Skip to main content

Iron Oxide Nanoparticles and Derivatives for Biomedical Imaging and Application in Cancer Diagnosis and Therapy

  • Chapter
  • First Online:
Micro and Nano Flow Systems for Bioanalysis

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 2))

Abstract

Imaging-capable nanoparticulate contrast agents for cancer diagnosis and small RNA-based tumor therapy have been an emerging field in molecular imaging and pharmaceutical sciences. One example of such agents includes magnetic nanoparticles (MN), which have traditionally been utilized as contrast agents for Magnetic Resonance Imaging. The probes typically consist of a dextran-coated superparamagnetic iron oxide core (for MRI), labeled with Cy5.5 dye (for near-infrared in vivo optical imaging), coated with targeting-peptides for receptor-mediated uptake by specific cell types and conjugated to synthetic small interfering RNA (siRNA) molecules as therapeutic agents. The potential of these nanoparticles as MRI contrast agents for tumor imaging and delivery modules for small interfering RNA has been investigated. Furthermore, the feasibility of combining the imaging and delivery capabilities of these nanoparticles for the tracking of siRNA bioavailability has been explored. The versatile functionalization potential of MN has allowed controlling properties of the agents, such as uptake mechanism and target organ distribution. The tumoral accumulation of MN-siRNA results in a remarkable level of target-gene down-regulation. Repeated treatment with MN-siRNA targeting the tumor-specific anti-apoptotic gene, birc5, leads to the induction of apoptosis in the tumors and an overall reduction in tumor growth rate. Bioconjugated MNs were also used for biosensing application for several metabolically important compounds and processes. A second generation of nanoparticles, which combine the capability for high-resolution MRI with detection by ultrasensitive surface enhanced Raman scattering has been tested in silico and in vivo. Different types of magnetic nanoparticles have been used for therapy of cancer by Magnetic Fluid Hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atanasijevic T, Shusteff M, Fam P, Jasanoff A (2006) Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci U S A 103:14707–14712

    Article  Google Scholar 

  2. Balivada S, Rachakatla R, Wang H, Samarakoon T, Dani R, Pyle M, Kroh F, Walker B, Leaym X, Koper O, Tamura M, Chikan V, Bossmann S, Troyer D (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10:119

    Article  Google Scholar 

  3. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  Google Scholar 

  4. Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332

    Article  Google Scholar 

  5. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  Google Scholar 

  6. Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148

    Article  Google Scholar 

  7. Ferrari M (2010) Vectoring siRNA therapeutics into the clinic. Nat Rev Clin Oncol 7:485–486

    Article  Google Scholar 

  8. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  Google Scholar 

  9. Grimm J, Perez JM, Josephson L, Weissleder R (2004) Novel nanosensors for rapid analysis of telomerase activity. Cancer Res 64:639–643

    Article  Google Scholar 

  10. Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25:3029–3040

    Article  Google Scholar 

  11. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  12. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans NanoBiosci 3:66–73

    Article  Google Scholar 

  13. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la RJ, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  Google Scholar 

  14. Josephson L, Tung C-H, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10:186–191

    Article  Google Scholar 

  15. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    Article  Google Scholar 

  16. Kumar M, Medarova Z, Pantazopoulos P, Dai G, Moore A (2010) Novel membrane-permeable contrast agent for brain tumor detection by MRI. Magn Reson Med 63:617–624

    Article  Google Scholar 

  17. Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    Article  Google Scholar 

  18. Laurent S, Dutz S, Hafeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Google Scholar 

  19. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    Article  Google Scholar 

  20. Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1:429–435

    Article  Google Scholar 

  21. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In-vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  Google Scholar 

  22. Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A (2009) Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 69:1182–1189

    Article  Google Scholar 

  23. Moore A, Medarova Z, Potthast A, Dai G (2004) In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 64:1821–1827

    Article  Google Scholar 

  24. Mouli SK, Zhao LC, Omary RA, Thaxton CS (2010) Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors. Nat Rev Urol 7:84–93

    Article  Google Scholar 

  25. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193

    Article  Google Scholar 

  26. Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1:73–79

    Article  Google Scholar 

  27. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  Google Scholar 

  28. Sjogren CE, Briley-Saebo K, Hanson M, Johansson C (1994) Magnetic characterization of iron oxides for magnetic resonance imaging. Magn Reson Med 31:268–272

    Article  Google Scholar 

  29. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliver Rev 17:31–48

    Article  Google Scholar 

  30. Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliver Rev 16:141–155

    Article  Google Scholar 

  31. Wang P, Yigit MV, Medarova Z, Wei L, Dai G, Schuetz C, Moore A (2011) Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60:565–571

    Article  Google Scholar 

  32. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–354

    Article  Google Scholar 

  33. Yigit MV, Mazumdar D, Kim HK, Lee JH, Odintsov B, Lu Y (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678

    Article  Google Scholar 

  34. Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417

    Article  Google Scholar 

  35. Yigit MV, Zhu L, Ifediba MA, Zhang Y, Carr K, Moore A, Medarova Z (2011) Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano 5:1056–1066

    Article  Google Scholar 

  36. Zhao M, Josephson L, Tang Y, Weissleder R (2003) Magnetic sensors for protease assays. Angew Chem Int Ed 42:1375–1378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravka Medarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yigit, M.V., Medarova, Z. (2013). Iron Oxide Nanoparticles and Derivatives for Biomedical Imaging and Application in Cancer Diagnosis and Therapy. In: Collins, M., Koenig, C. (eds) Micro and Nano Flow Systems for Bioanalysis. Bioanalysis, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4376-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4376-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4375-9

  • Online ISBN: 978-1-4614-4376-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics