male sexual behavior. Physiol Behav 83:291–307

    PubMed  CAS  Google Scholar 

  53. van Erp AMM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20:9320–9325

    PubMed  Google Scholar 

  54. Bliziotes M et al (2000) Bone histomorphometric and biomechanical abnormalities in mice homozygous for deletion of the dopamine transporter gene. Bone 26:15–19

    PubMed  CAS  Google Scholar 

  55. Cincotta AH, Tozzo E, Scislowski PWD (1997) Bromocriptine/SKF38393 treatment ameliorates obesity and associated metabolic dysfunctions in obese (ob/ob) mice. Life Sci 61:951–956

    PubMed  CAS  Google Scholar 

  56. Bliziotes M, Gunness M, Eshleman A, Wiren K (2002) The role of dopamine and serotonin in regulating bone mass and strength: studies on dopamine and serotonin transporter null mice. J Musculoskelet Neuronal Interact 2:291–295

    PubMed  CAS  Google Scholar 

  57. Murzi E et al (1996) Diabetes decreases limbic extracellular dopamine in rats. Neurosci Lett 202:141–144

    PubMed  CAS  Google Scholar 

  58. Xing B et al (2010) Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 169:1511–1519

    PubMed  CAS  Google Scholar 

  59. El-Ghundi M et al (1999) Spatial learning deficit in dopamine D1 receptor knockout mice. Eur J Pharmacol 383:95–106

    PubMed  CAS  Google Scholar 

  60. Mura A, Feldon J (2003) Spatial learning in rats is impaired after degeneration of the nigrostriatal dopaminergic system. Mov Disord 18:860–871

    PubMed  Google Scholar 

  61. Hillbrand M, Spitz RT (1999) Cholesterol and aggression. Aggress Violent Behav 4:359–370

    Google Scholar 

  62. Zhang J, Muldoon MF, McKeown RE, Cuffe SP (2005) Association of serum cholesterol and history of school suspension among school-age children and adolescents in the United States. Am J Epidemiol 161:691–699

    PubMed  Google Scholar 

  63. Pentürk S, Yalçin E (2003) Hypocholesterolaemia in dogs with dominance aggression. J Vet Med Series A 50:339–342

    Google Scholar 

  64. Mufti RM, Balon R, Arfken CL (1998) Low cholesterol and violence. Psychiatr Serv 49:221–224

    PubMed  CAS  Google Scholar 

  65. Hillbrand M et al (2005) Serum cholesterol concentrations and non-physical aggression in healthy adults. J Behav Med 28:295–299

    PubMed  Google Scholar 

  66. Golomb BA, Kane T, Dimsdale JE (2004) Severe irritability associated with statin cholesterol-lowering drugs. Quart J Med 97:229–235

    CAS  Google Scholar 

  67. Olson MB et al (2008) Lipid-lowering medication use and aggression scores in women: a Report from the NHLBI-sponsored WISE study. J Womens Health (Larchmt) 17:187–194

    Google Scholar 

  68. Muldoon MF, Manuck SB, Mendelsohn AB, Kaplan JR, Belle SH (2001) Cholesterol reduction and non-illness mortality: meta-analysis of randomised clinical trials. Brit Med J 322:11–15

    PubMed  CAS  Google Scholar 

  69. Golomb BA (1998) Cholesterol and violence: is there a connection? Ann Intern Med 128:478–487

    PubMed  CAS  Google Scholar 

  70. Buydens-Branchey L, Branchey M, Hudson J, Fergeson P (2000) Low HDL cholesterol, aggression and altered central serotonergic activity. Psychiatry Res 93:93–102

    PubMed  CAS  Google Scholar 

  71. Kaplan J et al (1994) Demonstration of an association among dietary cholesterol, central serotonergic activity, and social behavior in monkeys. Psychosomat Med 56:479–484

    CAS  Google Scholar 

  72. Erickson MT (1997) Lowered serum cholesterol, famine and aggression: a Darwinian hypothesis. Soc Sci Inform 36:211–222

    Google Scholar 

  73. Shanygina KI, Fomina MP, Parfenova NS, Kalashnikova NM (1981) Changes in the cholesterol metabolism of rats following sympathetic and parasympathetic denervation of the liver. Vopr Med Khim 27:505–509

    PubMed  CAS  Google Scholar 

  74. Scott LM, Tomkin GH (1985) Cholesterol metabolism: regulatory effects of the vagus in the normal and diabetic animal. Diabetes Res 2:313–317

    PubMed  CAS  Google Scholar 

  75. McBurnett K (2000) Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Arch Gen Psychiatr 57:38–43

    PubMed  CAS  Google Scholar 

  76. Sever’ianova LA (1981) Role of ACTH and corticosteroids in the aggressive–defensive behavior of rats. Fiziol Zh SSSR Im I M Sechenova 67:1117–1122

    PubMed  Google Scholar 

  77. Herzog AG, Edelheit PB, Jacobs AR (2001) Low salivary cortisol levels and aggressive behavior. Arch Gen Psychiatry 58:513–515

    PubMed  CAS  Google Scholar 

  78. Reinecke DM (2011) Children’s cortisol in preschool and aggression one year later in kindergarten. PhD thesis, Auburn University

    Google Scholar 

  79. Rizza RA, Mandarino L, Gerich J (1982) Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. J Clin Endocrinol Metab 54:131–138

    PubMed  CAS  Google Scholar 

  80. Phillips DIW et al (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab 83:757–760

    PubMed  CAS  Google Scholar 

  81. Elias M (1981) Serum cortisol, testosterone, and testosterone□binding globulin responses to competitive fighting in human males. Aggress Behav 7:215–224

    CAS  Google Scholar 

  82. Giammanco M, Tabacchi G, Giammanco S, Di Majo D, La Guardia M (2005) Testosterone and aggressiveness. Med Sci Monit 11:RA136–RA145

    PubMed  CAS  Google Scholar 

  83. Lamba S et al (2007) A possible novel function of dominance behaviour in queen-less colonies of the primitively eusocial wasp Ropalidia marginata. Behav Processes 74:351–356

    PubMed  Google Scholar 

  84. Kumagai S, Holmäng A, Björntorp P (1993) The effects of oestrogen and progesterone on insulin sensitivity in female rats. Acta Physiol Scand 149:91–97

    PubMed  CAS  Google Scholar 

  85. Galipeau D, Verma S, McNeill JH (2002) Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am J Physiol Heart Circ Physiol 283:2478–2484

    Google Scholar 

  86. Holmäng A, Björntorp P (1992) The effects of testosterone on insulin sensitivity in male rats. Acta Physiol Scand 146:505–510

    PubMed  Google Scholar 

  87. Muller M, Grobbee DE, den Tonkelaar I, Lamberts SWJ, van der Schouw YT (2005) Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab 90:2618–2623

    PubMed  CAS  Google Scholar 

  88. Andersson B et al (1997) Estrogen replacement therapy decreases hyperandrogenicity and improves glucose homeostasis and plasma lipids in postmenopausal women with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 82:638–643

    PubMed  CAS  Google Scholar 

  89. Trainor BC, Finy MS, Nelson RJ (2008) Paternal aggression in a biparental mouse: parallels with maternal aggression. Horm Behav 53:200–207

    PubMed  Google Scholar 

  90. Trainor BC, Kyomen HH, Marler CA (2006) Estrogenic encounters: how interactions between aromatase and the environment modulate aggression. Front Neuroendocrinol 27:170–179

    PubMed  CAS  Google Scholar 

  91. Trainor BC, Greiwe KM, Nelson RJ (2006) Individual differences in estrogen receptor α in select brain nuclei are associated with individual differences in aggression. Horm Behav 50:338–345

    PubMed  CAS  Google Scholar 

  92. Trainor BC, Sima Finy M, Nelson RJ (2008) Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice. Horm Behav 53:192–199

    PubMed  CAS  Google Scholar 

  93. Finney HC, Erpino MJ (1976) Synergistic effect of estradiol benzoate and dihydrotestosterone on aggression in mice. Horm Behav 7:391–400

    PubMed  CAS  Google Scholar 

  94. Albert DJ, Jonik RH, Walsh ML (1992) Interaction of estradiol, testosterone, and progesterone in the modulation of hormone-dependent aggression in the female rat. Physiol Behav 52:773–779

    PubMed  CAS  Google Scholar 

  95. Albert DJ, Jonik RH, Walsh ML (1991) Hormone-dependent aggression in the female rat: testosterone plus estradiol implants prevent the decline in aggression following ovariectomy. Physiol Behav 49:673–677

    PubMed  CAS  Google Scholar 

  96. Soma KK, Scotti M-AL, Newman AEM, Charlier TD, Demas GE (2008) Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrinol 29:476–489

    PubMed  CAS  Google Scholar 

  97. Tsai LW, Sapolsky RM (1996) Rapid stimulatory effects of testosterone upon myotubule metabolism and sugar transport, as assessed by silicon microphysiometry. Aggress Behav 22:357–364

    CAS  Google Scholar 

  98. Ahlbom E, Prins GS, Ceccatelli S (2001) Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res 892:255–262

    PubMed  CAS  Google Scholar 

  99. Túnez I et al (2007) Effect of testosterone on oxidative stress and cell damage induced by 3-nitropropionic acid in striatum of ovariectomized rats. Life Sci 80:1221–1227

    PubMed  Google Scholar 

  100. Franck-Lissbrant I, Häggström S, Damber J-E, Bergh A (1998) Testosterone stimulates angiogenesis and vascular regrowth in the ventral prostate in castrated adult rats. Endocrinology 139:451–456

    PubMed  CAS  Google Scholar 

  101. Traish AM, Miner MM, Morgentaler A, Zitzmann M (2011) Testosterone deficiency. Am J Med 124:578–587

    PubMed  CAS  Google Scholar 

  102. Dabrosin C, Palmer K, Muller WJ, Gauldie J (2003) Estradiol promotes growth and angiogenesis in polyoma middle T transgenic mouse mammary tumor explants. Breast Cancer Res Treat 78:1–6

    PubMed  CAS  Google Scholar 

  103. Mooradian AD (1993) Antioxidant properties of steroids. J Steroid Biochem Mol Biol 45:509–511

    PubMed  CAS  Google Scholar 

  104. Ding EL, Song Y, Malik VS, Liu S (2006) Sex differences of endogenous sex hormones and risk of type 2 diabetes. J Am Med Assoc 295:1288–1299

    CAS  Google Scholar 

  105. Cleary MP, Zisk JF (1986) Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats. Int J Obes 10:193–204

    PubMed  CAS  Google Scholar 

  106. López-Marure R, Huesca-Gómez C, Ibarra-Sánchez Mde J, Zentella A, Pérez-Méndez O (2007) Dehydroepiandrosterone delays LDL oxidation in vitro and attenuates several oxLDL-induced inflammatory responses in endothelial cells. Inflamm Allergy Drug Targets 6:174–182

    PubMed  Google Scholar 

  107. Liu D et al (2008) Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 149:889–898

    PubMed  CAS  Google Scholar 

  108. Hansen PA, Han DH, Nolte LA, Chen M, Holloszy JO (1997) DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet. Am J Physiol 273:1704–1708

    Google Scholar 

  109. Han DH, Hansen PA, Chen MM, Holloszy JO (1998) DHEA treatment reduces fat accumulation and protects against insulin resistance in male rats. J Gerontol A Biol Sci Med Sci 53:19–24

    Google Scholar 

  110. Varet J et al (2004) Dose-dependent effect of dehydroepiandrosterone, but not of its sulphate ester, on angiogenesis. Eur J Pharmacol 502:21–30

    PubMed  CAS  Google Scholar 

  111. López-Marure R, Huesca-Gómez C, Ibarra-Sánchez Mde J, Zentella A, Pérez-Méndez O (2007) Dehydroepiandrosterone delays LDL oxidation in vitro and attenuates several oxLDL-induced inflammatory responses in endothelial cells. Inflamm Allergy Drug Targets 6:174–182

    PubMed  Google Scholar 

  112. Golomb BA et al (2002) Insulin sensitivity markers: predictors of accidents and suicides in Helsinki Heart Study screenees. J Clin Epidemiol 55:767–773

    PubMed  Google Scholar 

  113. Kern W et al (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    PubMed  CAS  Google Scholar 

  114. Singh RB, Pella D, Mechirova V, Otsuka K (2004) Can brain dysfunction be a predisposing factor for metabolic syndrome? Biomed Pharmacother 58(Suppl 1):56–68

    Google Scholar 

  115. Buijs RM, Kreier F (2006) The metabolic syndrome: a brain disease? J Neuroendocrinol 18:715–716

    PubMed  CAS  Google Scholar 

  116. Orosco M et al (1992) Striatal dopamine metabolism is differentially affected by insulin according to the genotype in Zucker rats: a microdialysis study. Psychoneuroendocrinology 17:443–452

    PubMed  CAS  Google Scholar 

  117. Schoffelmeer ANM et al (2011) Insulin modulates cocaine-sensitive monoamine transporter function and impulsive behavior. J Neurosci 31:1284–1291

    PubMed  CAS  Google Scholar 

  118. Figlewicz DP, Szot P, Chavez M, Woods SC, Veith RC (1994) Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res 644:331–334

    PubMed  CAS  Google Scholar 

  119. Strachan MWJ (2005) Insulin and cognitive function in humans: experimental data and therapeutic considerations. Biochem Soc Trans 33:1037–1040

    PubMed  CAS  Google Scholar 

  120. Stockhorst U, de Fries D, Steingrueber H-J, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83:47–54

    PubMed  CAS  Google Scholar 

  121. Hu RM, Levin ER, Pedram A, Frank HJ (1993) Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes 42:351–358

    PubMed  CAS  Google Scholar 

  122. Benedict C et al (2011) Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Exp Gerontol 46:112–115

    PubMed  CAS  Google Scholar 

  123. Benedict C et al (2006) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32:239–243

    PubMed  Google Scholar 

  124. Schmidt H, Kern W, Giese R, Hallschmid M, Enders A (2008) Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial. J Med Genet 46:217–222

    PubMed  Google Scholar 

  125. Vera Cruz EM, Brown CL (2007) The influence of social status on the rate of growth, eye color pattern and Insulin-like Growth Factor-I gene expression in Nile tilapia, Oreochromis niloticus. Horm Behav 51:611–619

    PubMed  CAS  Google Scholar 

  126. Bartos L, Reyes E, Schams D, Bubenik G, Lobos A (1998) Rank dependent seasonal levels of IGF-1, cortisol and reproductive hormones in male pudu (Pudu puda). Comp Biochem Physiol A Mol Integr Physiol 120:373–378

    PubMed  CAS  Google Scholar 

  127. Sapolsky RM, Spencer EM (1997) Insulin-like growth factor I is suppressed in socially subordinate male baboons. Am J Physiol Regul Integr Comp Physiol 273:1346–1351

    Google Scholar 

  128. Vickers MH, Ikenasio BA, Breier BH (2001) IGF-I treatment reduces hyperphagia, obesity, and hypertension in metabolic disorders induced by fetal programming. Endocrinology 142:3964–3973

    PubMed  CAS  Google Scholar 

  129. O’Connell T, Clemmons DR (2002) IGF-I/IGF-binding protein-3 combination improves insulin resistance by GH-dependent and independent mechanisms. J Clin Endocrinol Metab 87:4356–4360

    PubMed  Google Scholar 

  130. Yakar S et al (2001) Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 50:1110–1118

    PubMed  CAS  Google Scholar 

  131. Conti E et al (2004) Insulin-like growth factor-1 as a vascular protective factor. Circulation 110:2260–2265

    PubMed  Google Scholar 

  132. Li Q, Deng X, Singh P (2007) Significant increase in the aggressive behavior of transgenic mice overexpressing peripheral progastrin peptides: associated changes in CCK2 and serotonin receptors in the CNS. Neuropsychopharmacology 32:1813–1821

    PubMed  CAS  Google Scholar 

  133. Burgdorf J, Panksepp J, Beinfeld MC, Kroes RA, Moskal JR (2006) Regional brain cholecystokinin changes as a function of rough-and-tumble play behavior in adolescent rats. Peptides 27:172–177

    PubMed  CAS  Google Scholar 

  134. Ahrén B, Holst JJ, Efendic S (2000) Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab 85:1043–1048

    PubMed  Google Scholar 

  135. Cooper S, Dourish C, Clifton P (1992) CCK antagonists and CCK-monoamine interactions in the control of satiety. Am J Clin Nutr 55:291S–295S

    PubMed  CAS  Google Scholar 

  136. Timothy HM (2000) Cholecystokinin and satiety: current perspectives. Nutrition 16:858–865

    Google Scholar 

  137. Kuntz E, Pinget M, Damgé P (2004) Cholecystokinin octapeptide: a potential growth factor for pancreatic β cells in diabetic rats. J Pancreas 5:464–475

    Google Scholar 

  138. Schmassmann A, Reubi JC (2000) Cholecystokinin-B/gastrin receptors enhance wound healing in the rat gastric mucosa. J Clin Invest 106:1021–1029

    PubMed  CAS  Google Scholar 

  139. Atmaca M et al (2006) Serum ghrelin and cholesterol values in suicide attempters. Neuropsychobiology 54:59–63

    PubMed  CAS  Google Scholar 

  140. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    PubMed  CAS  Google Scholar 

  141. Wren AM et al (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992

    PubMed  CAS  Google Scholar 

  142. Pöykkö SM et al (2003) Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 52:2546–2553

    PubMed  Google Scholar 

  143. Tschöp M et al (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709

    PubMed  Google Scholar 

  144. Nexo E, Hollenberg M, Bing J (1981) Aggressive behavior in mice provokes a marked increase in both plasma epidermal growth factor and renin. Acta Physiol Scand 111:367–71

    PubMed  CAS  Google Scholar 

  145. Lakshmanan J (1986) Aggressive behavior in adult male mice elevates serum nerve growth factor levels. Am J Physiol 250:E386–392

    PubMed  CAS  Google Scholar 

  146. Nexø E, Olsen PS, Poulsen K (1984) Exocrine and endocrine secretion of renin and epidermal growth factor from the mouse submandibular glands. Regul Pept 8:327–334

    PubMed  Google Scholar 

  147. Roberts ML (1974) Testosterone-induced accumulation of epidermal growth factor in the submandibular salivary glands of mice, assessed by radioimmunoassay. Biochem Pharmacol 23:3305–3308

    PubMed  CAS  Google Scholar 

  148. Byyny RL, Orth DN, Cohen S, Doyne ES (1974) Epidermal growth factor: effects of androgens and adrenergic agents. Endocrinology 95:776–782

    PubMed  CAS  Google Scholar 

  149. Davison JS (2003) The cervical sympathetic trunk—submandibular gland neuro-endocrine axis: its role in immune regulation. Biomed Res 14:30–37

    Google Scholar 

  150. Lamey PJ, Savage AP, Fisher BM, Bloom SR, Frier BM (1990) Secretion of epidermal growth factor in parotid saliva in diabetic patients: role of autonomic innervation. J Oral Pathol Med 19:351–354

    PubMed  CAS  Google Scholar 

  151. Kasayama S, Ohba Y, Oka T (1989) Epidermal growth factor deficiency associated with diabetes mellitus. Proc Natl Acad Sci USA 86:7644–7648

    PubMed  CAS  Google Scholar 

  152. Oxford GE et al (2000) Salivary EGF levels reduced in diabetic patients. J Diabet Complicat 14:140–145

    CAS  Google Scholar 

  153. Noguchi S, Ohba Y, Oka T (1990) Involvement of epidermal growth factor deficiency in pathogenesis of oligozoospermia in streptozotocin-induced diabetic mice. Endocrinology 127:2136–2140

    PubMed  CAS  Google Scholar 

  154. Brand SJ et al (2002) Pharmacological treatment of chronic diabetes by stimulating pancreatic β-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol Toxicol 91:414–420

    PubMed  CAS  Google Scholar 

  155. Nielsen JH, Svensson C, Douglas Galsgaard E, Moldrup A, Billestrup N (1999) Beta cell proliferation and growth factors. J Mol Med 77:62–66

    PubMed  CAS  Google Scholar 

  156. Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6:923–936

    PubMed  CAS  Google Scholar 

  157. Peng H et al (1998) Epidermal growth factor protects neuronal cells in vivo and in vitro against transient forebrain ischemia- and free radical-induced injuries. J Cereb Blood Flow Metab 18:349–360

    PubMed  CAS  Google Scholar 

  158. Spillantini MG et al (1989) Nerve growth factor mRNA and protein increase in hypothalamus in a mouse model of aggression. Proc Natl Acad Sci USA 86:8555–8559

    PubMed  CAS  Google Scholar 

  159. Alleva E, Aloe L, Cirulli F, Della Seta D, Tirassa P (1996) Serum NGF levels increase during lactation and following maternal aggression in mice. Physiol Behav 59:461–466

    PubMed  CAS  Google Scholar 

  160. Lakshmanan J (1986) Aggressive behavior in adult male mice elevates serum nerve growth factor levels. Am J Physiol Endocrinol Metabol 250:386–392

    Google Scholar 

  161. Maestripieri D, De Simone R, Aloe L, Alleva E (1990) Social status and nerve growth factor serum levels after agonistic encounters in mice. Physiol Behav 47:161–164

    PubMed  CAS  Google Scholar 

  162. Lakshmanan J (1986) β-Nerve growth factor measurements in mouse serum. J Neurochem 46:882–891

    PubMed  CAS  Google Scholar 

  163. Lakshmanan J (1987) Nerve growth factor levels in mouse serum: variations due to stress. Neurochem Res 12:393–397

    PubMed  CAS  Google Scholar 

  164. Aloe L et al (1994) Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc Natl Acad Sci USA 91:10440–10444

    PubMed  CAS  Google Scholar 

  165. Nitta A et al (2002) Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol 24:695–701

    PubMed  CAS  Google Scholar 

  166. Fernyhough P et al (1995) Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci 7:1107–1110

    PubMed  CAS  Google Scholar 

  167. Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1:527–534

    PubMed  CAS  Google Scholar 

  168. Circolo A, Pierce GF, Katz Y, Strunk RC (1990) Antiinflammatory effects of polypeptide growth factors. Platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor inhibit the cytokine-induced expression of the alternative complement pathway activator factor B in human fibroblasts. J Biol Chem 265:5066–5071

    PubMed  CAS  Google Scholar 

  169. Lang UE et al (2009) Higher BDNF concentrations in the hippocampus and cortex of an aggressive mouse strain. Behav Brain Res 197:246–249

    PubMed  CAS  Google Scholar 

  170. Berton O et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    PubMed  CAS  Google Scholar 

  171. Coppola V, Tessarollo L (2004) Control of hyperphagia prevents obesity in BDNF heterozygous mice. Neuroreport 15:2665–2668

    PubMed  Google Scholar 

  172. Lyons WE et al (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 96:15239–15244

    PubMed  CAS  Google Scholar 

  173. Tirassa P, Triaca V, Amendola T, Fiore M, Aloe L (2003) EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zone. J Neurosci Res 72:557–564

    PubMed  CAS  Google Scholar 

  174. Nakagawa T et al (2002) Brain-derived neurotrophic factor (BDNF) regulates glucose and energy metabolism in diabetic mice. Diabetes Metab Res Rev 18:185–191

    PubMed  CAS  Google Scholar 

  175. Seki M et al (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats. Diabetes 53:2412–2419

    PubMed  CAS  Google Scholar 

  176. Duan W, Guo Z, Jiang H, Ware M, Mattson MP (2003) Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 144:2446–2453

    PubMed  CAS  Google Scholar 

  177. Krabbe KS et al (2006) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50:431–438

    PubMed  Google Scholar 

  178. Tordjman S et al (2003) Aggression and the three opioid families (endorphins, enkephalins, and dynorphins) in mice. Behav Genet 33:529–536

    PubMed  Google Scholar 

  179. Kotegawa T, Abe T, Tsutsui K (1997) Inhibitory role of opioid peptides in the regulation of aggressive and sexual behaviors in male japanese quails. J Exp Zool 277:146–154

    PubMed  CAS  Google Scholar 

  180. Margules D, Moisset B, Lewis M, Shibuya H, Pert C (1978) β-Endorphin is associated with overeating in genetically obese mice (ob/ob) and rats (fa/fa). Science 202:988–991

    PubMed  CAS  Google Scholar 

  181. David LM (1979) Beta-endorphin and endoloxone: hormones of the autonomic nervous system for the conservation or expenditure of bodily resources and energy in anticipation of famine or feast. Neurosci Biobehav Rev 3:155–162

    Google Scholar 

  182. Giugliano D et al (1987) Hyperglycemia and obesity as determinants of glucose, insulin, and glucagon responses to β-endorphin in human diabetes mellitus. J Clin Endocrinol Metab 64:1122–1128

    PubMed  CAS  Google Scholar 

  183. Giugliano D et al (1988) Altered metabolic and hormonal responses to epinephrine and β-endorphin in human obesity. J Clin Endocrinol Metab 67:238–244

    PubMed  CAS  Google Scholar 

  184. Su CF et al (2005) Mediation of β-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats. Diabetes Metab Res Rev 21:175–182

    PubMed  CAS  Google Scholar 

  185. Su C-F et al (2004) Infusion of β-endorphin improves insulin resistance in fructose-fed rats. Horm Metab Res 36:571–577

    PubMed  CAS  Google Scholar 

  186. Brady KT, Myrick H, McElroy S (1998) The relationship between substance use disorders, impulse control disorders, and pathological aggression. Am J Addict 7:221–230

    PubMed  Google Scholar 

  187. Kaufman KR, Kugler SL, Sachdeo RC (2002) Tiagabine in the management of postencephalitic epilepsy and impulse control disorder. Epilepsy Behav 3:190–194

    PubMed  Google Scholar 

  188. Liu G et al (2007) Reduced aggression in mice lacking GABA transporter subtype 1. J Neurosci Res 85:649–655

    PubMed  CAS  Google Scholar 

  189. Lee R, Petty F, Coccaro EF (2009) Cerebrospinal fluid GABA concentration: relationship with impulsivity and history of suicidal behavior, but not aggression, in human subjects. J Psychiatr Res 43:353–359

    PubMed  Google Scholar 

  190. Fisler JS, Shimizu H, Bray GA (1989) Brain 3-hydroxybutyrate, glutamate, and GABA in a rat model of dietary obesity. Physiol Behav 45:571–577

    PubMed  CAS  Google Scholar 

  191. Coscina DV, Nobrega JN (1984) Anorectic potency of inhibiting GABA transaminase in brain: studies of hypothalamic, dietary and genetic obesities. Int J Obes 8:191–200

    PubMed  CAS  Google Scholar 

  192. Tong Q, Ye C-P, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11:998–1000

    PubMed  CAS  Google Scholar 

  193. Gruber H-J et al (2008) Obesity reduces the bioavailability of nitric oxide in juveniles. Int J Obes 32:826–831

    CAS  Google Scholar 

  194. Coscina DV, Lloyd KG (1980) Medial hypothalamic obesity: association with impaired hypothalamic GABA synthesis. Brain Res Bull 5:793–796

    CAS  Google Scholar 

  195. Boutin P et al (2003) GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol 1:361–371

    CAS  Google Scholar 

  196. Jönsson E, Johnsson JI, Björnsson BT (1998) Growth hormone increases aggressive behavior in juvenile rainbow trout. Horm Behav 33:9–15

    PubMed  Google Scholar 

  197. Matte AC (1981) Growth hormone and isolation-induced aggression in wild male mice. Pharmacol Biochem Behav 14:85–87

    PubMed  CAS  Google Scholar 

  198. Mondal M, Rajkhowa C, Prakash BS (2006) Relationship between plasma growth hormone concentrations and temperament in mithuns (Bos frontalis). Horm Behav 49:190–196

    PubMed  CAS  Google Scholar 

  199. Rosén T, Johannsson G, Bengtsson B (1994) Consequences of growth hormone deficiency in adults, and effects of growth hormone replacement therapy. Acta Paediatr 83:21–24

    Google Scholar 

  200. Cuneo RC, Salomon F, Wiles CM, Hesp R, Sonksen PH (1991) Growth hormone treatment in growth hormone-deficient adults I. Effects on muscle mass and strength. J Appl Physiol 70:688–694

    PubMed  CAS  Google Scholar 

  201. Wallymahmed ME et al (1997) Quality of life, body composition and muscle strength in adult growth hormone deficiency: the influence of growth hormone replacement therapy for up to 3 years. Clin Endocrinol 47:439–446

    CAS  Google Scholar 

  202. Johannsson G, Grimby G, Sunnerhagen KS, Bengtsson B-Å (1997) Two years of growth hormone (GH) treatment increase isometric and isokinetic muscle strength in GH-deficient adults. J Clin Endocrinol Metab 82:2877–2884

    PubMed  CAS  Google Scholar 

  203. Yarasheski KE, Zachwieja JJ, Campbell JA, Bier DM (1995) Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am J Physiol Endocrinol Metab 268:E268–E276

    CAS  Google Scholar 

  204. Scacchi M, Pincelli AI, Cavagnini F (1999) Growth hormone in obesity. Int J Obes Relat Metab Disord 23:260–271

    PubMed  CAS  Google Scholar 

  205. Rizza RA, Mandarino LJ, Gerich JE (1982) Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 31:663–669

    PubMed  CAS  Google Scholar 

  206. Krag MB et al (2007) Growth hormone-induced insulin resistance is associated with increased intramyocellular triglyceride content but unaltered VLDL-triglyceride kinetics. Am J Physiol Endocrinol Metab 292:E920–E927

    PubMed  CAS  Google Scholar 

  207. Kolaczynski JW, Caro JF (1994) Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann Int Med 120:47–55

    PubMed  CAS  Google Scholar 

  208. Cowey SL et al (2005) Abdominal obesity, insulin resistance, and colon carcinogenesis are increased in mutant mice lacking gastrin gene expression. Cancer 103:2643–2653

    PubMed  CAS  Google Scholar 

  209. Suarez-Pinzon WL, Lakey JRT, Brand SJ, Rabinovitch A (2005) Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J Clin Endocrinol Metab 90:3401–3409

    PubMed  CAS  Google Scholar 

  210. Kovacheva EL, Sinha Hikim AP, Shen R, Sinha I, Sinha-Hikim I (2010) Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, notch, and AKT signaling pathways. Endocrinology 151:628–638

    PubMed  CAS  Google Scholar 

  211. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311

    PubMed  CAS  Google Scholar 

  212. Amirouche A et al (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150:286–294

    PubMed  CAS  Google Scholar 

  213. Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA (2009) Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58:30–38

    PubMed  CAS  Google Scholar 

  214. McPherron AC, Lee S-J (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109:595–601

    PubMed  CAS  Google Scholar 

  215. Chiavegatto S et al (2001) Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natil Acad Sci 98:1277–1281

    CAS  Google Scholar 

  216. Demas GE et al (1997) Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. Mol Med 3:610–616

    PubMed  CAS  Google Scholar 

  217. Demas GE et al (1999) Elimination of aggressive behavior in male mice lacking endothelial nitric oxide synthase. J Neurosci 19:RC30

    PubMed  CAS  Google Scholar 

  218. Duplain H et al (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase note added in proof. Circulation 104:342–345

    PubMed  CAS  Google Scholar 

  219. Monti LD et al (2003) Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome. Diabetes 52:1270–1275

    PubMed  CAS  Google Scholar 

  220. Nelson RJ et al (1995) Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378:383–386

    PubMed  CAS  Google Scholar 

  221. Kriegsfeld LJ, Dawson TM, Dawson VL, Nelson RJ, Snyder SH (1997) Aggressive behavior in male mice lacking the gene for neuronal nitric oxide synthase requires testosterone. Brain Res 769:66–70

    PubMed  CAS  Google Scholar 

  222. Gammie SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19:8027–8035

    PubMed  CAS  Google Scholar 

  223. Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD (2000) Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49:684–687

    PubMed  CAS  Google Scholar 

  224. Perreault M, Marette A (2001) Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 7:1138–1143

    PubMed  CAS  Google Scholar 

  225. Valera A, Pujol A, Pelegrin M, Bosch F (1994) Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 91:9151–9154

    PubMed  CAS  Google Scholar 

  226. Sun Y et al (2002) Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem 277:23301–23307

    PubMed  CAS  Google Scholar 

  227. Franckhauser S et al (2002) Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 51:624–630

    PubMed  CAS  Google Scholar 

  228. Hanson RW, Hakimi P (2008) Born to run; the story of the PEPCK-Cmus mouse. Biochimie 90:838–842

    PubMed  CAS  Google Scholar 

  229. Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005:pe4

    PubMed  Google Scholar 

  230. Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146:1473–1481

    PubMed  CAS  Google Scholar 

  231. Haar EV, Lee S, Bandhakavi S, Griffin TJ, Kim D-H (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323

    Google Scholar 

  232. Dreyer HC et al (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294:E392–E400

    PubMed  CAS  Google Scholar 

  233. Bolster DR et al (2003) Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol 553:213–220

    PubMed  CAS  Google Scholar 

  234. Bodine SC (2006) mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc 38:1950–1957

    PubMed  CAS  Google Scholar 

  235. Deldicque L, Theisen D, Francaux M (2005) Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94:1–10

    PubMed  CAS  Google Scholar 

  236. Williamson DL, Kubica N, Kimball SR, Jefferson LS (2006) Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol 573:497–510

    PubMed  CAS  Google Scholar 

  237. Wu Y, Bauman WA, Blitzer RD, Cardozo C (2010) Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochem Biophys Res Commun 400:679–683

    PubMed  CAS  Google Scholar 

  238. Altamirano F et al (2009) Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J Endocrinol 202:299–307

    PubMed  CAS  Google Scholar 

  239. Allemand MC et al (2009) Effect of testosterone on insulin stimulated IRS1 Ser phosphorylation in primary rat myotubes—a potential model for PCOS-related insulin resistance. PLoS One 4:e4274

    PubMed  Google Scholar 

  240. Xu X, De Pergola G, Björntorp P (1990) The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology 126:1229–1234

    PubMed  CAS  Google Scholar 

  241. Xu XF, De Pergola G, Björntorp P (1991) Testosterone increases lipolysis and the number of β-adrenoceptors in male rat adipocytes. Endocrinology 128:379–382

    PubMed  CAS  Google Scholar 

  242. Mårin P, Odén B, Björntorp P (1995) Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. J Clin Endocrinol Metab 80:239–243

    PubMed  Google Scholar 

  243. Khaw K-T, Barrett-Connor E (1992) Lower endogenous androgens predict central adiposity in men. Ann Epidemiol 2:675–682

    PubMed  CAS  Google Scholar 

  244. Rebuffé-Scrive M, Mårin P, Björntorp P (1991) Effect of testosterone on abdominal adipose tissue in men. Int J Obes 15:791–795

    PubMed  Google Scholar 

  245. Mårin P et al (1992) The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord 16:991–997

    PubMed  Google Scholar 

  246. Mrin P, Arver S (1998) Androgens and abdominal obesity. Baillière’s clinical. Endocrinol Metab 12:441–451

    Google Scholar 

  247. Falahati-Nini A et al (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–1560

    PubMed  CAS  Google Scholar 

  248. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    PubMed  CAS  Google Scholar 

  249. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827–832

    PubMed  CAS  Google Scholar 

  250. Rached M-T et al (2010) FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 120:357–368

    PubMed  CAS  Google Scholar 

  251. Saleem U, Mosley TH, Kullo IJ (2010) Serum osteocalcin is associated with measures of insulin resistance, adipokine levels, and the presence of metabolic syndrome. Arterioscler Thromb Vasc Biol 30:1474–1478

    PubMed  CAS  Google Scholar 

  252. Kanazawa I et al (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in Type 2 diabetes mellitus. J Clin Endocrinol Metab 94:45–49

    PubMed  CAS  Google Scholar 

  253. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E (2005) Oxytocin increases trust in humans. Nature 435:673–676

    PubMed  CAS  Google Scholar 

  254. Kirsch P et al (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493

    PubMed  CAS  Google Scholar 

  255. Anne C (2008) Attachment, aggression and affiliation: The role of oxytocin in female social behavior. Biol Psychol 77:1–10

    Google Scholar 

  256. Gulledge AK, Hill M, Lister Z, Sallion C (2007) Non-erotic physical affection: it’s good for you. In: L’Abate L (ed) Low-cost approaches to promote physical and mental health. Springer, New York

    Google Scholar 

  257. Light KC, Grewen KM, Amico JA (2005) More frequent partner hugs and higher oxytocin levels are linked to lower blood pressure and heart rate in premenopausal women. Biol Psychol 69:5–21

    PubMed  Google Scholar 

  258. Holt-Lunstad J, Birmingham WA, Light KC (2008) Influence of a ‘warm touch’ support enhancement intervention among married couples on ambulatory blood pressure, oxytocin, α amylase, and cortisol. Psychosomat Med 70:976–985

    CAS  Google Scholar 

  259. Gordon I, Zagoory-Sharon O, Leckman JF, Feldman R (2010) Oxytocin and the development of parenting in humans. Biol Psychiatr 68:377–382

    CAS  Google Scholar 

  260. Kortesluoma S, Karlsson H (2011) Oxytocin, a neuropeptide regulating affection and social behavior. Duodecim 127:911–918

    PubMed  Google Scholar 

  261. Naber F, van IJzendoorn MH, Deschamps P, van Engeland H, Bakermans-Kranenburg MJ (2010) Intranasal oxytocin increases fathers’ observed responsiveness during play with their children: a double-blind within-subject experiment. Psychoneuroendocrinology 35:1583–1586

    PubMed  CAS  Google Scholar 

  262. Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID (2005) Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 25:6807–6815

    PubMed  CAS  Google Scholar 

  263. Ferris CF et al (1992) Oxytocin in the amygdala facilitates maternal aggression. Ann N Y Acad Sci 652:456–457

    PubMed  CAS  Google Scholar 

  264. DeVries AC, Young WS III, Nelson RJ (1997) Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. J Neuroendocrinology 9:363–368

    CAS  Google Scholar 

  265. Bales KL, Carter CS (2003) Sex differences and developmental effects of oxytocin on aggression and social behavior in prairie voles (Microtus ochrogaster). Horm Behav 44:178–184

    PubMed  CAS  Google Scholar 

  266. Ferris CF (2005) Vasopressin/oxytocin and aggression. Novartis Found Symp 268:190–198 (discussion 198–200, 242–253)

    PubMed  CAS  Google Scholar 

  267. Stock S, Granström L, Backman L, Matthiesen AS, Uvnäs-Moberg K (1989) Elevated plasma levels of oxytocin in obese subjects before and after gastric banding. Int J Obes 13:213–222

    PubMed  CAS  Google Scholar 

  268. Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR (2008) Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 22:1723–1734

    PubMed  CAS  Google Scholar 

  269. Takayanagi Y et al (2008) Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport 19:951–955

    PubMed  CAS  Google Scholar 

  270. Tolson KP et al (2010) Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci 30:3803–3812

    PubMed  CAS  Google Scholar 

  271. Floyd K, Mikkelson AC, Hesse C, Pauley PM (2007) Affectionate writing reduces total cholesterol: two randomized, controlled trials. Hum Commun Res 33:119–142

    Google Scholar 

  272. Mirsky I, Perisutti G (1961) The insulin-like action of oxytocin on adipose tissue. Biochim Biophys Acta 50:603–604

    PubMed  CAS  Google Scholar 

  273. Braun T, Hechter O, Rudinger J (1969) ‘Insulin-like’ action of oxytocin: evidence for separate oxytocin-sensitive and insulin-sensitive systems in fat cells. Endocrinology 85:1092–1096

    PubMed  CAS  Google Scholar 

  274. Augert G, Exton JH (1988) Insulin and oxytocin effects on phosphoinositide metabolism in adipocytes. J Biol Chem 263:3600–3609

    PubMed  CAS  Google Scholar 

  275. Whitton PD, Rodrigues LM, Hems DA (1978) Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem J 176:893–898

    PubMed  CAS  Google Scholar 

  276. Camerino C (2009) Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity 17:980–984

    PubMed  CAS  Google Scholar 

  277. Altszuler N, Hampshire J (1981) Oxytocin infusion increases plasma insulin and glucagon levels and glucose production and uptake in the normal dog. Diabetes 30:112–114

    PubMed  CAS  Google Scholar 

  278. Andrade ML, Benton D, Brain PF, Ramirez JM, Walmsley SV (1988) A reexamination of the hypoglycemia-aggression hypothesis in laboratory mice. Int J Neurosci 41:179–186

    PubMed  CAS  Google Scholar 

  279. Benton D (1988) Hypoglycemia and aggression: a review. Int J Neurosci 41:163–168

    PubMed  CAS  Google Scholar 

  280. Bolton R (1976) Hostility in fantasy: a further test of the hypoglycemia-aggression hypothesis. Aggr Behav 2:257–274

    Google Scholar 

  281. Lewellen TC et al (1981) Aggression and hypoglycemia in the andes: another look at the evidence [and comments and replies]. Curr Anthropol 22:347–361

    Google Scholar 

  282. Bolton R et al (1984) The hypoglycemia-aggression hypothesis: debate versus research [and comments and reply]. Curr Anthropol 25:1–53

    Google Scholar 

  283. Bolton R (1973) Aggression and hypoglycemia among the Qolla: a study in psychobiological anthropology. Ethnology 12:227–257

    Google Scholar 

  284. DeNapoli JS, Dodman NH, Shuster L, Rand WM, Gross KL (2000) Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs. J Am Vet Med Assoc 217:504–508

    PubMed  CAS  Google Scholar 

  285. Chamberlain B, Ervin FR, Pihl RO, Young SN (1987) The effect of raising or lowering tryptophan levels on aggression in vervet monkeys. Pharmacol Biochem Behav 28:503–510

    PubMed  CAS  Google Scholar 

  286. Cleare AJ, Bond AJ (1995) The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology 118:72–81

    PubMed  CAS  Google Scholar 

  287. Bjork JM, Dougherty DM, Moeller FG, Cherek DR, Swann AC (1999) The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food-restricted control. Psychopharmacology 142:24–30

    PubMed  CAS  Google Scholar 

  288. LeMarquand DG et al (1998) Tryptophan depletion, executive functions, and disinhibition in aggressive, adolescent males. Neuropsychopharmacology 19:333–341

    PubMed  CAS  Google Scholar 

  289. Schmidt HH, Warner TD (1992) Insulin secretion from pancreatic beta cells caused by L-arginine-derived nitrogen oxides. Science 255:721–723

    PubMed  CAS  Google Scholar 

  290. Mulloy A, Kari F, Visek W (2008) Dietary arginine, insulin secretion, glucose tolerance and liver lipids during repletion of protein-depleted rats. Horm Metab Res 14:471–475

    Google Scholar 

  291. Floyd JC, Fajans SS, Conn JW, Knopf RF, Rull J (1966) Stimulation of insulin secretion by amino acids. J Clin Invest 45:1487–1502

    PubMed  CAS  Google Scholar 

  292. Weber M (2008) Influence of dietary arginine on behavior. The Ohio State University, Department of Psychology Honors Theses

    Google Scholar 

  293. Kalueff AV et al (2006) Behavioural anomalies in mice evoked by ‘Tokyo’ disruption of the Vitamin D receptor gene. Neurosci Res 54:254–260

    PubMed  CAS  Google Scholar 

  294. Kalueff AV, Lou Y-R, Laaksi I, Tuohimaa P (2004) Increased grooming behavior in mice lacking vitamin D receptors. Physiol Behav 82:405–409

    PubMed  CAS  Google Scholar 

  295. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    PubMed  CAS  Google Scholar 

  296. Borissova AM, Tankova T, Kirilov G, Dakovska L, Kovacheva R (2003) The effect of vitamin D3 on insulin secretion and peripheral insulin sensitivity in type 2 diabetic patients. Int J Clin Pract 57:258–261

    PubMed  CAS  Google Scholar 

  297. Scheffel A (1996) Serum cholesterol, triglycerides, HDL and LDL in aggressive elderly patients with dementia. Psychiatr Pol 30:159–170

    PubMed  CAS  Google Scholar 

  298. Kaplan JR, Manuck SB, Shively C (1991) The effects of fat and cholesterol on social behavior in monkeys. Psychosom Med 53:634–642

    PubMed  CAS  Google Scholar 

  299. Kaplan JR, Fontenot MB, Manuck SB, Muldoon MF (1996) Influence of dietary lipids on agonistic and affiliative behavior in Macaca fascicularis. Am J Primatol 38:333–347

    CAS  Google Scholar 

  300. Golomb B (2011) Low cholesterol and violence—further findings, and evidence serum cholesterol needn’t be a surrogate for brain cholesterol. Response to Sheehan et al aberrant cholesterol and lipoprotein levels in aggressive male adolescents. WebmedCentral Psychitry 2(10):WMC002346

    Google Scholar 

  301. Leedom LJ, Meehan WP (1989) The psychoneuroendocrinology of diabetes mellitus in rodents. Psychoneuroendocrinology 14:275–294

    PubMed  CAS  Google Scholar 

  302. DiMagno MJ, Williams JA, Hao Y, Ernst SA, Owyang C (2004) Endothelial nitric oxide synthase is protective in the initiation of caerulein-induced acute pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 287:G80–87

    PubMed  CAS  Google Scholar 

  303. Kurihara Y et al (2000) Role of endothelin-1 in stress response in the central nervous system. Am J Physiol Regul Integr Comp Physiol 279:R515–R521

    PubMed  CAS  Google Scholar 

  304. Brain PF, Nowell NW, Wouters A (1971) Some relationships between adrenal function and the effectiveness of a period of isolation in inducing intermale aggression in albino mice. Physiol Behav 6:27–29

    PubMed  CAS  Google Scholar 

  305. Bigi S, Huber C, De Acetis L, Alleva E, Dixon AK (1994) Removal of the submaxillary salivary glands first increases and then abolishes the agonistic response of male mice in repeated social encounters. Physiol Behav 55:13–19

    PubMed  CAS  Google Scholar 

  306. Taha M, McMillon R, Napier A, Wekesa KS (2009) Extracts from salivary glands stimulate aggression and inositol-1,4,5-triphosphate (IP3) production in the vomeronasal organ of mice. Physiol Behav 98:147–155

    PubMed  CAS  Google Scholar 

  307. Farrell PA, Kjaer M, Bach FW, Galbo H (1987) Β‐endorphin and adrenocorticotropin response to supramaximal treadmill exercise in trained and untrained males. Acta Physiol Scand 130:619–625

    PubMed  CAS  Google Scholar 

  308. Schwarz L, Kindermann W (2008) β-Endorphin, catecholamines, and cortisol during exhaustive endurance exercise*. Int J Sports Med 10:324–328

    Google Scholar 

  309. Miner LL, Elmer GI, Pieper JO, Marley RJ (1993) Aggression modulates genetic influences on morphine analgesia as assessed using a classical Mendelian cross analysis. Psychopharmacology 111:17–22

    PubMed  CAS  Google Scholar 

  310. Miczek KA, Thompson ML, Shuster L (1986) Analgesia following defeat in an aggressive encounter: development of tolerance and changes in Opioid Receptors. Ann New York Acad Sci 467:14–29

    CAS  Google Scholar 

  311. Kim J, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction. Circulation 113:1888–1904

    PubMed  Google Scholar 

  312. Ferri C et al (1995) Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab 80:829–835

    PubMed  CAS  Google Scholar 

  313. Wolpert HA, Steen SN, Istfan NW, Simonson DC (1993) Insulin modulates circulating endothelin-1 levels in humans. Metab Clin Exp 42:1027–1030

    PubMed  CAS  Google Scholar 

  314. Wilkes JJ, Hevener A, Olefsky J (2003) Chronic endothelin-1 treatment leads to insulin resistance in vivo. Diabetes 52:1904–1909

    PubMed  CAS  Google Scholar 

  315. Ottosson‐seeberger A, Lundberg JM, Alvestrand A, Ahlborg G (1997) Exogenous endothelin‐1 causes peripheral insulin resistance in healthy humans. Acta Physiol Scand 161:211–220

    PubMed  Google Scholar 

  316. Juan CC et al (1996) Endothelin-1 induces insulin resistance in conscious rats. Biochem Biophys Res Commun 227:694–699

    PubMed  CAS  Google Scholar 

  317. Piatti PM et al (2000) Relationship between endothelin-1 concentration and metabolic alterations typical of the insulin resistance syndrome. Metab Clin Exp 49:748–752

    PubMed  CAS  Google Scholar 

  318. Gregersen S, Thomsen JL, Brock B, Hermansen K (1996) Endothelin-1 stimulates insulin secretion by direct action on the islets of Langerhans in mice. Diabetologia 39:1030–1035

    PubMed  CAS  Google Scholar 

  319. Ferri C et al (1995) Plasma endothelin-1 levels in obese hypertensive and normotensive men. Diabetes 44:431–436

    PubMed  CAS  Google Scholar 

  320. Takahashi K, Ghatei MA, Lam H-C, O’Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33:306–310

    PubMed  CAS  Google Scholar 

  321. Seligman BG, Biolo A, Polanczyk CA, Gross JL, Clausell N (2000) Increased plasma levels of endothelin 1 and von Willebrand factor in patients with type 2 diabetes and dyslipidemia. Diabetes Care 23:1395–1400

    PubMed  CAS  Google Scholar 

  322. Schneider JG et al (2002) Elevated plasma endothelin-1 levels in diabetes mellitus. Am J Hypertens 15:967–972

    PubMed  CAS  Google Scholar 

  323. Perini C, Müller FB, Bühler FR (1991) Suppressed aggression accelerates early development of essential hypertension. J Hypertens 9:499–503

    PubMed  CAS  Google Scholar 

  324. Perini C, Müller FB, Rauchfleisch U, Battegay R, Bühler FR (1986) Hyperadrenergic borderline hypertension is characterized by suppressed aggression. J Cardiovasc Pharmacol 8(Suppl 5):S53–S56

    PubMed  Google Scholar 

  325. Cooper SJ, Jackson A, Kirkham TC (1985) Endorphins and food intake: kappa opioid receptor agonists and hyperphagia. Pharmacol Biochem Behav 23:889–901

    PubMed  CAS  Google Scholar 

  326. David McKay L, Kenney NJ, Edens NK, Williams RH, Woods SC (1981) Intracerebroventricular β-endorphin increases food intake of rats. Life Sci 29:1429–1434

    Google Scholar 

  327. Martinowich K, Lu B (2007) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73–83

    PubMed  Google Scholar 

  328. Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    PubMed  CAS  Google Scholar 

  329. Xie H, Lautt WW (1996) Insulin resistance of skeletal muscle produced by hepatic parasympathetic interruption. Am J Physiol Endocrinol Metab 270:858–863

    Google Scholar 

  330. Strubbe JH (1992) Parasympathetic involvement in rapid meal-associated conditioned insulin secretion in the rat. Am J Physiol Regul Integr Comp Physiol 263:R615–R618

    CAS  Google Scholar 

  331. D’Alessio DA, Kieffer TJ, Taborsky GJ, Havel PJ (2001) Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J Clin Endocrinol Metab 86:1253–1259

    PubMed  Google Scholar 

  332. Farr SA, Banks WA, Morley JE (2006) Effects of leptin on memory processing. Peptides 27:1420–1425

    PubMed  CAS  Google Scholar 

  333. Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA (2004) Obesity, leptin resistance, and the effects of insulin reduction. Int J Obes Relat Metab Disord 28:1344–1348

    PubMed  CAS  Google Scholar 

  334. Isganaitis E, Lustig RH (2005) Fast food, central nervous system insulin resistance, and obesity. Arterioscler Thromb Vasc Biol 25:2451–2462

    PubMed  CAS  Google Scholar 

  335. Krahl ME (1964) Specificity of insulin or oxytocin stimulation of protein synthesis in adipose tissue. Am J Physiol Legacy Content 207:1169–1172

    CAS  Google Scholar 

  336. Pitteloud N et al (2005) Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 28:1636–1642

    PubMed  CAS  Google Scholar 

  337. Traish AM, Saad F, Guay A (2009) The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl 30:23–32

    PubMed  CAS  Google Scholar 

  338. Kaplan SA, Meehan AG, Shah A (2006) The age related decrease in testosterone is significantly exacerbated in obese men with the metabolic syndrome. What are the implications for the relatively high incidence of erectile dysfunction observed in these men? J Urol 176:1524–1528

    PubMed  CAS  Google Scholar 

  339. Kasayama S, Ohba Y, Oka T (1989) Epidermal growth factor deficiency associated with diabetes mellitus. Proc Natl Acad Sci USA 86:7644–7648

    PubMed  CAS  Google Scholar 

  340. Hellweg R, Hartung HD (1990) Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: A possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 26:258–267

    PubMed  CAS  Google Scholar 

  341. Hellweg R, Raivich G, Hartung H-D, Hock C, Kreutzberg GW (1994) Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Exp Neurol 130:24–30

    PubMed  CAS  Google Scholar 

  342. Apfel SC, Arezzo JC, Brownlee M, Federoff H, Kessler JA (1994) Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res 634:7–12

    PubMed  CAS  Google Scholar 

  343. Anand P et al (1996) The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 2:703–707

    PubMed  CAS  Google Scholar 

  344. Apfel SC et al (1998) Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. Neurology 51:695–702

    PubMed  CAS  Google Scholar 

  345. Gray J et al (2006) Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55:3366–3371

    PubMed  CAS  Google Scholar 

  346. Malgor L, Fisher J (1970) Effects of testosterone on erythropoietin production in isolated perfused kidneys. Am J Physiol Legacy Content 218:1732–1736

    CAS  Google Scholar 

  347. Rishpon-Meyerstein N, Kilbridge T, Simone J, Fried W (1968) The effect of testosterone on erythropoietin levels in anemic patients. Blood 31:453–460

    PubMed  CAS  Google Scholar 

  348. Moriyama Y, Fisher J (1975) Effects of testosterone and erythropoietin on erythroid colony formation in human bone marrow cultures. Blood 45:665–670

    PubMed  CAS  Google Scholar 

  349. McGill JB, Bell DSH (2006) Anemia and the role of erythropoietin in diabetes. J Diabetes Complicat 20:262–272

    PubMed  Google Scholar 

  350. Pavkovic P, Mrzljak V, Profozic V, Metelko Z (2004) Erythropoietin in the treatment of patients with type 2 diabetes mellitus and anemia. Diabetologia Croat 33:13–16

    Google Scholar 

  351. Bosman DR, Winkler AS, Marsden JT, Macdougall IC, Watkins PJ (2001) Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 24:495–499

    PubMed  CAS  Google Scholar 

  352. Thomas MC, Cooper ME, Tsalamandris C, MacIsaac R, Jerums G (2005) Anemia with impaired erythropoietin response in diabetic patients. Arch Intern Med 165:466–469

    PubMed  Google Scholar 

  353. Dikow R, Schwenger V, Schomig M, Ritz E (2002) How should we manage anaemia in patients with diabetes? Nephrol Dial Transplant 17:67–72

    PubMed  Google Scholar 

  354. Thomas M (2006) The high prevalence of anemia in diabetes is linked to functional erythropoietin deficiency. Semin Nephrol 26:275–282

    PubMed  CAS  Google Scholar 

  355. Fernández-Real JM, López-Bermejo A, Ricart W (2002) Cross-talk between iron metabolism and diabetes. Diabetes 51:2348–2354

    PubMed  Google Scholar 

  356. Jiang R et al (2004) Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. J Am Med Assoc 291:711–717

    CAS  Google Scholar 

  357. Hull EM et al (1999) Hormone–neurotransmitter interactions in the control of sexual behavior. Behav Brain Res 105:105–116

    PubMed  CAS  Google Scholar 

  358. Lorrain DS, Riolo JV, Matuszewich L, Hull EM (1999) Lateral hypothalamic serotonin inhibits nucleus accumbens dopamine: implications for sexual satiety. J Neurosci 19:7648–7652

    PubMed  CAS  Google Scholar 

  359. van Bokhoven I et al (2006) Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm Behav 50:118–125

    PubMed  Google Scholar 

  360. Michael RP, Zumpe D (1993) A review of hormonal factors influencing the sexual and aggressive behavior of macaques. Am J Primatol 30:213–241

    CAS  Google Scholar 

  361. Albert DJ, Jonik RH, Walsh ML (1992) Hormone-dependent aggression in male and female rats: experiential, hormonal, and neural foundations. Neurosci Biobehav Rev 16:177–192

    PubMed  CAS  Google Scholar 

  362. Blanchard DC, Sakai RR, McEwen B, Weiss SM, Blanchard RJ (1993) Subordination stress: behavioral, brain, and neuroendocrine correlates. Behav Brain Res 58:113–121

    PubMed  CAS  Google Scholar 

  363. Lu C-C et al (2009) Association of glycemic control with risk of erectile dysfunction in men with type 2 diabetes. J Sex Med 6:1719–1728

    PubMed  CAS  Google Scholar 

  364. Awad H, Salem A, Gadalla A, El Wafa NA, Mohamed OA (2010) Erectile function in men with diabetes type 2: correlation with glycemic control. Int J Impot Res 22:36–39

    PubMed  CAS  Google Scholar 

  365. Hidalgo-Tamola J, Chitaley K (2009) Review type 2 diabetes mellitus and erectile dysfunction. J Sex Med 6:916–926

    PubMed  CAS  Google Scholar 

  366. Romeo JH, Seftel AD, Madhun ZT, Aron DC (2000) Sexual function in men with diabetes type 2: association with glycemic control. J Urol 163:788–791

    PubMed  CAS  Google Scholar 

  367. Yaman O, Akand M, Gursoy A, Erdogan MF, Anafarta K (2006) The effect of diabetes mellitus treatment and good glycemic control on the erectile function in men with diabetes mellitus-induced erectile dysfunction: a pilot study. J Sex Med 3:344–348

    PubMed  Google Scholar 

  368. Festa A et al (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the insulin resistance atherosclerosis study (IRAS). Circulation 102:42–47

    PubMed  CAS  Google Scholar 

  369. Lee PC et al (1999) Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol Heart Circ Physiol 277:H1600–H1608

    CAS  Google Scholar 

  370. Fukumura D et al (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98:2604–2609

    PubMed  CAS  Google Scholar 

  371. Ying L, Hofseth LJ (2007) An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res 67:1407–1410

    PubMed  CAS  Google Scholar 

  372. Ayala JE et al (2007) Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56:1025–1033

    PubMed  CAS  Google Scholar 

  373. Milman HA, Arnold SB (2002) Neurologic, psychological, and aggressive disturbances with sildenafil. Ann Pharmacother 36:1129–1134

    PubMed  CAS  Google Scholar 

  374. Hotchkiss AK et al (2005) Aggressive behavior increases after termination of chronic sildenafil treatment in mice. Physiol Behav 83:683–688

    PubMed  CAS  Google Scholar 

  375. Sgoifo A, De Boer SF, Haller J, Koolhaas JM (1996) Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression. Physiol Behav 60:1403–1407

    PubMed  CAS  Google Scholar 

  376. Haller J, Makara G, Kruk M (1997) Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neurosci Biobehav Rev 22:85–97

    Google Scholar 

  377. Korzan WJ, Summers TR, Summers CH (2000) Monoaminergic activities of limbic regions are elevated during aggression: influence of sympathetic social signaling. Brain Res 870:170–178

    PubMed  CAS  Google Scholar 

  378. Korzan WJ, Summers TR, Ronan PJ, Summers CH (2000) Visible sympathetic activity as a social signal in anolis carolinensis: changes in aggression and plasma catecholamines. Horm Behav 38:193–199

    PubMed  CAS  Google Scholar 

  379. Schaan BD et al (2005) Sympathetic modulation of the renal glucose transporter GLUT2 in diabetic rats. Auton Neurosci 117:54–61

    PubMed  CAS  Google Scholar 

  380. Eriksson J et al (2007) Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance? Horm Metab Res 30:37–41

    Google Scholar 

  381. Eriksson J et al (2007) Resistance training in the treatment of non-insulin-dependent diabetes mellitus. Int J Sports Med 18:242–246

    Google Scholar 

  382. Cuff DJ et al (2003) Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 26:2977–2982

    PubMed  Google Scholar 

  383. Babraj JA et al (2009) Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord 9:3

    PubMed  Google Scholar 

  384. Nybo L et al (2010) High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc 42:1951–1958

    PubMed  Google Scholar 

  385. Richards JC et al (2010) Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to β‐adrenergic stimulation. J Physiol 588:2961–2972

    PubMed  CAS  Google Scholar 

  386. Hawley JA, Gibala MJ (2009) Exercise intensity and insulin sensitivity: how low can you go? Diabetologia 52:1709–1713

    PubMed  CAS  Google Scholar 

  387. Meckel Y et al (2009) The effect of a brief sprint interval exercise on growth factors and inflammatory mediators. J Strength Cond Res 23:225–230

    PubMed  Google Scholar 

  388. Al Rashid et al (2010) Effects of aggressive and non-aggressive exercise on insulin sensitivity in young men: a cross sectional pilot study. MRes thesis, University of Glasgow

    Google Scholar 

  389. Volek JS, Kraemer WJ, Bush JA, Incledon T, Boetes M (1997) Testosterone and cortisol in relationship to dietary nutrients and resistance exercise. J Appl Physiol 82:49–54

    PubMed  CAS  Google Scholar 

  390. Nexo E, Hansen MR, Konradsen L (1988) Human salivary epidermal growth factor, haptocorrin and amylase before and after prolonged exercise. Scand J Clin Lab Invest Informa Healthcare 48:269–273

    CAS  Google Scholar 

  391. Lukaszyk A et al (1998) The role of epidermal growth factor in platelet-endothelium interactions. J Physiol Pharmacol 49:229–239

    PubMed  CAS  Google Scholar 

  392. Chae C-H, Kim H-T (2009) Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem Int 55:208–213

    PubMed  CAS  Google Scholar 

  393. Ang ET, Gomez-Pinilla F (2007) Potential therapeutic effects of exercise to the brain. Curr Med Chem 14:2564–2571

    PubMed  CAS  Google Scholar 

  394. Widenfalk J, Olson L, Thorén P (1999) Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res 34:125–132

    PubMed  CAS  Google Scholar 

  395. Stranahan AM et al (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19:951–961

    PubMed  CAS  Google Scholar 

  396. Ritz P, Berrut G (2005) Mitochondrial function, energy expenditure, aging and insulin resistance. Diabet Metab 31:5S67–5S73

    CAS  Google Scholar 

  397. Stark R, Roden M (2007) Mitochondrial function and endocrine diseases. Eur J Clin Invest 37:236–248

    PubMed  CAS  Google Scholar 

  398. Farrar RP, Martin TP, Ardies CM (1981) The interaction of aging and endurance exercise upon the mitochondrial function of skeletal muscle. J Gerontol 36:642–647

    PubMed  CAS  Google Scholar 

  399. Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30:129–137

    PubMed  Google Scholar 

  400. Menshikova EV et al (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab 288:E818–E825

    PubMed  CAS  Google Scholar 

  401. Menshikova EV et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534–540

    PubMed  Google Scholar 

  402. Breda E et al (1992) Modulation of fatty-acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Pflugers Archiv Eur J Physiol 421:274–279

    Google Scholar 

  403. Kimberg DV, Loud AV, Wiener J (1968) Cortisone-induced alterations in mitochodrial function and structure. J Cell Biol 37:63–80

    PubMed  CAS  Google Scholar 

  404. Turner N et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle. Diabetes 56:2085–2092

    PubMed  CAS  Google Scholar 

  405. Bajaj M et al (2007) Paradoxical changes in muscle gene expression in insulin-resistant subjects after sustained reduction in plasma free fatty acid concentration. Diabetes 56:743–752

    PubMed  CAS  Google Scholar 

  406. Chowdhury KK, Legare DJ, Lautt WW (2011) Insulin sensitization by voluntary exercise in aging rats is mediated through hepatic insulin sensitizing substance (HISS). Exp Gerontol 46:73–80

    PubMed  CAS  Google Scholar 

  407. Schafer J, Legare DJ, Lautt WW (2010) Acetylcholinesterase antagonist potentiated insulin action in fed but not fasted state. J Pharmacol Exp Ther 333:621–628

    PubMed  CAS  Google Scholar 

  408. Lautt WW (2004) A new paradigm for diabetes and obesity: the hepatic insulin sensitizing substance (HISS) hypothesis. J Pharmacol Sci 95:9–17

    PubMed  CAS  Google Scholar 

  409. Correia NC, Guarino MP, Raposo J, Macedo MP (2002) Hepatic guanylyl cyclase inhibition induces HISS-dependent insulin resistance. Proc West Pharmacol Soc 45:57–58

    PubMed  CAS  Google Scholar 

  410. Lautt WW et al (2001) Hepatic parasympathetic (HISS) control of insulin sensitivity determined by feeding and fasting. Am J Physiol Gastrointest Liver Physiol 281:G29–G36

    PubMed  CAS  Google Scholar 

  411. McArdle WD, Katch FI, Katch VL (2009) Exercise physiology: nutrition, energy, and human performance. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watve, M. (2012). The Physiology of Aggression. In: Doves, Diplomats, and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4409-1_7

Download citation

Publish with us

Policies and ethics