Reliability Study of InP-Based HBTs Operating at High Current Density



The high-speed and low-power operation of InP-based heterojunction bipolar transistors (HBTs) makes them very attractive for use in optical-communication ICs operating at 40 Gbit/s and more. An important requirement for InP HBTs is long-term stability in their electrical characteristics under high-current-density operation. This chapter describes the degradation behavior for devices operating at current densities of up to 10 mA/μm2 under elevated ambient temperatures. The results of electrical measurements and microscopic analyses indicate that surface passivation in the external base, a refractory electrode on the emitter, and high crystal quality at the emitter–base junction are the keys to enhancing device reliability.


Contact Layer Atomic Composition Current Gain Junction Temperature Accelerate Life Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Minoru Ida and Norihide Kashio for fabrication of HBTs and for discussions. They also thank Takatomo Enoki, Shoji Yamahata, Masami Tokumitsu, and Tomoyuki Akeyoshi for their encouragement throughout this work. Thanks are also due to Mayumi Mitsuhashi for her assistance.


  1. 1.
    K. Sano, K. Ishii, K. Murata, K. Kurishima, M. Ida, T. Shibata, T. Enoki, H. Sugahara. Over-100-Gbit/s multiplexing operations of InP DHBT selector IC designed with high collector-current density. Extended Abstracts of International Conference on Solid State Devices and Materials (SSDM), 2004, pp. 312–313. (JSAP, Tokyo)Google Scholar
  2. 2.
    S. Tsunashima, K. Murata, M. Ida, K. Kurishima, T. Kosugi, T. Enoki, H. Sugahara, A 150-GHz dynamic frequency divider using InP/InGaAs DHBTs. Technical Digests of GaAs IC Symposium, 2003, pp. 284–287. (IEEE, Piscataway, NJ)Google Scholar
  3. 3.
    M.J. Rodwell, B. Brar, InP bipolar ICs: scaling roadmaps, frequency limits, manufacturable technologies. Proc. IEEE 96(2), 271–286 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Kamitsuna, K. Kurishima, M. Ida, K. Sano, 100 Gbit/s clock recovery OEIC using InP/InGaAs HPT. Electron. Lett. 40(12), 764–766 (2004)CrossRefGoogle Scholar
  5. 5.
    N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, H. Fukuyama, Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth. IEEE Trans. Electron Devices 54(7), 1651–1657 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Y.K. Fukai, K. Kurishima, M. Ida, S. Yamahata, T. Enoki, Highly reliable InP-based HBTs with a ledge structure operating at high current density. Electron. Commun. Jpn, Pt 2 90(4), 1–8 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Kashio, K. Kurishima, Y.K. Fukai, S. Yamahata, Highly reliable submicron InP-based HBTs with over 300-GHz f T. IEICE Trans. Electron. E91-C(7), 1084–1090 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    N. Kashio, K. Kurishima, Y.K. Fukai, M. Ida, High-speed and high-reliability InP-based HBTs with a novel emitter. IEEE Trans. Electron Devices 57(2), 373–379 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y.K. Fukai, K. Kurishima, N. Kashio, M. Ida, S. Yamahata, T. Enoki, Emitter-metal-related degradation in InP-based HBTs operating at high current density and its suppression by refractory metal. Microelectron. Reliab. 49(4), 357–364 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.K. Fukai, K. Kurishima, N. Kashio, M. Ida, S. Yamahata, Reliability study on InP/InGaAs emitter–base junction for high-speed and low-power InP HBT. Proceedings of International Conference on Indium Phosphide and Related Materials (IPRM), 2010, pp. 119–122. (IEEE, Piscataway, NJ)Google Scholar
  11. 11.
    M. Hafizi, R.A. Metzger, W.E. Stanchina, D.B. Rensch, J.F. Jensen, W.W. Hooper, The effects of base dopant diffusion on DC and RF characteristics of InGaAs/InAlAs heterojunction bipolar transistors. IEEE Electron Device Lett. 13(3), 140–142 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    F.M. Yamada, A.K. Oki, D.C. Streit, Y. Saito, D.K. Umemoto, L.T. Tran, S. Bui, J.R. Velebir, G.W. Mclver, Reliability analysis of microwave GaAs/AlGaAs HBTs with beryllium and carbon doped base. International Microwave Symposium Digests of IEEE MTT-S, 1992, pp. 739–742. (IEEE, Piscataway, NJ)Google Scholar
  13. 13.
    S.A. Stockman, A.W. Hanson, G.E. Stillman, Growth of carbon-doped p-type InxGa1-xAs (0 < x < 0.53) by metalorganic chemical vapor deposition. Appl. Phys. Lett. 60(23), 2903–2905 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    H. Ito, S. Yamahata, N. Shigekawa, K. Kurishima, Y. Matsuoka, Growth and characterization of high-speed carbon-doped-base InP/InGaAs heterojunction bipolar transistors by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. Pt1 35(6A), 3343–3349 (1996)CrossRefGoogle Scholar
  15. 15.
    K. Kurishima, S. Yamahata, H. Nakajima, H. Ito, Y. Ishii, Performance and stability of MOVPE-grown carbon-doped InP/InGaAs HBT’s dehydrogenated by an anneal after emitter mesa formation. Jpn. J. Appl. Phys. Pt1 37(3B), 1353–1358 (1998)CrossRefGoogle Scholar
  16. 16.
    M. Borgarino, R. Menozzi, D. Diecci, L. Cattani, F. Fantini, Reliability physics of compound semiconductor transistors for microwave applications. Microelectron. Reliab. 41(1), 21–30 (2001)CrossRefGoogle Scholar
  17. 17.
    S.R. Bahl, N. Moll, V.M. Robbins, H.-C. Kuo, B.G. Moser, G.E. Stillman, Be diffusion in InGaAs/InP heterojunction bipolar transistors. IEEE Electron Device Lett. 21(7), 332–334 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    K. Kiziloglu, S. Thomas III, F. Williams, B.M. Paine, Reliability and failure criteria for InAlAs/GaInAs/InP HBTs. Proceedings of International Conference on Indium Phosphide and Related Materials (IPRM), 2000, pp. 294–297. (IEEE, Piscataway, NJ)Google Scholar
  19. 19.
    S. Thomas III, M. Chen, R. Bowen, Reliability of 1 × 5 μm2 emitter InAlAs/InGaAs HBTs under bias and thermal stress. Proceedings of GaAs Reliability Workshop, 2002, pp. 137–140. (JEDEC, Arlington, VA)Google Scholar
  20. 20.
    R. Lee, Accelerated life test results of InGaAs/InP heterojunction bipolar transistors. Technical Digests of GaAs IC Symposium, 2003, pp. 74–77. (IEEE, Piscataway, NJ)Google Scholar
  21. 21.
    K.T. Feng, N.X. Nguyen, C. Nguyen, Investigation of reliability for C-doped InP/InGaAs/InP HBTs under high current density operation. Proceedings of GaAs Reliability Workshop, 2003, pp. 117–120. (JEDEC, Arlington, VA)Google Scholar
  22. 22.
    C.-Y. Chen, S.-I. Fu, C.Y. Chang, C.-H. Tsai, C.-H. Yen, S.-F. Tsai, R.-C. Liu, W.-C. Liu, Influence of surface sulfur treatments on the temperature-dependent characteristics of HBTs. IEEE Trans. Electron Devices 51(12), 1963–1971 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    B.P. Yan, Y.F. Yang, C.C. Hsu, H.B. Lo, E.S. Yang, A reliability comparison of InGaP/GaAs HBTs with and without passivation ledge. Microelectron. Reliab. 41(12), 1959–1963 (2001)CrossRefGoogle Scholar
  24. 24.
    R. Yamabi, K. Kotani, K. Kawasaki, M. Yaegashi, H. Yano, Reliability of InGaAs/InP HBTs with InP passivation structure. Proceedings of International Conference on Indium Phosphide and Related Materials (IPRM), 2003, pp. 122–125. (IEEE, Piscataway, NJ)Google Scholar
  25. 25.
    E.F. Chor, R.J. Malik, R.A. Hamm, R. Ryan, Metallurgical stability of ohmic contacts on thin base InP/InGaAs/InP HBT’s. IEEE Electron Device Lett. 17(2), 62–64 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Y.T. Lyu, K.L. Jaw, C.T. Lee, C.D. Tsui, Y.J. Lin, T.T. Cheng, Ohmic performance comparison for Ti/Ni/Au and Ti/Pt/Au on InAs/graded InGaAs/GaAs layers. Mater. Chem. Phys. 63(2), 122–126 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    A. Piotrowska, P. Auvray, A. Guivarc’h, G. Pelous, On the formation of binary compounds in Au/InP system. J. Appl. Phys. 52(8), 5112–5117 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    D.G. Ivey, S. Ingtrey, J.-P. Noel, W.M. Lau, Microstructural study of Ti/Pt/Au contacts to p-InGaAs. Mater. Sci. Eng. B49(1), 66–73 (1997)CrossRefGoogle Scholar
  29. 29.
    J.S. Huang, C.B. Vartuli, Scanning transmission electron microscopy study of Au/Zn/Au/Cr/Au and Au/Ti/Pt/Au/Cr/Au contacts to p-type InGaAs/InP. J. Appl. Phys. 93(9), 5196–5200 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    U. Gösele, F. Morehead, Diffusion of zinc in gallium arsenide: a new model. J. Appl. Phys. 52(7), 4617–4619 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    R.E. Welser, M. Chaplin, C.R. Lutz, N. Pan, A. Gupta, B. Veasel, A. Ezis, Base current investigation of the long term reliability of GaAs-based HBTs. Technical Digests of International Conference on GaAs Manufacturing Technology, 2000, pp. 145–148. (CS MANTECH, Beaverton, OR)Google Scholar
  32. 32.
    R.E. Welser, P.M. Deluca, Exploring physical mechanisms for sudden beta degradation in GaAs-based HBTs. Proceedings of GaAs Reliability Workshop, 2001, pp. 135–138. (JEDEC, Arlington, VA)Google Scholar
  33. 33.
    M. Uematsu, K. Wada, Recombination-enhanced impurity diffusion in Be-doped GaAs. Appl. Phys. Lett. 58(18), 2015–2017 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NTT Photonics LaboratoriesNTT CorporationAtsugi-shiJapan

Personalised recommendations