Skip to main content

Modeling the Quantum Effects in Electromagnetic Devices

  • Chapter
  • First Online:
Computational Electromagnetics
  • 3452 Accesses

Abstract

Quantum mechanics is playing an intriguing role in the area of nanotechnology, from atomic level to solid state systems. It is leading to new multidisciplinary research directions and, as a result, new devices and breakthroughs in the fields of engineering and biosciences. The concepts of quantum mechanics have been proven theoretically, numerically and experimentally. Schrödinger equation is one of the fundamental equations to model and simulate the quantum effects. It is a well established fact that Maxwell equations have been proven to be robust, accurate and efficient when modeling and simulating micro- and macro-devices. In this chapter, we first show how time-dependent Schrödinger equation can be coupled with time-dependent Maxwell equations to account for quantum effects that can embellish the classical electromagnetic phenomena. Following this, we apply different numerical methods to solve the above coupled equations to simulate problems associated with different applications in different domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swanson DG, Hoefer WJR (2003) Microwave circuit modeling using electromagnetic field simulation. Artech House, Norwood

    MATH  Google Scholar 

  2. Lee KH, Ahmed I, Goh RSM, Khoo EH, Li EP, Hung TGG (2011) Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications. PIERS 116:441–456

    Google Scholar 

  3. Mitin VV, Sementsov DI, Vagidov NZ (2010) Quantum mechanics for nanostructures. Cambridge University Press, Cambridge, NY

    Book  Google Scholar 

  4. Tsukerman I (2008) Computational methods for nanoscale applications, particles, plasmons and waves. Springer, New York

    Book  Google Scholar 

  5. Taflove A (2005) Computational electrodynamics. Artech House, Norwood

    Google Scholar 

  6. Ahmed I, Khoo EH, Li EP, Mittra R (2010) A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices. IEEE Antenna Wireless Propag Lett 9:914–917

    Article  Google Scholar 

  7. Pierantoni L, Mencarelli D, Rozzi T (2008) A new 3-D transmission line matrix scheme for the combined Schrödinger-Maxwell problem in the electronic/electromagnetic characterization of nanodevices. IEEE Transact Micro Theo Tech 56(3):654–662

    Article  Google Scholar 

  8. Esteban R, Borisov AG, Nordlander P, Aizpurua J (2012) Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun 3:825

    Article  Google Scholar 

  9. Lorin E, Chelkowski S, Bandrauk A (2007) A numerical Maxwell–Schrödinger model for intense laser–matter interaction and propagation. Comput Phys Commun 177:908–932

    Article  MATH  Google Scholar 

  10. Shibayama J, Muraki M, Yamauchi J, Nakano H (2005) Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electron Lett 41(19):1046–1047

    Article  Google Scholar 

  11. Ahmed I, Chua EK, Li EP, Chen Z (2008) Development of the three dimensional unconditionally stable LOD–FDTD method. IEEE Trans Ante Propag 56(11):3596–3600

    Article  MathSciNet  Google Scholar 

  12. Ahmed I, Li EP, Khoo EH (2009) Coupling of Maxwell’s and Schrodinger’s equations for plasmonics applications. In the digest of Nanometa 2009, Austria

    Google Scholar 

  13. Ahmed I, Li EP (2012) Simulation of plasmonics nanodevices using coupled Maxwell and Schrödinger equations using the FDTD method. J Adv Electromag 1(1):76–83

    Google Scholar 

  14. Soriano A, Navarro EA, Portì JA, Such V (2004) Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices. J Appl Phys 95(12):8011–8018

    Article  Google Scholar 

  15. Sullivan DM (2000) Electromagnetic simulation using the FDTD method. IEEE Press, New York

    Book  Google Scholar 

  16. Ahmed I, Khoo EH, Li EP (2010) Development of the CPML for three-dimensional unconditionally sable LOD-FDTD method. IEEE Trans Ante Propagate 58(3):832–837

    Article  MathSciNet  Google Scholar 

  17. Ahmed I, Chen Z (2004) A hybrid ADI-FDTD subgridding scheme for efficient electromagnetic computation. Int J Numer Model Electron Netw Devices Fields 17:237–249

    Article  MATH  Google Scholar 

  18. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  19. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, The Netherlands

    Book  Google Scholar 

  20. Shalaev VM, Kawata S (2007) Nanophotonics with surface plasmons. Elsevier, Amsterdam

    Google Scholar 

  21. Zia R, Brongersma ML (2007) Surface plasmon polariton analogue to Young’s double-slit experiment. Nat Nanotech 2:426–429

    Article  Google Scholar 

  22. Khoo EH, Ahmed I, Li EP (2010) Investigation of the light energy extraction efficiency using surface modes in electrically pumped semiconductor microcavity. Proc SPIE 7764:77640B

    Article  Google Scholar 

  23. Ahmed I, Khoo EH, Kurniawan O, Li EP (2011) Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model. J Opt Soc B 28(3):352–359

    Article  Google Scholar 

  24. Kurniawan O, Ahmed I, Li EP (2011) Development of a palsmonics source based on nano-antenna concept for nano-photonics applications. IEEE Photonic J 3:344–352

    Article  Google Scholar 

  25. MacDonald KF, Samson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonic 3:55–58

    Article  Google Scholar 

  26. Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett 9:897–902

    Article  Google Scholar 

  27. Krasavin AV, Zayats AV (2008) Three-dimensional numerical modeling of photonics integration with dielectric loaded SPP waveguides. Phys Rev B 78:045425–045428

    Article  Google Scholar 

  28. Naik G, Boltasseva A (2012) Plasmonics and metamaterials: looking beyond gold and silver. SPIE, Newsroom 1–3

    Google Scholar 

  29. Rakic D, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Optics 37:5271–5283

    Article  Google Scholar 

  30. Sullivan DM (2000) Electromagnetic simulation using the FDTD method. Wiley-IEEE Press, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahmed, I., Li, E. (2014). Modeling the Quantum Effects in Electromagnetic Devices. In: Mittra, R. (eds) Computational Electromagnetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4382-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4382-7_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4381-0

  • Online ISBN: 978-1-4614-4382-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics