Fast Analysis of Periodic Antennas and Metamaterial-Based Waveguides

Chapter

Abstract

A tailored version of the Characteristic Basis Function Method (CBFM) is presented as a matrix compression technique for the method-of-moments (MoM) to rapidly compute the impedance, radiation, and propagation characteristics of large periodic structures, including antenna arrays and metamaterial-based waveguides. The compression is achieved by employing physics-based Characteristic Basis Functions (CBFs), which are generated numerically and in a time-efficient manner by exploiting array symmetries. The supports of these CBFs partially overlap between electrically interconnected array elements to preserve the continuity of the surface current across common boundaries. The translation symmetry is also exploited to expedite the meshing process of the structure, to construct the reduced matrix equation, and to rapidly compute the antenna radiation patterns. The Adaptive Cross Approximation (ACA) algorithm is applied to reduce the matrix fill-time even further. The numerical examples demonstrate high accuracy and excellent memory compressing capabilities of the considered method. Among the problems, we consider a very large array of nested subarray antennas employing more than 1E6 low-level basis functions, which is solved directly, in-core, through a multilevel CBFM approach, and we analyze a metamaterial-based gap waveguide through a CBFM-enhanced MoM approach employing the parallel-plate Green’s function.

Keywords

Singular Value Decomposition Antenna Array Array Element Antenna Element Fast Multipole Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86(4):565–589MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bekers DJ, van Eijndhoven SJL, van de Ven AAF, Borsboom PP, Tijhuis AG (2006) Eigencurrent analysis of resonant behavior in finite antenna arrays. IEEE Trans Microw Theory Tech 54(6):2821–2829CrossRefGoogle Scholar
  3. 3.
    Bleszynski E, Bleszynski M, Jaroszewicz T (1996) AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Sci 31(5):1225–1251CrossRefGoogle Scholar
  4. 4.
    Bozzi M, Georgiadis A, Wu K (2011) Review of substrate-integrated waveguide circuits and antennas. Microw Antennas Propag IET 5(8):909–920CrossRefGoogle Scholar
  5. 5.
    Çivi OA, Pathak PH, Chou HT, Nepa P (2000) A hybrid uniform geometrical theory of diffraction – moment method for efficient analysis of electromagnetic radiation/scattering from large finite planar arrays. Radio Sci 35(2):607–620CrossRefGoogle Scholar
  6. 6.
    Craeye C (2006) A fast impedance and pattern computation scheme for finite antenna arrays. IEEE Trans Antennas Propag 54(10):3030–3034MathSciNetCrossRefGoogle Scholar
  7. 7.
    Craeye C, Tijhuis AG, Schaubert DH (2003) An efficient MoM formulation for finite-by-ininite arrays of two-dimensional antennas arranged in a three dimensional structure. IEEE Trans Antennas Propag 51(9):2054–2056CrossRefGoogle Scholar
  8. 8.
    Delaunay B (1934) Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800Google Scholar
  9. 9.
    Delgado C, Catedra MF, Mittra R (2008) Efficient multilevel approach for the generation of characteristic basis functions for large scatters. IEEE Trans Antennas Propag 56(7):2134–2137MathSciNetCrossRefGoogle Scholar
  10. 10.
    Garcia E, Delgado C, de Adana FS, Cátedra F, Mittra R (2007) Incorporating the multilevel fast multipole method into the characteristic basis function method to solve large scattering and radiation problems. In: Proceedings of IEEE AP-S international symposium, Honolulu, pp 1285–1288Google Scholar
  11. 11.
    Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins, Baltimore/LondonMATHGoogle Scholar
  12. 12.
    Harrington RF (1961) Time-Harmonic electromagnetic fields. McGraw-Hill, New York/LondonGoogle Scholar
  13. 13.
    Harrington RF (1968) Field computation by moment methods. The Macmillan, New YorkGoogle Scholar
  14. 14.
    Heinstadt J (1993) New approximation technique for current distribution in microstrip array antennas. Microw Opt Technol 29:1809–1810Google Scholar
  15. 15.
    Ivashina MV, Redkina EA, Maaskant R (2007) An accurate model of a wide-band microstrip feed for slot antenna arrays. In: Proceedings of IEEE AP-S international symposium, Honolulu, pp 1953–1956Google Scholar
  16. 16.
    Kildal PS, Alfonso E, Valero-Nogueira A, Rajo-Iglesias E (2009) Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel Propag Lett 8(1):84–87CrossRefGoogle Scholar
  17. 17.
    Kurz S, Rain O, Rjasanow S (2002) The adaptive cross-approximation technique for the 3-D boundary-element method. IEEE Trans Magn 38(2):421–424CrossRefGoogle Scholar
  18. 18.
    Lancellotti V, de Hon BP, Tijhuis AG (2009) An eigencurrent approach to the analysis of electrically large 3-d structures using linear embedding via Green’s operators. IEEE Trans Antennas Propag 57(11):3575–3585CrossRefGoogle Scholar
  19. 19.
    Laviada J, Las-Heras F, Pino MR, Mittra R (2009) Solution of electrically large problems with multilevel characteristic basis functions. IEEE Trans Antennas Propag 57(10):3189–3198MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lu WB, Cui TJ, Qian ZG, Yin XX, Hong W (2004) Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method. IEEE Trans Antennas Propag 52(11):3078–3085CrossRefGoogle Scholar
  21. 21.
    Maaskant R (2010) Analysis of large antenna systems. Ph.D. thesis, Eindhoven University of Technology, Eindhoven. http://alexandria.tue.nl/extra2/201010409.pdf
  22. 22.
    Maaskant R, Mittra R, Tijhuis AG (2007) Application of trapezoidal-shaped characteristic basis functions to arrays of electrically interconnected antenna elements. In: Proceedings of international conference on electromagnetic in advanced applications (ICEAA), Torino, pp 567–571Google Scholar
  23. 23.
    Maaskant R, Mittra R, Tijhuis AG (2008) Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans Antennas Propag 56(11):3440–3451CrossRefGoogle Scholar
  24. 24.
    Maaskant R, Mittra R, Tijhuis AG (2009) Fast solution of multi-scale antenna problems for the square kilomtre array (SKA) radio telescope using the characteristic basis function method (CBFM). Appl Comput Electromagn Soc J 24(2):174–188Google Scholar
  25. 25.
    Maaskant R, Ivashina MV, Iupikov O, Redkina EA, Kasturi S, Schaubert DH (2011) Analysis of large microstrip-fed tapered slot antenna arrays by combining electrodynamic and quasi-static field models. IEEE Trans Antennas Propag 56(6):1798–1807CrossRefGoogle Scholar
  26. 26.
    Maaskant R, Mittra R, Tijhuis AG (2011) Multilevel characteristic basis function method (MLCBFM) for the analysis of large antenna arrays. Spec Sect Comput Electromagn Large Antenna Arrays Radio Sci Bull 336(336):23–34Google Scholar
  27. 27.
    Maaskant R, Takook P, Kildal PS (2012) Fast analysis of gap waveguides using the characteristic basis function method and the parallel-plate green’s function. In: Proceedings of international conference on electromagnetic in advanced applications (ICEAA), Cape Town, pp 788–791Google Scholar
  28. 28.
    Matekovits L, Vecchi G, Dassano G, Orefice M (2001) Synthetic function analysis of large printed structures: the solution space sampling approach. In: Proceedings of IEEE AP-S international symposium, Boston, pp 568–571Google Scholar
  29. 29.
    Matekovits L, Laza VA, Vecchi G (2007) Analysis of large complex structures with the synthetic-functions approach. IEEE Trans Antennas Propag 55(9):2509–2521CrossRefGoogle Scholar
  30. 30.
    Matekovits L, Vecchi G, Bercigli M, Bandinelli M (2009) Synthetic-functions analysis of large aperture-coupled antennas. IEEE Trans Antennas Propag 57(7):1936–1943MATHCrossRefGoogle Scholar
  31. 31.
    Mittra R, Ma JF, Lucente E, Monorchio A (2005) CBMOM–an iteration free MoM approach for solving large multiscale em radiation and scattering problems. In: Proceedings of IEEE AP-S international symposium, Washington DC, pp 2–5Google Scholar
  32. 32.
    Neto A, Maci S, Vecchi G, Sabbadini M (2000) A truncated Floquet wave diffraction method for the full wave analysis of large phased arrays – part ii: generalization to 3-D cases. IEEE Trans Antennas Propag 48(3):601–611CrossRefGoogle Scholar
  33. 33.
    Prakash V, Mittra R (2003) Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations. Microw Opt Technol 36:95–100CrossRefGoogle Scholar
  34. 34.
    Rao S, Wilton D, Glisson A (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418CrossRefGoogle Scholar
  35. 35.
    Schaubert DH, Boryssenko AO (2004) Subarrays of Vivaldi antennas for very large apertures. In: Proceedings of 34th European microwave conference, Amsterdam, pp 1533–1536Google Scholar
  36. 36.
    Schaubert DH, Kasturi S, Elsallal MW, van Cappellen WA (2006) Wide bandwidth Vivaldi antenna arrays – some recent developments. In: Proceedings of European conference on antennas and propagation (EuCAP), Nice, pp 1–4Google Scholar
  37. 37.
    Shanks D (1955) Non-linear transformation of divergent and slowly convergent sequences. J Math Phys 34:1–42MathSciNetMATHGoogle Scholar
  38. 38.
    Skrivervik AK, Mosig JR (1993) Analysis of finite phased arrays of microstrip patches. IEEE Trans Antennas Propag 41(9):1105–1114CrossRefGoogle Scholar
  39. 39.
    Stevanovic I, Mosig JR (2004) Subdomain multilevel approach with fast MBF interactions. In: Proceedings of IEEE AP-S international symposium, Monterey, pp 367–370Google Scholar
  40. 40.
    Suter E, Mosig JR (2000) A subdomain multilevel approach for the efficient MoM analysis of large planar antennas. Microw Opt Technol 26(4):270–277CrossRefGoogle Scholar
  41. 41.
    Takook P, Maaskant R, Kildal PS (2012) Comparison of parallel-plate greens function acceleration techniques. In: Proceedings of European conference on antennas and propagation (EuCAP), Prague, pp 1–5Google Scholar
  42. 42.
    Tiberi G, Monorchio A, Manara G, Mittra R (2003) Hybridizing asymptotic and numerically rigorous techniques for solving electromagnetic scattering problems using the characterisitic basis functions (CBFs). In: Proceedings of IEEE AP-S international symposium, Columbus, pp. 22–27Google Scholar
  43. 43.
    Tomasic B, Hessel A (1999) Analysis of finite arrays – a new approach. IEEE Trans Antennas Propag 47(3):555–564CrossRefGoogle Scholar
  44. 44.
    Trefethen LN, Bau D (eds) (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, PhiladelphiaMATHGoogle Scholar
  45. 45.
    Vandenbosch GAE, Demuynck FJ (1998) The expansion wave concept – part ii: a new way to model mutual coupling in microstrip arrays. IEEE Trans Antennas Propag 46(3):407–413CrossRefGoogle Scholar
  46. 46.
    Vandenbosch GAE, Van de Cappelle AR (1992) Use of combined expansion scheme to analyze microstrip antennas with the method of moments. Radio Sci 27(6):911–916CrossRefGoogle Scholar
  47. 47.
    Vita PD, Freni A, Matekovits L, Pirinoli P, Vecchi G (2007) A combined AIM-SFX approach for large complex arrays. In: Proceedings of IEEE AP-S international symposium, Honolulu, pp 3452–3455Google Scholar
  48. 48.
    Yeo J, Prakash V, Mittra R (2003) Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM). Microw Opt Technol 39:456–464CrossRefGoogle Scholar
  49. 49.
    Zhao K, Vouvakis MN, Lee JF (2005) The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems. IEEE Trans Electromagn Compat 47(4):763–773MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations