Skip to main content

The Evolution of Photoreceptors and Visual Photopigments in Vertebrates

  • Chapter
  • First Online:
Book cover Evolution of Visual and Non-visual Pigments

Abstract

All classical vertebrate retinal photoreceptors have an evolutionary origin from ciliary cells and retain a modified cilium that links the inner and outer segments. Vertebrate visual pigments fall into five classes, a rod pigment that is found in rod photoreceptors that are responsible for dim-light vision and four spectral classes of cone photoreceptors that are responsible for vision in daylight and provide for the sensation of color if two or more classes of cone are present. The underlying mechanisms that determine the overall sensitivity of individual photoreceptors to different light levels and hence whether they are functional in dim or bright light however extend beyond the type of visual pigment present into the processes of phototransduction. The kinetics of phototransduction is determined by the different rod and cone isoforms that comprise many of its component processes, combined with the concentration of certain key components. The spectral tuning of visual pigment is determined by the type of chromophore present and its interaction with the opsin protein. The amino acid present at key sites within the opsin protein determines spectral tuning; these sites are limited in number and tend to be shared across different pigment classes. Other changes include the protonation of the Schiff base for short wavelength-sensitive type 1 (SWS1) pigments and the binding of chloride ions for long wavelength-sensitive (LWS) pigments. Opsin gene loss and/or duplication is common across the different vertebrate taxa, with certain classes of cone opsins absent in certain lineages. These changes can be related in many cases to differential expression during development or to evolutionary changes in lifestyle and the light environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnelt PK, Kolb H. The mammalian photoreceptor mosaic-adaptive design. Prog Retin Eye Res. 2000;19(6):711–77.

    PubMed  CAS  Google Scholar 

  • Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711–4.

    PubMed  CAS  Google Scholar 

  • Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, Farhangfar F, Kage K, Krzystolik MG, Lyass LA, Robbins JT. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron. 2000;27(3):513–23.

    PubMed  CAS  Google Scholar 

  • Applebury ML, Farhangfar F, Glosmann M, Hashimoto K, Kage K, Robbins JT, Shibusawa N, Wondisford FE, Zhang H. Transient expression of thyroid hormone nuclear receptor TRbeta2 sets S opsin patterning during cone photoreceptor genesis. Dev Dyn. 2007;236(5):1203–12.

    PubMed  CAS  Google Scholar 

  • Archer SN, Lythgoe JN. The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata. Vision Res. 1990;30(2):225–33.

    PubMed  CAS  Google Scholar 

  • Archer SN, Endler JA, Lythgoe JN, Partridge JC. Visual pigment polymorphism in the guppy Poecilia reticulata. Vision Res. 1987;27(8):1243–52.

    PubMed  CAS  Google Scholar 

  • Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. 2003;47(7–8):563–71.

    PubMed  Google Scholar 

  • Arendt D, Wittbrodt J. Reconstructing the eyes of Urbilateria. Philos Trans R Soc Lond B Biol Sci. 2001;356(1414):1545–63.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004;306(5697):869–71.

    PubMed  CAS  Google Scholar 

  • Aroua S, Schmitz M, Baloche S, Vidal B, Rousseau K, Dufour S. Endocrine evidence that silvering, a secondary metamorphosis in the eel, is a pubertal rather than a metamorphic event. Neuroendocrinology. 2005;82:221–32.

    PubMed  CAS  Google Scholar 

  • Arrese CA, Hart NS, Thomas N, Beazley LD, Shand J. Trichromacy in Australian marsupials. Curr Biol. 2002;12(8):657–60.

    PubMed  CAS  Google Scholar 

  • Arrese CA, Oddy AY, Runham PB, Hart NS, Shand J, Hunt DM, Beazley LD. Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Proc Biol Sci. 2005;272(1565):791–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arrese CA, Beazley LD, Neumeyer C. Behavioural evidence for marsupial trichromacy. Curr Biol. 2006;16(6):R193–4.

    PubMed  CAS  Google Scholar 

  • Asenjo AB, Rim J, Oprian DD. Molecular determinants of human red/green color discrimination. Neuron. 1994;12(5):1131–8.

    PubMed  CAS  Google Scholar 

  • Babu KR, Dukkipati A, Birge RR, Knox BE. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion. Biochemistry. 2001;40(46):13760–6.

    PubMed  CAS  Google Scholar 

  • Bailes HJ, Robinson SR, Trezise AE, Collin SP. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). J Comp Neurol. 2006;494(3):381–97.

    PubMed  Google Scholar 

  • Bailes HJ, Davies WL, Trezise AE, Collin SP. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri. BMC Evol Biol. 2007;7:200.

    PubMed  PubMed Central  Google Scholar 

  • Balding DJ, Nichols RA, Hunt DM. Detecting gene conversion: primate visual pigment genes. Proc Biol Sci. 1992;249(1326):275–80.

    PubMed  CAS  Google Scholar 

  • Baylor DA, Matthews G, Yau KW. Two components of electrical dark noise in toad retinal rod outer segments. J Physiol. 1980;309:591–621.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baylor DA, Nunn BJ, Schnapf JL. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984;357:575–607.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beatty DD. Visual pigments of the american eel Anguilla rostrata. Vision Res. 1975;15(7):771–6.

    PubMed  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Lunau K. Ultraviolet plumage colors predict mate preferences in starlings. Proc Natl Acad Sci U S A. 1997;94(16):8618–21.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Berg ML, Bennett ATD. The evolution of plumage coloration in parrots: a review. EMU. 2010;110:10–20.

    Google Scholar 

  • Berry L, Brookes D, Walker B. Problem of migration of European Eel (Anguilla anguilla). Sci Prog. 1972;60:465–85.

    Google Scholar 

  • Blakeslee B, Jacobs GH, Neitz J. Spectral mechanisms in the tree squirrel retina. J Comp Physiol A. 1988;162:773–80.

    PubMed  CAS  Google Scholar 

  • Boissinot S, Tan Y, Shyue SK, Schneider H, Sampaio I, Neiswanger K, Hewett-Emmett D, Li W-H. Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proc Natl Acad Sci U S A. 1998;95(23):13749–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bowmaker JK. Evolution of vertebrate visual pigments. Vision Res. 2008;48(20):2022–41.

    PubMed  CAS  Google Scholar 

  • Bowmaker JK, Martin GR. Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl). Vision Res. 1978;18(9):1125–30.

    PubMed  CAS  Google Scholar 

  • Bowmaker JK, Martin GR. Visual pigments and oil droplets in the penguin, Spheniscus humboldti. J Comp Physiol A. 1985;156:71–7.

    CAS  Google Scholar 

  • Bowmaker JK, Astell S, Hunt DM, Mollon JD. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991;156:1–19.

    PubMed  CAS  Google Scholar 

  • Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnova OG. Visual pigments and the photic environment: the cottoid fish of Lake Baikal. Vision Res. 1994;34(5):591–605.

    PubMed  CAS  Google Scholar 

  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 1997;37(16):2183–94.

    PubMed  CAS  Google Scholar 

  • Bozzano A, Pankhurst PM, Sabates A. Early development of eye and retina in lanternfish larvae. Vis Neurosci. 2007;24(3):423–36.

    PubMed  CAS  Google Scholar 

  • Brannock MT, Weng K, Robinson PR. Rhodopsin’s carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro. Biochemistry. 1999;38(12):3770–7.

    PubMed  CAS  Google Scholar 

  • Burns ME, Pugh Jr EN. RGS9 concentration matters in rod phototransduction. Biophys J. 2009;97(6):1538–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Calderone JB, Jacobs GH. Cone receptor variations and their functional consequences in two species of hamster. Vis Neurosci. 1999;16(1):53–63.

    PubMed  CAS  Google Scholar 

  • Calvert PD, Strissel KJ, Schiesser WE, Pugh Jr EN, Arshavsky VY. Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends Cell Biol. 2006;16(11):560–8.

    PubMed  CAS  Google Scholar 

  • Cappetta H, Duffin C, Zidek J. The fossil record 2. In: Benton MJ, editor. Chondrichthyes. London: Chapman and Hall; 1993. p. 593–609.

    Google Scholar 

  • Carleton K. Cichlid fish visual systems: mechanisms of spectral tuning. Integr Zool. 2009;4(1):75–86.

    PubMed  Google Scholar 

  • Carleton KL, Kocher TD. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol. 2001;18(8):1540–50.

    PubMed  CAS  Google Scholar 

  • Carleton KL, Harosi FI, Kocher TD. Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vision Res. 2000;40(8):879–90.

    PubMed  CAS  Google Scholar 

  • Carlisle DB, Denton EJ. On the metamorphosis of the visual pigments of Anguilla anguilla. J Mar Biol Assoc UK. 1959;38:97–102.

    Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM. Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Curr Biol. 2006;16(3):R81–3.

    CAS  Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM. The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol. 2007;24(8):1843–52.

    PubMed  CAS  Google Scholar 

  • Carvalho LS, Davies WL, Robinson PR, Hunt DM. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc Biol Sci. 2012;279(1727):387–93.

    PubMed  PubMed Central  Google Scholar 

  • Cernuda-Cernuda R, DeGrip WJ, Cooper HM, Nevo E, Garcia-Fernandez JM. The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. Invest Ophthalmol Vis Sci. 2002;43(7):2374–83.

    PubMed  Google Scholar 

  • Chavez AE, Bozinovic F, Peichl L, Palacios AG. Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus Octodon (rodentia): implications for visual ecology. Invest Ophthalmol Vis Sci. 2003;44(5):2290–6.

    PubMed  Google Scholar 

  • Chen CK. Recoverin and rhodopsin kinase. Adv Exp Med Biol. 2002;514:101–7.

    PubMed  CAS  Google Scholar 

  • Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature. 2000;403(6769):557–60.

    PubMed  CAS  Google Scholar 

  • Chen CK, Woodruff ML, Chen FS, Chen D, Fain GL. Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci. 2010a;30(4):1213–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen J, Woodruff ML, Wang T, Concepcion FA, Tranchina D, Fain GL. Channel modulation and the mechanism of light adaptation in mouse rods. J Neurosci. 2010b;30(48):16232–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL. Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci. 2012;32(45):15998–6006.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng CL, Flamarique IN. Photoreceptor distribution in the retina of adult Pacific salmon: corner cones express blue opsin. Vis Neurosci. 2007;24(3):269–76.

    PubMed  CAS  Google Scholar 

  • Cheng CL, Flamarique IN, Harosi FI, Rickers-Haunerland J, Haunerland NH. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish. J Comp Neurol. 2006;495(2):213–35.

    PubMed  Google Scholar 

  • Cheng CL, Gan KJ, Flamarique IN. The ultraviolet opsin is the first opsin expressed during retinal development of salmonid fishes. Invest Ophthalmol Vis Sci. 2007;48(2):866–73.

    PubMed  Google Scholar 

  • Chinen A, Hamaoka T, Yamada Y, Kawamura S. Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics. 2003;163(2):663–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen JL, Tucker GS, Odell DK. The photoreceptors of the West Indian manatee. J Morphol. 1982;173:197–202.

    PubMed  CAS  Google Scholar 

  • Collin SP, Trezise AE. The origins of colour vision in vertebrates. Clin Exp Optom. 2004;87(4–5):217–23.

    PubMed  Google Scholar 

  • Collin SP, Potter IC, Braekevelt CR. The ocular morphology of the southern hemisphere lamprey Geotria australis gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behav Evol. 1999;54(2):96–118.

    PubMed  CAS  Google Scholar 

  • Collin SP, Hart NS, Shand J, Potter IC. Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis). Vis Neurosci. 2003a;20(2):119–30.

    PubMed  Google Scholar 

  • Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AE. Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol. 2003b;13(22):R864–5.

    PubMed  CAS  Google Scholar 

  • Collin SP, Davies WL, Hart NS, Hunt DM. The evolution of early vertebrate photoreceptors. Philos Trans R Soc Lond B Biol Sci. 2009;364(1531):2925–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cooper HM, Herbin M, Nevo E. Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature. 1993;361:156–9.

    PubMed  CAS  Google Scholar 

  • Cottrill PB, Davies WL, Semo M, Bowmaker JK, Hunt DM, Jeffery G. Developmental dynamics of cone photoreceptors in the eel. BMC Dev Biol. 2009;9:71.

    PubMed  PubMed Central  Google Scholar 

  • Cowan CW, Fariss RN, Sokal I, Palczewski K, Wensel TG. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc Natl Acad Sci U S A. 1998;95(9):5351–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cowing JA, Poopalasundaram S, Wilkie SE, Bowmaker JK, Hunt DM. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry. 2002a;41(19):6019–25.

    PubMed  CAS  Google Scholar 

  • Cowing JA, Poopalasundaram S, Wilkie SE, Robinson PR, Bowmaker JK, Hunt DM. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochem J. 2002b;367(1):129–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cowing JA, Arrese CA, Davies WL, Beazley LD, Hunt DM. Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus). Proc Biol Sci. 2008;275(1642):1491–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Craft CM, Whitmore DH. The arrestin superfamily: cone arrestins are a fourth family. FEBS Lett. 1995;362(2):247–55.

    PubMed  CAS  Google Scholar 

  • Crescitelli F. Ionochromic behavior of Gecko visual pigments. Science. 1977;195(4274):187–8.

    PubMed  CAS  Google Scholar 

  • Crescitelli F, Karvaly B. The gecko visual pigment: the anion hypsochromic effect. Vision Res. 1991;31(6):945–50.

    PubMed  CAS  Google Scholar 

  • Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.

    PubMed  CAS  Google Scholar 

  • Darden AG, Wu BX, Znoiko SL, Hazard 3rd ES, Kono M, Crouch RK, Ma JX. A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses. Mol Vis. 2003;9:191–9.

    PubMed  CAS  Google Scholar 

  • David-Gray ZK, Janssen JW, DeGrip WJ, Nevo E, Foster RG. Light detection in a ‘blind’ mammal. Nat Neurosci. 1998;1(8):655–6.

    PubMed  CAS  Google Scholar 

  • David-Gray ZK, Bellingham J, Munoz M, Avivi A, Nevo E, Foster RG. Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). Eur J Neurosci. 2002;16(7):1186–94.

    PubMed  CAS  Google Scholar 

  • Davies WL, Carvalho LS, Cowing JA, Beazley LD, Hunt DM, Arrese CA. Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol. 2007a;17(5):R161–3.

    PubMed  CAS  Google Scholar 

  • Davies WL, Cowing JA, Carvalho LS, Potter IC, Trezise AE, Hunt DM, Collin SP. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey. FASEB J. 2007b;21(11):2713–24.

    PubMed  CAS  Google Scholar 

  • Davies WL, Carvalho LS, Tay BH, Brenner S, Hunt DM, Venkatesh B. Into the blue: gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Res. 2009a;19(3):415–26.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davies WL, Collin SP, Hunt DM. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates. Mol Biol Evol. 2009b;26(8):1803–9.

    PubMed  CAS  Google Scholar 

  • Davies WL, Cowing JA, Bowmaker JK, Carvalho LS, Gower DJ, Hunt DM. Shedding light on serpent sight: the visual pigments of henophidian snakes. J Neurosci. 2009c;29(23):7519–25.

    PubMed  CAS  Google Scholar 

  • Davies WI, Collin SP, Hunt DM. Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol. 2012a;21(13):3121–58.

    PubMed  CAS  Google Scholar 

  • Davies WI, Wilkie SE, Cowing JA, Hankins MW, Hunt DM. Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments. Cell Mol Life Sci. 2012b;69:2455–64.

    PubMed  CAS  Google Scholar 

  • Deeb SS, Wakefield MJ, Tada T, Marotte L, Yokoyama S, Marshall Graves JA. The cone visual pigments of an Australian Marsupial, the Tammar Wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. Mol Biol Evol. 2003;20(10):1642–9.

    PubMed  CAS  Google Scholar 

  • Deegan 2nd JF, Jacobs GH. On the identity of the cone types of the rat retina. Exp Eye Res. 1993;56(3):375–7.

    PubMed  Google Scholar 

  • Denton EJ. Light and vision at depths greater than 200m. In: Herring PJ, Campbell AK, Whitfield M, Maddock L, editors. Light and life in the sea. Cambridge: Cambridge University Press; 1990. p. 127–48.

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Wright PG. On the ‘filters’ in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. J Physiol. 1970;208(2):72P–3.

    PubMed  CAS  Google Scholar 

  • Deutschlander ME, Phillips JB. Characterization of an ultraviolet photoreception mechanism in the retina of an amphibian, the axolotl (Ambystoma mexicanum). Neurosci Lett. 1995;197(2):93–6.

    PubMed  CAS  Google Scholar 

  • Dickson DH, Collard TR. Retinal development in the lamprey (Petromyzon marinus L.): premetamorphic ammocoete eye. Am J Anat. 1979;154(3):321–36.

    PubMed  CAS  Google Scholar 

  • Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB. The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron. 1994;12(6):1345–52.

    PubMed  CAS  Google Scholar 

  • Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem. 1995;270(42):25200–6.

    PubMed  CAS  Google Scholar 

  • Dominy NJ, Lucas PW. Ecological importance of trichromatic vision to primates. Nature. 2001;410(6826):363–6.

    PubMed  CAS  Google Scholar 

  • Dominy NJ, Garber PA, Bicca-Marques JC, Azevedo-Lopes MA. Do female tamarins use visual cues to detect fruit rewards more successfully than do males? Anim Behav. 2003;66:829–37.

    Google Scholar 

  • Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH. Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res. 1999;39(17):2817–32.

    PubMed  CAS  Google Scholar 

  • Doutrelant C, Gregoire A, Midamegbe A, Lambrechts M, Perret P. Female plumage coloration is sensitive to the cost of reproduction. An experiment in blue tits. J Anim Ecol. 2012;81(1):87–96.

    PubMed  Google Scholar 

  • Dowling JE, Ripps H. Visual adaptation in the retina of the skate. J Gen Physiol. 1970;56(4):491–520.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Drummond-Borg M, Deeb SS, Motulsky AG. Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci U S A. 1989;86(3):983–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dulai KS, von Dornum M, Mollon JD, Hunt DM. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res. 1999;9(7):629–38.

    PubMed  CAS  Google Scholar 

  • Ebrey T, Koutalos Y. Vertebrate photoreceptors. Prog Retin Eye Res. 2001;20(1):49–94.

    PubMed  CAS  Google Scholar 

  • Eikenaar C, Whitham M, Komdeur J, van der Velde M, Moore IT. Testosterone, plumage colouration and extra-pair paternity in male North-American barn swallows. PLoS One. 2011;6(8):e23288.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ekstrom P, Meissl H. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. Philos Trans R Soc Lond B Biol Sci. 2003;358(1438):1679–700.

    PubMed  PubMed Central  Google Scholar 

  • Ellingson JM, Fleishman LJ, Loew ER. Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. J Comp Physiol A. 1995;177(5):559–67.

    PubMed  CAS  Google Scholar 

  • Fager RS, Goldman SL, Abrahamson EW. Ethanolamine attack of the bovine rhodopsin chromophore. Exp Eye Res. 1979;29(4):393–9.

    PubMed  CAS  Google Scholar 

  • Famiglietti EV, Sharpe SJ. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis Neurosci. 1995;12(6):1151–75.

    PubMed  CAS  Google Scholar 

  • Fasick JI, Robsinson PR. Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry. 1998;37(2):433–8.

    PubMed  CAS  Google Scholar 

  • Fasick JI, Cronin TW, Hunt DM, Robinson PR. The visual pigments of the bottlenose dolphin (Tursiops truncatus). Vis Neurosci. 1998;15(4):643–51.

    PubMed  CAS  Google Scholar 

  • Fasick JI, Applebury ML, Oprian DD. Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry. 2002;41(21):6860–5.

    PubMed  CAS  Google Scholar 

  • Feil R, Aubourg P, Heilig R, Mandel JL. A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes. Genomics. 1990;6(2):367–73.

    PubMed  CAS  Google Scholar 

  • Fernholm B, Holmberg K. The eyes in three genera of hagfish (Eptatretus, Paramyxine and Myxine)—a case of degenerative evolution. Vision Res. 1975;15(2):253–9.

    PubMed  CAS  Google Scholar 

  • Frings S, Seifert R, Godde M, Kaupp UB. Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron. 1995;15(1):169–79.

    PubMed  CAS  Google Scholar 

  • Froese R, Pauly D. Fishbase. 2009. www.fishbase.org.

  • Glaschke A, Weiland J, Del Turco D, Steiner M, Peichl L, Glosmann M. Thyroid hormone controls cone opsin expression in the retina of adult rodents. J Neurosci. 2011;31(13):4844–51.

    PubMed  CAS  Google Scholar 

  • Glosmann M, Ahnelt PK. Coexpression of M- and S-opsin extends over the entire inferior mouse retina. Invest Ophthalmol Vis Sci. 1998;39:S1059. Abstract no. 4897.

    Google Scholar 

  • Glosmann M, Steiner M, Peichl L, Ahnelt PK. Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. J Vis. 2008;8(4):23.1–12.

    Google Scholar 

  • Govardovskii VI, Lychakov DV. Visual cells and visual pigments of the lamprey, Lampetra fluviatilis L. J Comp Physiol A. 1984;154:279–86.

    Google Scholar 

  • Govardovskii VI, Chkheidze NI, Zueva LV. Morphofunctional investigation of the retina of the crocodilian caiman Caiman crocodilus. Sensory Syst. 1988;1:19–25.

    Google Scholar 

  • Govardovskii VI, Rohlich P, Szel A, Khokhlova TV. Cones in the retina of the Mongolian gerbil, Meriones unguiculatus: an immunocytochemical and electrophysiological study. Vision Res. 1992;32(1):19–27.

    PubMed  CAS  Google Scholar 

  • Griebel U, Schmid A. Color vision in the manatee (Trichechus manatus). Vision Res. 1996;36:2747–57.

    PubMed  CAS  Google Scholar 

  • Haeseleer F, Sokal I, Li N, Pettenati M, Rao N, Bronson D, Wechter R, Baehr W, Palczewski K. Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J Biol Chem. 1999;274(10):6526–35.

    PubMed  CAS  Google Scholar 

  • Haim A, Heth G, Pratt H, Nevo E. Photoperiodic effects on thermoregulation in a ‘blind’ subterranean mammal. J Exp Biol. 1983;107:59–64.

    PubMed  CAS  Google Scholar 

  • Hanna MC, Platts JT, Kirkness EF. Identification of a gene within the tandem array of red and green color pigment genes. Genomics. 1997;43(3):384–6.

    PubMed  CAS  Google Scholar 

  • Hardisty MW. Lampreys and hagfishes: analysis of cyclostome relationships, vol 4B. The biology of lampreys. London: Academic; 1982.

    Google Scholar 

  • Harosi FI. Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol. 1975;66(3):357–82.

    PubMed  CAS  Google Scholar 

  • Hart NS, Hunt DM. Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat. 2007;169 Suppl 1:S7–26.

    PubMed  Google Scholar 

  • Hart NS, Partridge JC, Bennett AT, Cuthill IC. Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. J Comp Physiol A. 2000;186(7–8):681–94.

    PubMed  CAS  Google Scholar 

  • Hart NS, Lisney TJ, Marshall NJ, Collin SP. Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol. 2004;207(26):4587–94.

    PubMed  Google Scholar 

  • Hart NS, Theiss SM, Harahush BK, Collin SP. Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften. 2011;98(3):193–201.

    PubMed  CAS  Google Scholar 

  • Hart NS, Coimbra JP, Collin SP, Westhoff G. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. J Comp Neurol. 2012;520(6):1246–61.

    PubMed  CAS  Google Scholar 

  • Hastad O, Ernstdotter E, Odeen A. Ultraviolet vision and foraging in dip and plunge diving birds. Biol Lett. 2005;1(3):306–9.

    PubMed  PubMed Central  Google Scholar 

  • Hermann R, Lee B, Arshavsky VY. RGS9 knockout causes a short delay in light responses of ON-bipolar cells. PLoS One. 2011;6(11):e27573.

    Google Scholar 

  • Herring PJ. The spectral characteristics of luminous marine organisms. Proc Roy Soc Lond B. 1983;220:183–217.

    Google Scholar 

  • Hiramatsu C, Melin AD, Aureli F, Schaffner CM, Vorobyev M, Matsumoto Y, Kawamura S. Importance of achromatic contrast in short-range fruit foraging of primates. PLoS One. 2008;3(10):e3356.

    PubMed  PubMed Central  Google Scholar 

  • Hisatomi O, Satoh T, Tokunaga F. The primary structure and distribution of killifish visual pigments. Vision Res. 1997;37(22):3089–96.

    PubMed  CAS  Google Scholar 

  • Hisatomi O, Kayada S, Taniguchi Y, Kobayashi Y, Satoh T, Tokunaga F. Primary structure and characterization of a bullfrog visual pigment contained in small single cones. Comp Biochem Physiol B Biochem Mol Biol. 1998a;119(3):585–91.

    PubMed  CAS  Google Scholar 

  • Hisatomi O, Matsuda S, Satoh T, Kotaka S, Imanishi Y, Tokunaga F. A novel subtype of G-protein-coupled receptor kinase, GRK7, in teleost cone photoreceptors. FEBS Lett. 1998b;424(3):159–64.

    PubMed  CAS  Google Scholar 

  • Hisatomi O, Takahashi Y, Taniguchi Y, Tsukahara Y, Tokunaga F. Primary structure of a visual pigment in bullfrog green rods. FEBS Lett. 1999;447(1):44–8.

    PubMed  CAS  Google Scholar 

  • Hiwatashi T, Okabe Y, Tsutsui T, Hiramatsu C, Melin AD, Oota H, Schaffner CM, Aureli F, Fedigan LM, Innan H, Kawamura S. An explicit signature of balancing selection for color-vision variation in new world monkeys. Mol Biol Evol. 2010;27(2):453–64.

    PubMed  CAS  Google Scholar 

  • Hiwatashi T, Mikami A, Katsumura T, Suryobroto B, Perwitasari-Farajallah D, Malaivijitnond S, Siriaroonrat B, Oota H, Goto S, Kawamura S. Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes. BMC Evol Biol. 2011;11:312.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hope AJ, Partridge JC, Dulai KS, Hunt DM. Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes. Proc R Soc Lond B Biol Sci. 1997;264(1379):155–63.

    CAS  Google Scholar 

  • Hope AJ, Partridge JC, Hayes PK. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc R Soc Lond B Biol Sci. 1998;265(1399):869–74.

    CAS  Google Scholar 

  • Hu G, Wensel TG. Characterization of R9AP, a membrane anchor for the photoreceptor GTPase-accelerating protein, RGS9-1. Methods Enzymol. 2004;390:178–96.

    PubMed  CAS  Google Scholar 

  • Huber G, Heynen S, Imsand C, vom Hagen F, Muehlfriedel R, Tanimoto N, Feng Y, Hammes HP, Grimm C, Peichl L, Seeliger MW, Beck SC. Novel rodent models for macular research. PLoS One. 2010;5(10):e13403.

    PubMed  PubMed Central  Google Scholar 

  • Hunt DM, Peichl L. S cones: evolution, retinal distribution, development and spectral sensitivity. Vis Neurosci. 2014;31(2):115–38.

    PubMed  Google Scholar 

  • Hunt DM, Cowing JA, Patel R, Appukuttan B, Bowmaker JK, Mollon JD. Sequence and evolution of the blue cone pigment gene in Old and New World primates. Genomics. 1995;27(3):535–8.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK. Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res. 1996;36(9):1217–24.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Dulai KS, Cowing JA, Julliot C, Mollon JD, Bowmaker JK, Li WH, Hewett-Emmett D. Molecular evolution of trichromacy in primates. Vision Res. 1998;38(21):3299–306.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol. 2001;204(19):3333–44.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Cowing JA, Wilkie SE, Parry J, Poopalasundaram S, Bowmaker JK. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochem Photobiol Sci. 2004;3:713–20.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem. 2009a;334(1–2):157–68.

    PubMed  Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Davies WL. Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci. 2009b;364(1531):2941–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hunt DM, Chan J, Carvalho LS, Hokoc JN, Ferguson MC, Arrese CA, Beazley LD. Cone visual pigments in two species of South American marsupials. Gene. 2009c;433(1–2):50–5.

    PubMed  CAS  Google Scholar 

  • Hunt DM, Hart NS, Collin SP. Sensory systems. In: Trischitta F, Takei Y, Sebert P, editors. Eel physiology. Boca Raton, FL: CRC Press; 2013. p. 118–59.

    Google Scholar 

  • Ibbotson RE, Hunt DM, Bowmaker JK, Mollon JD. Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc R Soc Lond B. 1992;247(1319):145–54.

    CAS  Google Scholar 

  • Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y. Single amino acid residue as a functional determinant of rod and cone visual pigments. Proc Natl Acad Sci U S A. 1997;94(6):2322–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K. Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur J Neurosci. 2002;15(1):63–78.

    PubMed  PubMed Central  Google Scholar 

  • Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W. Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1-8) in pufferfish (Fugu rubripes). J Mol Evol. 2004;59(2):204–17.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Insinna C, Besharse JC. Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn. 2008;237(8):1982–92.

    PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Takao M, Washioka H, Tokunaga F, Watanabe H, Tonosaki A. Demonstration of rod and cone photoreceptors in the lamprey retina by freeze-replication and immunofluorescence. Cell Tissue Res. 1987;249(2):241–6.

    PubMed  CAS  Google Scholar 

  • Jacobs GH. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Vis Neurosci. 2013;30(1–2):39–53.

    PubMed  Google Scholar 

  • Jacobs GH, Deegan 2nd JF. Cone photopigments in nocturnal and diurnal procyonids. J Comp Physiol A. 1992;171(3):351–8.

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Deegan 2nd JF. Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vision Res. 1994;34(11):1433–41.

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Deegan 2nd JF. Photopigments and colour vision in New World monkeys from the family Atelidae. Proc R Soc Lond B Biol Sci. 2001;268(1468):695–702.

    CAS  Google Scholar 

  • Jacobs GH, Deegan 2nd JF. Cone pigment variations in four genera of new world monkeys. Vision Res. 2003a;43(3):227–36.

    PubMed  Google Scholar 

  • Jacobs GH, Deegan 2nd JF. Diurnality and cone photopigment polymorphism in strepsirrhines: examination of linkage in Lemur catta. Am J Phys Anthropol. 2003b;122(1):66–72.

    PubMed  Google Scholar 

  • Jacobs GH, Deegan 2nd JF. Polymorphic New World monkeys with more than three M/L cone types. J Opt Soc Am A Opt Image Sci Vis. 2005;22(10):2072–80.

    PubMed  Google Scholar 

  • Jacobs GH, Williams GA. The prevalence of defective color vision in Old World monkeys and apes. Col Res Appl. 2001;26:S123–7.

    Google Scholar 

  • Jacobs GH, Fenwick JA, Crognale MA, Deegan II JF. The all-cone retina of the garter snake: spectral mechanisms and photopigments. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 1992;170:701–7.

    Google Scholar 

  • Jacobs GH, Deegan 2nd JF, Neitz J, Crognale MA, Neitz M. Photopigments and color vision in the nocturnal monkey, Aotus. Vision Res. 1993;33(13):1773–83.

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Neitz M, Deegan JF, Neitz J. Trichromatic colour vision in New World monkeys. Nature. 1996a;382(6587):156–8.

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Neitz M, Neitz J. Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc R Soc Lond B. 1996b;263(1371):705–10.

    CAS  Google Scholar 

  • Jacobs GH, Deegan 2nd JF, Tan Y, Li WH. Opsin gene and photopigment polymorphism in a prosimian primate. Vision Res. 2002;42(1):11–8.

    PubMed  CAS  Google Scholar 

  • Jacobs GH, Calderone JB, Fenwick JA, Krogh K, Williams GA. Visual adaptations in a diurnal rodent, Octodon degus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003;189(5):347–61.

    PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–57.

    PubMed  Google Scholar 

  • Janssen JW, Bovee-Geurts PH, Peeters ZP, Bowmaker JK, Cooper HM, David-Gray ZK, Nevo E, DeGrip WJ. A fully functional rod visual pigment in a blind mammal. A case for adaptive functional reorganization? J Biol Chem. 2000;275(49):38674–9.

    PubMed  CAS  Google Scholar 

  • Janz JM, Farrens DL. Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis. J Biol Chem. 2004;279(53):55886–94.

    PubMed  CAS  Google Scholar 

  • Jerlov NH. Marine optics. Amsterdam: Elsevier; 1976.

    Google Scholar 

  • Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J, Nakanishi K. Cloning and expression of goldfish opsin sequences. Biochemistry. 1993;32(1):208–14.

    PubMed  CAS  Google Scholar 

  • Jorgensen AL, Deeb SS, Motulsky AG. Molecular genetics of X chromosome-linked color vision among populations of African and Japanese ancestry: high frequency of a shortened red pigment gene among Afro-Americans. Proc Natl Acad Sci U S A. 1990;87(17):6512–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Juliusson B, Bergstrom A, Rohlich P, Ehinger B, van Veen T, Szel A. Complementary cone fields of the rabbit retina. Invest Ophthalmol Vis Sci. 1994;35(3):811–8.

    PubMed  CAS  Google Scholar 

  • Kawamura S, Kubotera N. Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. J Mol Evol. 2004;58(3):314–21.

    PubMed  CAS  Google Scholar 

  • Kawamura S, Yokoyama S. Expression of visual and nonvisual opsins in American chameleon. Vision Res. 1997;37(14):1867–71.

    PubMed  CAS  Google Scholar 

  • Kawamura S, Yokoyama S. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res. 1998;38(1):37–44.

    PubMed  CAS  Google Scholar 

  • Kefalov VJ, Estevez ME, Kono M, Goletz PW, Crouch RK, Cornwall MC, Yau KW. Breaking the covalent bond–a pigment property that contributes to desensitization in cones. Neuron. 2005;46(6):879–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kleinschmidt J, Dowling JE. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J Gen Physiol. 1975;66(5):617–48.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt J, Harosi FI. Anion sensitivity and spectral tuning of cone visual pigments in situ. Proc Natl Acad Sci U S A. 1992;89(19):9181–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kojima D, Okano T, Fukada Y, Shichida Y, Yoshizawa T, Ebrey TG. Cone visual pigments are present in gecko rod cells. Proc Natl Acad Sci U S A. 1992;89(15):6841–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Komolov KE, Senin II, Kovaleva NA, Christoph MP, Churumova VA, Grigoriev II, Akhtar M, Philippov PP, Koch KW. Mechanism of rhodopsin kinase regulation by recoverin. J Neurochem. 2009;110(1):72–9.

    PubMed  CAS  Google Scholar 

  • Kornfield I, Smith PF. African cichlid fishes: model systems for evolutionary biology. Ann Rev Ecol Syst. 2000;31:163–96.

    Google Scholar 

  • Krispel CM, Chen CK, Simon MI, Burns ME. Novel form of adaptation in mouse retinal rods speeds recovery of phototransduction. J Gen Physiol. 2003;122(6):703–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krispel CM, Sokolov M, Chen YM, Song H, Herrmann R, Arshavsky VY, Burns ME. Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation. J Gen Physiol. 2007;130(3):303–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kryger Z, Galli-Resta L, Jacobs GH, Reese BE. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis Neurosci. 1998;15(4):685–91.

    PubMed  CAS  Google Scholar 

  • Kuwayama S, Imai H, Hirano T, Terakita A, Shichida Y. Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry. 2002;41(51):15245–52.

    PubMed  CAS  Google Scholar 

  • Kuwayama S, Imai H, Morizumi T, Shichida Y. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Biochemistry. 2005;44(6):2208–15.

    PubMed  CAS  Google Scholar 

  • Lacalli TC. Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain Behav Evol. 2004;64(3):148–62.

    PubMed  Google Scholar 

  • Laczi M, Torok J, Rosivall B, Hegyi G. Integration of spectral reflectance across the plumage: implications for mating patterns. PLoS One. 2011;6(8):e23201.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lamb TD, Collin SP, Pugh Jr EN. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci. 2007;8(12):960–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Last PR, Stevens JD. Sharks and Ray of Australia. Australia: CSIRO; 1994. p. 513.

    Google Scholar 

  • Lee RH, Lieberman BS, Lolley RN. A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta- and gamma-transducin: purification and subunit structure. Biochemistry. 1987;26(13):3983–90.

    PubMed  CAS  Google Scholar 

  • Lee RH, Whelan JP, Lolley RN, McGinnis JF. The photoreceptor-specific 33 kDa phosphoprotein of mammalian retina: generation of monospecific antibodies and localization by immunocytochemistry. Exp Eye Res. 1988;46(6):829–40.

    PubMed  CAS  Google Scholar 

  • Levenson DH, Dizon A. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans. Proc R Soc Lond B Biol Sci. 2003;270(1516):673–9.

    CAS  Google Scholar 

  • Levenson DH, Ponganis PJ, Crognale MA, Deegan 2nd JF, Dizon A, Jacobs GH. Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192:833–43.

    PubMed  CAS  Google Scholar 

  • Levenson DH, Fernandez-Duque E, Evans S, Jacobs GH. Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. Am J Primatol. 2007;69(7):757–65.

    PubMed  CAS  Google Scholar 

  • Lim J, Chang JL, Tsai HJ. A second type of rod opsin cDNA from the common carp (Cyprinus carpio). Biochim Biophys Acta. 1997;1352(1):8–12.

    PubMed  CAS  Google Scholar 

  • Lipetz LE. Pigment types, densities and concentrations in cone oil droplets of Emydoidea blandingii. Vision Res. 1984;24(6):605–12.

    PubMed  CAS  Google Scholar 

  • Lobanova ES, Herrmann R, Finkelstein S, Reidel B, Skiba NP, Deng WT, Jo R, Weiss ER, Hauswirth WW, Arshavsky VY. Mechanistic basis for the failure of cone transducin to translocate: why cones are never blinded by light. J Neurosci. 2010;30(20):6815–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Locket NA. Possible discontinuous retinal rod outer segment formation in Latimeria chalumnae. Nature. 1973;244(5414):308–9.

    PubMed  CAS  Google Scholar 

  • Locket NA, Jorgensen JM. The eyes of hagfishes. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H, editors. The biology of Hagfishes. London: Chapman and Hall; 1998. p. 539–55.

    Google Scholar 

  • Loew ER, Govardovskii VI. Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. Vis Neurosci. 2001;18(5):753–7.

    PubMed  CAS  Google Scholar 

  • Loew ER, Fleishman LJ, Foster RG, Provencio I. Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J Exp Biol. 2002;205(7):927–38.

    PubMed  Google Scholar 

  • Long KO, Fisher SK. The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. J Comp Neurol. 1983;221(3):329–40.

    PubMed  CAS  Google Scholar 

  • Lu A, Ng L, Ma M, Kefas B, Davies TF, Hernandez A, Chan CC, Forrest D. Retarded developmental expression and patterning of retinal cone opsins in hypothyroid mice. Endocrinology. 2009;150(3):1536–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lukats A, Szabo A, Rohlich P, Vigh B, Szel A. Photopigment coexpression in mammals: comparative and developmental aspects. Histol Histopathol. 2005;20(2):551–74.

    PubMed  CAS  Google Scholar 

  • Lyubarsky AL, Naarendorp F, Zhang X, Wensel T, Simon MI, Pugh Jr EN. RGS9-1 is required for normal inactivation of mouse cone phototransduction. Mol Vis. 2001;7:71–8.

    PubMed  CAS  Google Scholar 

  • Ma J, Znoiko S, Othersen KL, Ryan JC, Das J, Isayama T, Kono M, Oprian DD, Corson DW, Cornwall MC, Cameron DA, Harosi FI, Makino CL, Crouch RK. A visual pigment expressed in both rod and cone photoreceptors. Neuron. 2001a;32(3):451–61.

    PubMed  CAS  Google Scholar 

  • Ma JX, Kono M, Xu L, Das J, Ryan JC, Hazard 3rd ES, Oprian DD, Crouch RK. Salamander UV cone pigment: sequence, expression, and spectral properties. Vis Neurosci. 2001b;18(3):393–9.

    PubMed  CAS  Google Scholar 

  • MacDougall AK, Montgomerie R. Assortative mating by carotenoid-based plumage colour: a quality indicator in American goldfinches, Carduelis tristis. Naturwissenschaften. 2003;90(10):464–7.

    PubMed  CAS  Google Scholar 

  • Makino CL, Groesbeek M, Lugtenburg J, Baylor DA. Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores. Biophys J. 1999a;77(2):1024–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makino ER, Handy JW, Li T, Arshavsky VY. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein beta subunit. Proc Natl Acad Sci U S A. 1999b;96(5):1947–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marshall NB. Developments in deep-sea biology. Dorset: Blandford; 1979.

    Google Scholar 

  • Marszalek JR, Liu X, Roberts EA, Chui D, Marth JD, Williams DS, Goldstein LS. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell. 2000;102(2):175–87.

    PubMed  CAS  Google Scholar 

  • McDevitt DS, Brahma SK, Jeanny JC, Hicks D. Presence and foveal enrichment of rod opsin in the “all cone” retina of the American chameleon. Anat Rec. 1993;237(3):299–307. doi:10.1002/ar.1092370302.

    PubMed  CAS  Google Scholar 

  • Merbs SL, Nathans J. Absorption spectra of human cone pigments [see comments]. Nature. 1992;356(6368):433–5.

    PubMed  CAS  Google Scholar 

  • Merbs SL, Nathans J. Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochem Photobiol. 1993;58(5):706–10.

    PubMed  CAS  Google Scholar 

  • Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS. Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet. 2013;9(4):e1003432.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Miller JL, Picones A, Korenbrot JI. Differences in transduction between rod and cone photoreceptors: an exploration of the role of calcium homeostasis. Curr Opin Neurobiol. 1994;4(4):488–95.

    PubMed  CAS  Google Scholar 

  • Millot B, Carasso N. Note préliminaire sur l’oeil de Latimeria chalumnae (Crossoptérygien-Coelacanthide). Comptes Rendus. 1955;241(6):576–7.

    Google Scholar 

  • Minamoto T, Shimizu I. Molecular cloning of cone opsin genes and their expression in the retina of a smelt, Ayu (Plecoglossus altivelis, Teleostei). Comp Biochem Physiol B Biochem Mol Biol. 2005;140(2):197–205.

    PubMed  Google Scholar 

  • Mohun SM, Davies WL, Bowmaker JK, Pisani D, Himstedt W, Gower D, Hunt DM, Wilkinson M. Identification and characterization of visual pigments in caecilians, a group of limb-less amphibians with rudimentary eyes from the Order Gymnophiona. J Exp Biol. 2010;213(20):3586–92.

    PubMed  CAS  Google Scholar 

  • Mollon JD. “Tho' she kneel'd in that place where they grew…” The uses and origins of primate colour vision. J Exp Biol. 1989;146:21–38.

    PubMed  CAS  Google Scholar 

  • Mollon JD, Bowmaker JK, Jacobs GH. Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci. 1984;222(1228):373–99.

    PubMed  CAS  Google Scholar 

  • Mooney VL, Szundi I, Lewis JW, Yan EC, Kliger DS. Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates. Biochemistry. 2012;51(12):2630–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moritz GL, Lim NT-L, Neitz M, Peichl L, Dominy NJ. Expression and evolution of short wavelength sensitive opsins in colugos: a nocturnal lineage that informs debate on primate origins. Evol Biol. 2013;40:542–53.

    PubMed  PubMed Central  Google Scholar 

  • Morrow JM, Lazic S, Chang BS. A novel rhodopsin-like gene expressed in zebrafish retina. Vis Neurosci. 2011;28(4):325–35.

    PubMed  Google Scholar 

  • Muller B, Peichl L. Topography of cones and rods in the tree shrew retina. J Comp Neurol. 1989;282(4):581–94.

    PubMed  CAS  Google Scholar 

  • Muller B, Goodman SM, Peichl L. Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera). Brain Behav Evol. 2007;70(2):90–104.

    PubMed  Google Scholar 

  • Muller B, Glosmann M, Peichl L, Knop GC, Hagemann C, Ammermuller J. Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One. 2009;4(7):e6390.

    PubMed  PubMed Central  Google Scholar 

  • Nakatani K, Tamura T, Yau KW. Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. J Gen Physiol. 1991;97(3):413–35.

    PubMed  CAS  Google Scholar 

  • Nasonkin I, Cogliati T, Swaroop A. Photoreceptor development: early steps/fate. In: Dartt DA, editor. Encyclopedia of the eye, vol. 3. Oxford: Academic; 2010. p. 332–9.

    Google Scholar 

  • Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry. 1990;29(41):9746–52.

    PubMed  CAS  Google Scholar 

  • Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. Molecular genetics of inherited variation in human color vision. Science. 1986a;232(4747):203–10.

    PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986b;232(4747):193–202.

    PubMed  CAS  Google Scholar 

  • Negishi K, Teranishi T, Kuo CH, Miki N. Two types of lamprey retina photoreceptors immunoreactive to rod- or cone-specific antibodies. Vision Res. 1987;27(8):1237–41.

    PubMed  CAS  Google Scholar 

  • Neitz M, Neitz J. Molecular genetics of color vision and color vision defects. Arch Ophthalmol. 2000;118(5):691–700.

    PubMed  CAS  Google Scholar 

  • Neitz M, Neitz J, Jacobs GH. Spectral tuning of pigments underlying red-green color vision. Science. 1991;252(5008):971–4.

    PubMed  CAS  Google Scholar 

  • Newman LA, Robinson PR. Cone visual pigments of aquatic mammals. Vis Neurosci. 2005;22(6):873–9.

    PubMed  Google Scholar 

  • Newman LA, Robinson PR. The visual pigments of the West Indian manatee (Trichechus manatus). Vision Res. 2006;46:3326–30.

    PubMed  CAS  Google Scholar 

  • Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, Reh TA, Forrest D. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet. 2001;27(1):94–8.

    PubMed  CAS  Google Scholar 

  • Ng L, Ma M, Curran T, Forrest D. Developmental expression of thyroid hormone receptor beta2 protein in cone photoreceptors in the mouse. Neuroreport. 2009;20(6):627–31.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nicol JAC. Bioluminescence. In: Randall DJ, Hoar WS, editors. Fish physiology, vol. III. New York: Academic; 1969. p. 355–400.

    Google Scholar 

  • Odeen A, Hastad O. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol. 2003;20(6):855–61.

    PubMed  Google Scholar 

  • Odeen A, Hastad O. Pollinating birds differ in spectral sensitivity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(2):91–6.

    PubMed  Google Scholar 

  • Odeen A, Hastad O, Alstrom P. Evolution of ultraviolet vision in shorebirds (Charadriiformes). Biol Lett. 2010;6(3):370–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Odeen A, Hastad O, Alstrom P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol Biol. 2011;11:313.

    PubMed  PubMed Central  Google Scholar 

  • Odeen A, Pruett-Jones S, Driskell AC, Armenta JK, Hastad O. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc Biol Sci. 2012;279(1732):1269–76.

    PubMed  PubMed Central  Google Scholar 

  • Ohtsuka T. Relation of spectral types to oil droplets in cones of turtle retina. Science. 1985a;229(4716):874–7.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T. Spectral sensitivities of seven morphological types of photoreceptors in the retina of the turtle, Geoclemys reevesii. J Comp Neurol. 1985b;237(2):145–54.

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Kawamata K. Monoclonal antibody labels both rod and cone outer segments of turtle photoreceptors. Exp Eye Res. 1990;50(5):483–6.

    PubMed  CAS  Google Scholar 

  • Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol. 2004;342(2):571–83.

    PubMed  CAS  Google Scholar 

  • Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A. 1992;89(13):5932–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Onishi A, Koike S, Ida M, Imai H, Shichida Y, Takenaka O, Hanazawa A, Komatsu H, Mikami A, Goto S, Suryobroto B, Kitahara K, Yamamori T, Konatsu H. Dichromatism in macaque monkeys. Nature. 1999;402(6758):139–40.

    PubMed  CAS  Google Scholar 

  • Osorio D, Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc R Soc Lond B Biol Sci. 1996;263(1370):593–9.

    CAS  Google Scholar 

  • Palczewski K, Buczylko J, Lebioda L, Crabb JW, Polans AS. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin. J Biol Chem. 1993;268(8):6004–13.

    PubMed  CAS  Google Scholar 

  • Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao X, Crabb JW, Johnson RS, et al. Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron. 1994;13(2):395–404.

    PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289(5480):739–45.

    PubMed  CAS  Google Scholar 

  • Parry JW, Poopalasundaram S, Bowmaker JK, Hunt DM. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Biochemistry. 2004;43(25):8014–20.

    PubMed  CAS  Google Scholar 

  • Parry JW, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol. 2005;15(19):1734–9.

    PubMed  CAS  Google Scholar 

  • Partridge JC, Archer SN, Lythgoe JN. Visual pigments in the individual rods of deep-sea fishes. J Comp Physiol A. 1988;162:543–50.

    CAS  Google Scholar 

  • Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groningen-Luyben WA. Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A. 1989;164(4):513–29.

    PubMed  CAS  Google Scholar 

  • Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, Witman GB, Besharse JC. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol. 2002;157(1):103–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peichl L. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol. 2005;287(1):1001–12.

    PubMed  Google Scholar 

  • Peichl L, Moutairou K. Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia). Eur J Neurosci. 1998;10(8):2586–94.

    PubMed  CAS  Google Scholar 

  • Peichl L, Pohl B. Cone types and cone/rod ratios in the crab-eating raccoon and coati (Procyonidae). Invest Ophthalmol Vis Sci. 2000;41:S494. Abstract no. 2630.

    Google Scholar 

  • Peichl L, Behrmann G, Kroger RH. For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci. 2001;13(8):1520–8.

    PubMed  CAS  Google Scholar 

  • Peichl L, Nemec P, Burda H. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). Eur J Neurosci. 2004;19(6):1545–58.

    PubMed  Google Scholar 

  • Peichl L, Chavez AE, Ocampo A, Mena W, Bozinovic F, Palacios AG. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae). J Comp Neurol. 2005a;486(3):197–208.

    PubMed  Google Scholar 

  • Peichl L, Dubielzig RR, Kubber-Heiss A, Schubert C, Ahnelt PK. Retinal cone types in brown bears and the polar bear indicate dichromatic color vision. Invest Ophthalmol Vis Sci. 2005b;46. E-Abstract 4539.

    Google Scholar 

  • Peng C, Rich ED, Thor CA, Varnum MD. Functionally important calmodulin binding sites in both N- and C-terminal regions of the cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit. J Biol Chem. 2003;278(27):24617–23.

    PubMed  CAS  Google Scholar 

  • Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frezal J, Dufier JL, Pittler S, Munnich A, Kaplan J. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet. 1996;14(4):461–4.

    PubMed  CAS  Google Scholar 

  • Perry GH, Martin RD, Verrelli BC. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol Biol Evol. 2007;24:1963–70.

    PubMed  CAS  Google Scholar 

  • Pessoa CN, Santiago LA, Santiago DA, Machado DS, Rocha FA, Ventura DF, Hokoc JN, Pazos-Moura CC, Wondisford FE, Gardino PF, Ortiga-Carvalho TM. Thyroid hormone action is required for normal cone opsin expression during mouse retinal development. Invest Ophthalmol Vis Sci. 2008;49(5):2039–45.

    PubMed  Google Scholar 

  • Petry HM, Harosi FI. Visual pigments of the tree shrew (Tupaia belangeri) and greater galago (Galago crassicaudatus): a microspectrophotometric investigation. Vision Res. 1990;30(6):839–51.

    PubMed  CAS  Google Scholar 

  • Pevet P, Heth G, Haim A, Nevo E. Photoperiod perception in the blind mole rat (Spalax ehrenbergi; Nehring). Involvement of the harderian gland, atrophied eyes and melatonin. J Exp Zool. 1984;232:41–50.

    PubMed  CAS  Google Scholar 

  • Pisani D, Mohun SM, Harris SR, McInerney JO, Wilkinson M. Molecular evidence for dim-light vision in the last common ancestor of the vertebrates. Curr Biol. 2006;16(9):R318–9.

    PubMed  CAS  Google Scholar 

  • Poetsch A, Molday LL, Molday RS. The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem. 2001;276(51):48009–16.

    PubMed  CAS  Google Scholar 

  • Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J Exp Biol. 2007;210(16):2829–35.

    PubMed  CAS  Google Scholar 

  • Potter I, Prince P, Croxall J. Data on the adult marine and migratory phases in the life cycle of the southern hemisphere lamprey Geotria australis. Environ Biol Fishes. 1979;4:65–9.

    Google Scholar 

  • Provencio I, Loew ER, Foster RG. Vitamin A2-based visual pigments in fully terrestrial vertebrates. Vision Res. 1992;32(12):2201–8.

    PubMed  CAS  Google Scholar 

  • Pryke SR, Griffith SC. The relative role of male vs. female mate choice in maintaining assortative pairing among discrete colour morphs. J Evol Biol. 2007;20(4):1512–21.

    PubMed  CAS  Google Scholar 

  • Pugh Jr EN, Nikonov S, Lamb TD. Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr Opin Neurobiol. 1999;9(4):410–8.

    PubMed  CAS  Google Scholar 

  • Radlwimmer FB, Yokoyama S. Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). Gene. 1998;218(1–2):103–9.

    PubMed  CAS  Google Scholar 

  • Rado R, Terkel J. Circadian activity of the blind mole rat, Spalax ehrenbergi, monitored by radio telemetry, in seminatural and natural conditions. In: Spanier E, Steinberger Y, Luria M, editors. Environmental quality and ecosystem stability. Jerusalem: ISEEQS; 1989. p. 391–400.

    Google Scholar 

  • Rado R, Gev H, Goldman BD, Terkel J. Light and Circadian activity in the blind mole rat. In: Riklis E, editor. Photobiology. New York: Plenum Press; 1991. p. 581–7.

    Google Scholar 

  • Rado R, Bronchti G, Wollberg Z, Terkel J. Sensitivity to light of the blind mole rat: behavioural and neuroanatomical study. Isr J Zool. 1992;38:323–31.

    Google Scholar 

  • Regan BC, Julliot C, Simmen B, Vienot F, Charles-Dominique P, Mollon JD. Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B Biol Sci. 2001;356(1407):229–83.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reitner A, Sharpe LT, Zrenner E. Is colour vision possible with only rods and blue-sensitive cones? Nature. 1991;352(6338):798–800.

    PubMed  CAS  Google Scholar 

  • Rennison DJ, Owens GL, Allison WT, Taylor JS. Intra-retinal variation of opsin gene expression in the guppy (Poecilia reticulata). J Exp Biol. 2011;214:3248–54.

    PubMed  CAS  Google Scholar 

  • Robinson SR. Early vertebrate color-vision. Nature. 1994;367:121.

    Google Scholar 

  • Rohlich P, Szel A. Photoreceptor cells in the Xenopus retina. Microsc Res Tech. 2000;50(5):327–37.

    PubMed  CAS  Google Scholar 

  • Rohlich P, van Veen T, Szel A. Two different visual pigments in one retinal cone cell. Neuron. 1994;13(5):1159–66.

    PubMed  CAS  Google Scholar 

  • Rojas LM, Ramirez Y, McNeil R, Mitchell M, Marin G. Retinal morphology and electrophysiology of two caprimulgiformes birds: the cave-living and nocturnal oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging common pauraque (Nyctidromus albicollis). Brain Behav Evol. 2004;64(1):19–33.

    PubMed  CAS  Google Scholar 

  • Roll B. Gecko vision-visual cells, evolution, and ecological constraints. J Neurocytol. 2000;29(7):471–84.

    PubMed  CAS  Google Scholar 

  • Rousseau KS, Aroua S, Schmitz M, Elie P, Dufour S. Silvering: metamorphosis or puberty? In: van den Thillart G, Dufour S, Rankin JC, editors. Fish and fisheries, vol. 30. New York: Springer Science; 2009. p. 39–63.

    Google Scholar 

  • Rubinson K. The developing visual system and metamorphosis in the lamprey. J Neurobiol. 1990;21(7):1123–35.

    PubMed  CAS  Google Scholar 

  • Rubinson K, Cain H. Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus). Vis Neurosci. 1989;3(3):241–8.

    PubMed  CAS  Google Scholar 

  • Saito CA, da Silva Filho M, Lee BB, Bowmaker JK, Kremers J, Silveira LCL. Alouatta trichromatic color vision—single-unit recording from retinal ganglion cells and microspectrophotometry. Invest Ophthalmol Vis Sci. 2004;45. E-Abstract 4276.

    Google Scholar 

  • Sanocki E, Lindsey DT, Winderickx J, Teller DY, Deeb SS, Motulsky AG. Serine/alanine amino acid polymorphism of the L and M cone pigments: effects on Rayleigh matches among deuteranopes, protanopes and color normal observers. Vision Res. 1993;33(15):2139–52.

    PubMed  CAS  Google Scholar 

  • Sansom IJ, Smith MP, Smith MM. Scales of thelodont and shark-like fishes from the Ordovician. Nature. 1996;379:628–30.

    CAS  Google Scholar 

  • Sanyal S, Jansen HG, de Grip WJ, Nevo E, de Jong WW. The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? Invest Ophthalmol Vis Sci. 1990;31:1398–404.

    PubMed  CAS  Google Scholar 

  • Schleich CE, Vielma A, Glosmann M, Palacios AG, Peichl L. Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): morphology, topography, and spectral sensitivity. J Comp Neurol. 2010;518(19):4001–15.

    PubMed  Google Scholar 

  • Schmidt J. The breeding places of the eel. Phil Trans Roy Soc Lond B. 1923;211:179–208.

    Google Scholar 

  • Schulz K, Danner S, Bauer P, Schroder S, Lohse MJ. Expression of phosducin in a phosducin-negative cell line reveals functions of a Gbetagamma-binding protein. J Biol Chem. 1996;271(37):22546–51.

    PubMed  CAS  Google Scholar 

  • Shand J, Davies WL, Thomas N, Balmer L, Cowing JA, Pointer M, Carvalho LS, Trezise AE, Collin SP, Beazley LD, Hunt DM. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J Exp Biol. 2008;211(9):1495–503.

    PubMed  CAS  Google Scholar 

  • Sherry DM, Bui DD, Degrip WJ. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. Vis Neurosci. 1998;15(6):1175–87.

    PubMed  CAS  Google Scholar 

  • Shi Y, Radlwimmer FB, Yokoyama S. Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A. 2001;98(20):11731–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shichida Y, Kato T, Sasayama S, Fukada Y, Yoshizawa T. Effects of chloride on chicken iodopsin and the chromophore transfer reactions from iodopsin to scotopsin and B-photopsin. Biochemistry. 1990;29(24):5843–8.

    PubMed  CAS  Google Scholar 

  • Shu DG, Morris SC, Han J, Zhang ZF, Yasui K, Janvier P, Chen L, Zhang XL, Liu JN, Li Y, Liu HQ. Head and backbone of the early Cambrian vertebrate Haikouichthys. Nature. 2003;421(6922):526–9.

    PubMed  CAS  Google Scholar 

  • Shyue SK, Li L, Chang BH, Li WH. Intronic gene conversion in the evolution of human X-linked color vision genes. Mol Biol Evol. 1994;11(3):548–51.

    PubMed  CAS  Google Scholar 

  • Shyue SK, Hewett-Emmett D, Sperling HG, Hunt DM, Bowmaker JK, Mollon JD, Li WH. Adaptive evolution of color vision genes in higher primates. Science. 1995;269(5228):1265–7.

    PubMed  CAS  Google Scholar 

  • Sillman AJ, Ronan SJ, Loew ER. Histology and microspectrophotometry of the photoreceptors of a crocodilian, Alligator mississippiensis. Proc R Soc Lond B. 1991;243:93–8.

    Google Scholar 

  • Sillman AJ, Govardovskii VI, Rohlich P, Southard JA, Loew ER. The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study. J Comp Physiol A. 1997;181(2):89–101.

    PubMed  CAS  Google Scholar 

  • Sillman AJ, Carver JK, Loew ER. The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). J Exp Biol. 1999;202(14):1931–8.

    PubMed  Google Scholar 

  • Sillman AJ, Johnson JL, Loew ER. Retinal photoreceptors and visual pigments in Boa constrictor imperator. J Exp Zool. 2001;290(4):359–65.

    PubMed  CAS  Google Scholar 

  • Smith AC, Buchanan-Smith HM, Surridge AK, Osorio D, Mundy NI. The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol. 2003;206(18):3159–65.

    PubMed  Google Scholar 

  • Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI, Pugh Jr EN, Arshavsky VY. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron. 2002;34(1):95–106.

    PubMed  CAS  Google Scholar 

  • Song S, Liu L, Edwards SV, Wu S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci U S A. 2012;109(37):14942–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spady TC, Parry JW, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol. 2006;23(8):1538–47.

    PubMed  CAS  Google Scholar 

  • Starace DM, Knox BE. Cloning and expression of a Xenopus short wavelength cone pigment. Exp Eye Res. 1998;67(2):209–20.

    PubMed  CAS  Google Scholar 

  • Strachan J, Chang LY, Wakefield MJ, Graves JA, Deeb SS. Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: sequence and inferred spectral properties. Vis Neurosci. 2004;21(3):223–9.

    PubMed  Google Scholar 

  • Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci. 2006;26(4):1146–53. doi:10.1523/JNEUROSCI.4289-05.2006.

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD. Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol. 2000;203(13):1963–86.

    PubMed  CAS  Google Scholar 

  • Sun H, Macke JP, Nathans J. Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci U S A. 1997;94(16):8860–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Surridge AK, Mundy NI. Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Mol Ecol. 2002;11(10):2157–69.

    PubMed  CAS  Google Scholar 

  • Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat Rev Neurosci. 2010;11(8):563–76.

    PubMed  CAS  Google Scholar 

  • Szamier RB, Ripps H. The visual cells of the skate retina: structure, histochemistry, and disc-shedding properties. J Comp Neurol. 1983;215(1):51–62.

    PubMed  CAS  Google Scholar 

  • Szel A, van Veen T, Rohlich P. Retinal cone differentiation. Nature. 1994;370(6488):336.

    PubMed  CAS  Google Scholar 

  • Szél Á, Röhlich P, Caffé R, van Veen T. Distribution of cone photoreceptors in the mammalian retina. Microsc Res Tech. 1996;35:445–62.

    PubMed  Google Scholar 

  • Tachibanaki S, Nanda K, Sasaki K, Ozaki K, Kawamura S. Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase. J Biol Chem. 2000;275(5):3313–9.

    PubMed  CAS  Google Scholar 

  • Tachibanaki S, Tsushima S, Kawamura S. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Proc Natl Acad Sci U S A. 2001;98(24):14044–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tachibanaki S, Yonetsu S, Fukaya S, Koshitani Y, Kawamura S. Low activation and fast inactivation of transducin in carp cones. J Biol Chem. 2012;287(49):41186–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi Y, Ebrey TG. Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. Biochemistry. 2003;42(20):6025–34.

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Hisatomi O, Sakakibara S, Tokunaga F, Tsukahara Y. Distribution of blue-sensitive photoreceptors in amphibian retinas. FEBS Lett. 2001;501(2–3):151–5.

    PubMed  CAS  Google Scholar 

  • Takechi M, Kawamura S. Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. J Exp Biol. 2005;208(7):1337–45.

    PubMed  CAS  Google Scholar 

  • Talebi MG, Pope TR, Vogel ER, Neitz M, Dominy NJ. Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae). Mol Ecol. 2006;15(2):551–8.

    PubMed  CAS  Google Scholar 

  • Tan Y, Li WH. Trichromatic vision in prosimians. Nature. 1999;402(6757):36.

    PubMed  CAS  Google Scholar 

  • Tan Y, Yoder AD, Yamashita N, Li WH. Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci U S A. 2005;102(41):14712–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Taniguchi Y, Hisatomi O, Yoshida M, Tokunaga F. Evolution of visual pigments in geckos. FEBS Lett. 1999;445(1):36–40.

    PubMed  CAS  Google Scholar 

  • Terao K, Mikami A, Saito A, Itoh S, Ogawa H, Takenaka O, Sakai T, Onishi A, Teramoto M, Udono T, Emi Y, Kobayashi H, Imai H, Shichida Y, Koike S. Identification of a protanomalous chimpanzee by molecular genetic and electroretinogram analyses. Vision Res. 2005;45(10):1225–35.

    PubMed  Google Scholar 

  • Tesch FW. The eel. London: Chapman & Hall; 1977.

    Google Scholar 

  • Theiss SM, Lisney TJ, Collin SP, Hart NS. Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Muller & Henle, 1814. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007;193(1):67–79.

    PubMed  Google Scholar 

  • Theiss SM, Davies WI, Collin SP, Hunt DM, Hart NS. Cone monochromacy and visual pigment spectral tuning in wobbegong sharks. Biol Lett. 2012;8(6):1019–22.

    PubMed  PubMed Central  Google Scholar 

  • Travis GH. DISCO! Dissociation of cone opsins: the fast and noisy life of cones explained. Neuron. 2005;46(6):840–2.

    PubMed  CAS  Google Scholar 

  • Travis DS, Bowmaker JK, Mollon JD. Polymorphism of visual pigments in a callitrichid monkey. Vision Res. 1988;28(4):481–90.

    PubMed  CAS  Google Scholar 

  • Tsukamoto K. Discovery of the spawning area for Japanese eel. Nature. 1992;356:789–91.

    Google Scholar 

  • Tudge C. The variety of life. Oxford: Oxford University Press; 2000.

    Google Scholar 

  • Underwood G. Reptilian retinas. Nature. 1951;167(4240):183–5.

    PubMed  CAS  Google Scholar 

  • van Ginneken VJT, Maes GE. The European eel (Anguilla anguilla, Linnaeus), its lifecycle, evolution and reproduction: a literature review. Rev Fish Biol Fisheries. 2005;15:367–98.

    Google Scholar 

  • Veilleux CC, Bolnick DA. Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol. 2009;71(1):86–90.

    PubMed  CAS  Google Scholar 

  • Verrelli BC, Lewis Jr CM, Stone AC, Perry GH. Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. Mol Biol Evol. 2008;25(12):2735–43.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vigh B, Rohlich P, Gorcs T, Manzano e Silva MJ, Szel A, Fejer Z, Vigh-Teichmann I. The pineal organ as a folded retina: immunocytochemical localization of opsins. Biol Cell. 1998;90(9):653–9.

    PubMed  CAS  Google Scholar 

  • Vogel ER, Janson CH. Predicting the frequency of food-related agonism in white-faced capuchin monkeys (Cebus capucinus), using a novel focal-tree method. Am J Primatol. 2007;69(5):533–50.

    PubMed  CAS  Google Scholar 

  • Vos WL, Vaughan S, Lall PY, McCaffrey JG, Wysocka-Kapcinska M, Findlay JB. Expression and structural characterization of peripherin/RDS, a membrane protein implicated in photoreceptor outer segment morphology. Eur Biophys J. 2010;39(4):679–88.

    PubMed  CAS  Google Scholar 

  • Wakefield MJ, Anderson M, Chang E, Wei KJ, Kaul R, Graves JA, Grutzner F, Deeb SS. Cone visual pigments of monotremes: filling the phylogenetic gap. Vis Neurosci. 2008;25(3):257–64.

    PubMed  Google Scholar 

  • Walls GL. The reptilian retina. I. A new concept of visual cell evolution. Am J Ophthalmol. 1934;17:892–915.

    Google Scholar 

  • Walls GL. The vertebrate eye and its adaptive radiation. New York: Hafner; 1942.

    Google Scholar 

  • Wang Z, Asenjo AB, Oprian DD. Identification of the Cl(−)-binding site in the human red and green color vision pigments. Biochemistry. 1993;32(9):2125–30.

    Google Scholar 

  • Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, Tsao H, Wen-Hsiung Li W-L. Molecular evolution of bat color vision genes. Mol Biol Evol. 2004;21:295–302.

    PubMed  CAS  Google Scholar 

  • Ward MN, Churcher AM, Dick KJ, Laver CR, Owens GL, Polack MD, Ward PR, Breden F, Taylor JS. The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol. 2008;8:210.

    PubMed  PubMed Central  Google Scholar 

  • Warrant EJ, Collin SP, Locket NA. Eye design and vision in deep-sea fishes. In: Collin SP, Marshall NJ, editors. Sensory processing in aquatic environments. New York: Springer; 2003. p. 303–42.

    Google Scholar 

  • Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5(10):747–57.

    PubMed  Google Scholar 

  • Watson CT, Lubieniecki KP, Loew E, Davidson WS, Breden F. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri. BMC Evol Biol. 2010;10:87.

    PubMed  PubMed Central  Google Scholar 

  • Watson CT, Gray SM, Hoffmann M, Lubieniecki KP, Joy JB, Sandkam BA, Weigel D, Loew E, Dreyer C, Davidson WS, Breden F. Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata. J Mol Evol. 2011;72(2):240–52.

    PubMed  CAS  Google Scholar 

  • Weadick CJ, Chang BS. Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): six opsins expressed in a single individual. BMC Evol Biol. 2007;7 Suppl 1:S11. doi:1471-2148-7-S1-S11

    Google Scholar 

  • Weiss ER, Raman D, Shirakawa S, Ducceschi MH, Bertram PT, Wong F, Kraft TW, Osawa S. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas. Mol Vis. 1998;4:27.

    PubMed  CAS  Google Scholar 

  • Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci. 2001;21(23):9175–84.

    PubMed  CAS  Google Scholar 

  • Weitz D, Zoche M, Muller F, Beyermann M, Korschen HG, Kaupp UB, Koch KW. Calmodulin controls the rod photoreceptor CNG channel through an unconventional binding site in the N-terminus of the beta-subunit. EMBO J. 1998;17(8):2273–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Widder EA, Latz MF, Herring PJ, Case JF. Far-red bioluminescence from two deep-sea species. Science. 1984;225:512–4.

    PubMed  CAS  Google Scholar 

  • Wikler KC, Rakic P. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci. 1990;10(10):3390–401.

    PubMed  CAS  Google Scholar 

  • Wilkie SE, Robinson PR, Cronin TW, Poopalasundaram S, Bowmaker JK, Hunt DM. Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry. 2000;39(27):7895–901.

    PubMed  CAS  Google Scholar 

  • Williams AJ, Hunt DM, Bowmaker JK, Mollon JD. The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. EMBO J. 1992;11(6):2039–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams GA, Calderone JB, Jacobs GH. Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005;191(2):125–34.

    PubMed  Google Scholar 

  • Wood P, Partridge JC. Opsin substitution induced in retinal rods of the eel (Anguilla anguilla (L.)): a model for G-protein-linked receptors. Proc Roy Soc B. 1993;254:227–32.

    CAS  Google Scholar 

  • Xian-guang H, Aldridge RJ, Siveter DJ, Siveter DJ, Xiang-hong F. New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc Biol Sci. 2002;269(1503):1865–9.

    PubMed  PubMed Central  Google Scholar 

  • Xiao M, Hendrickson A. Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J Comp Neurol. 2000;425(4):545–59.

    PubMed  CAS  Google Scholar 

  • Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL. Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci. 1999;19(14):5889–97.

    PubMed  CAS  Google Scholar 

  • Yau KW. Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. Invest Ophthalmol Vis Sci. 1994;35(1):9–32.

    PubMed  CAS  Google Scholar 

  • Yokobori S, Hasegawa M, Ueda T, Okada N, Nishikawa K, Watanabe K. Relationship among coelacanths, lungfishes, and tetrapods: a phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences. J Mol Evol. 1994;38(6):602–9.

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Blow NS. Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko. Gene. 2001;276(1–2):117–25.

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB. The “five-sites” rule and the evolution of red and green color vision in mammals. Mol Biol Evol. 1998;15(5):560–7.

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Shi Y. Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett. 2000;486(2):167–72.

    PubMed  CAS  Google Scholar 

  • Yokoyama S, Zhang H, Radlwimmer FB, Blow NS. Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci U S A. 1999;96(11):6279–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Blow NS. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci U S A. 2000;97(13):7366–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yokoyama S, Takenaka N, Agnew DW, Shoshani J. Elephants and human color-blind deuteranopes have identical sets of visual pigments. Genetics. 2005;170(1):335–44.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zernii EY, Komolov KE, Permyakov SE, Kolpakova T, Dell’orco D, Poetzsch A, Knyazeva EL, Grigoriev II, Permyakov EA, Senin II, Philippov PP, Koch KW. Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase. Biochem J. 2011;435(2):441–50.

    PubMed  CAS  Google Scholar 

  • Zhang H, Yokoyama S. Molecular evolution of the rhodopsin gene of marine lamprey, Petromyzon marinus. Gene. 1997;191(1):1–6.

    PubMed  CAS  Google Scholar 

  • Zhang X, Wensel TG, Kraft TW. GTPase regulators and photoresponses in cones of the eastern chipmunk. J Neurosci. 2003;23(4):1287–97.

    PubMed  CAS  Google Scholar 

  • Zhang X, Wensel TG, Yuan C. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins. Photochem Photobiol. 2006;82(6):1452–60.

    PubMed  CAS  Google Scholar 

  • Zhao X, Haeseleer F, Fariss RN, Huang J, Baehr W, Milam AH, Palczewski K. Molecular cloning and localization of rhodopsin kinase in the mammalian pineal. Vis Neurosci. 1997;14(2):225–32.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories is supported by a West Australian Premier’s Fellowship to SPC, Australian Research Council Discovery grants (DP110103294, DP120102327, DP140102117), a National Health and Medical Research Council grant (APP1029740), and a Leverhulme Trust Project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Hunt B.Sc. (Hons.), Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hunt, D.M., Collin, S.P. (2014). The Evolution of Photoreceptors and Visual Photopigments in Vertebrates. In: Hunt, D., Hankins, M., Collin, S., Marshall, N. (eds) Evolution of Visual and Non-visual Pigments. Springer Series in Vision Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4355-1_6

Download citation

Publish with us

Policies and ethics