Skip to main content

Abstract

Since stress is a major factor in the operation, performance, and reliability in AlGaN/GaN HEMT devices, a thorough understanding of the impact of stress on performance and reliability can lead to improvements in device design. Mechanical wafer bending is a cost-effective method to investigate the effects of stress on semiconductor devices which has been extensively used to isolate and study the effect of stress in strain-engineered Si MOSFETs. In this chapter, a systematic study of the effects of externally applied mechanical stress on the AlGaN/GaN HEMT channel resistance and gate current is presented to provide insights into the physical mechanisms responsible for stress-related performance and reliability issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Trew, High-frequency solid-state electronic devices. IEEE Trans. Electron Devices 52, 638–649 (2005)

    Article  ADS  Google Scholar 

  2. A. Sozza, A. Curutchet, C. Dua, N. Malbert, N. Labat, A. Touboul, AlGaN/GaN HEMT reliability assessment by means of low frequency noise measurements. Microelectron. Reliab. 46, 1725–1730 (2006)

    Article  Google Scholar 

  3. N. Sghaier, M. Trabelsi, N. Yacoubi, J.M. Bluet, A. Souifi, G. Guillot, C. Gaquière, J.C. DeJaeger, Traps centers and deep defects contribution in current instabilities for AlGaN/GaN HEMT’s on silicon and sapphire substrates. Microelectron. J. 37, 363–370 (2006)

    Article  Google Scholar 

  4. H. Rao, G. Bosman, Device reliability study of high gate electric field effects in AlGaN/GaN high electron mobility transistors using low frequency noise spectroscopy. J. Appl. Phys. 108, 053707-5 (2010)

    ADS  Google Scholar 

  5. W. Kruppa, S.C. Binari, K. Doverspike, Low-frequency dispersion characteristics of GaN HFETs. Electron. Lett. 31, 1951–1952 (1995)

    Article  Google Scholar 

  6. M.A. Khan, M.S. Shur, Q.C. Chen, J.N. Kuznia, Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron. Lett. 30, 2175–2176 (1994)

    Article  Google Scholar 

  7. J. Joh, J.A. del Alamo, J. Jimenez, A simple current collapse measurement technique for GaN high-electron mobility transistors. IEEE Electron Device Lett. 29, 665–667 (2008)

    Article  ADS  Google Scholar 

  8. S.C. Binari, W. Kruppa, H.B. Dietrich, G. Kelner, A.E. Wickenden, J.A. Freitas Jr., Fabrication and characterization of GaN FETs. Solid State Electron. 41, 1549–1554 (1997)

    Article  ADS  Google Scholar 

  9. S. Trassaert, B. Boudart, C. Gaquiere, D. Theron, Y. Crosnier, F. Huet, M.A. Poisson, Trap effects studies in GaN MESFETs by pulsed measurements. Electron. Lett. 35, 1386–1388 (1999)

    Article  Google Scholar 

  10. S.C. Binari, K. Ikossi, J.A. Roussos, W. Kruppa, P. Doewon, H.B. Dietrich, D.D. Koleske, A.E. Wickenden, R.L. Henry, Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 465–471 (2001)

    Article  ADS  Google Scholar 

  11. G. Meneghesso, A. Chini, E. Zanoni, M. Manfredi, M. Pavesi, B. Boudart, C. Gaquiere, Diagnosis of trapping phenomena in GaN MESFETs, in Electron Devices Meeting, 2000. IEDM Technical Digest. International, 2000, pp. 389–392

    Google Scholar 

  12. H. Kim, J. Lee, D. Liu, W. Lu, Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing. Appl. Phys. Lett. 86, 143505-3 (2005)

    ADS  Google Scholar 

  13. J. Jungwoo, J.A. del Alamo, Critical voltage for electrical degradation of GaN high-electron mobility transistors. IEEE Electron Device Lett. 29, 287–289 (2008)

    Article  ADS  Google Scholar 

  14. J. Joh, J.A. del Alamo, Mechanisms for electrical degradation of GaN high-electron mobility transistors, in Electron Devices Meeting, 2006. IEDM ’06. International, 2006, pp. 1–4

    Google Scholar 

  15. Y. Sun, S.E. Thompson, T. Nishida, Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101 (2007)

    Google Scholar 

  16. S.Y. Son, Y.S. Choi, P. Kumar, H. Park, T. Nishida, R.K. Singh, S.E. Thompson, Strained induced changes in gate leakage current and dielectric constant nitrided Hf-silicate dielectric silicon MOS capacitors. Appl. Phys. Lett. 93, 153505 (2008)

    Article  ADS  Google Scholar 

  17. S. Dey, M. Agostinelli, C. Prasad, X. Wang, L. Shifren, Effects of hot carrier stress on reliability of strained-Si mosfets, in Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, 2006, pp. 461–464

    Google Scholar 

  18. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, New York, 2003)

    Google Scholar 

  19. T.G.P. Rajagopal, J. Roberts, Large-area, device quality GaN on Si using a novel transition layer scheme. Mater. Res. Soc. Symp. Proc. 1, 6–11 (2003)

    Google Scholar 

  20. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)

    Article  ADS  Google Scholar 

  21. D. Gregušová, J. Bernát, M. Držík, M. Marso, J. Novák, F. Uherek, P. Kordoš, Influence of passivation induced stress on the performance of AlGaN/GaN HEMTs. Phys. Status Solidi (c) 2, 2619–2622 (2005)

    Article  ADS  Google Scholar 

  22. C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42 (1954)

    Article  ADS  Google Scholar 

  23. S. Suthram, J.C. Ziegert, T. Nishida, S.E. Thompson, Piezoresistance coefficients of (100) silicon nMOSFETs measured at low and high (similar to 1.5 GPa) channel stress. IEEE Electron Device Lett. 28, 58 (2007)

    Article  ADS  Google Scholar 

  24. S. Timoshenko, Strength of Materials, 3rd edn. (R. E. Krieger Pub. Co, Huntington, 1976)

    Google Scholar 

  25. K. Wu, Strain effects on the valence band of silicon: piezoresistance in p-type silicon and mobility enhancement in strained silicon PMOSFET, PhD Electrical and Computer Engineering, University of Florida, Gainesville, 2005

    Google Scholar 

  26. S.E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z.Y. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, Y. El-Mansy, A logic nanotechnology featuring strained-silicon. IEEE Electron Device Lett. 25, 191–193 (2004)

    Article  ADS  Google Scholar 

  27. A.T. Bradley, R.C. Jaeger, J.C. Suhling, K.J. O’Connor, Piezoresistive characteristics of short-channel MOSFETs on (100) silicon. IEEE Trans. Electron Devices 48, 2009 (2001)

    Article  ADS  Google Scholar 

  28. A. Steegen, M. Stucchi, A. Lauwers, K. Maex, Silicide induced pattern density and orientation dependent transconductance in MOS transistors, in IEDM Technical Digest, 1999, p. 497

    Google Scholar 

  29. G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, E. Zanoni, Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Device Mater. Reliab. 8, 332–343 (2008)

    Article  Google Scholar 

  30. R. Gaska, J.W. Yang, A.D. Bykhovski, M.S. Shur, V.V. Kaminski, S.M. Soloviov, The influence of the deformation on the two-dimensional electron gas density in GaN–AlGaN heterostructures. Appl. Phys. Lett. 72, 64–66 (1998)

    Article  ADS  Google Scholar 

  31. M. Eickhoff, O. Ambacher, G. Krotz, M. Stutzmann, Piezoresistivity of AlxGa1-xN layers and AlxGa1-xN/GaN heterostructures. J. Appl. Phys. 90, 3383–3386 (2001)

    Article  ADS  Google Scholar 

  32. B.S. Kang, S. Kim, J. Kim, F. Ren, K. Baik, S.J. Pearton, B.P. Gila, C.R. Abernathy, C.C. Pan, G.T. Chen, J.I. Chyi, V. Chandrasekaran, M. Sheplak, T. Nishida, S.N.G. Chu, Effect of external strain on the conductivity of AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 83, 4845–4847 (2003)

    Article  ADS  Google Scholar 

  33. B.S. Kang, S. Kim, F. Ren, J.W. Johnson, R.J. Therrien, P. Rajagopal, J.C. Roberts, E.L. Piner, K.J. Linthicum, S.N.G. Chu, K. Baik, B.P. Gila, C.R. Abernathy, S.J. Pearton, Pressure-induced changes in the conductivity of AlGaN/GaN high-electron mobility-transistor membranes. Appl. Phys. Lett. 85, 2962–2964 (2004)

    Article  ADS  Google Scholar 

  34. T. Zimmermann, M. Neuburger, P. Benkart, F.J. Hernandez-Guillen, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, E. Kohn, Piezoelectric GaN sensor structures. IEEE Electron Device Lett. 27, 309–312 (2006)

    Article  ADS  Google Scholar 

  35. O. Yilmazoglu, K. Mutamba, D. Pavlidis, M.R. Mbarga, Strain sensitivity of AlGaN/GaN HEMT structures for sensing applications. IEICE Trans. Electron. E89c, 1037–1041 (2006)

    Article  Google Scholar 

  36. C. Chia-Ta, H. Shih-Kuang, E.Y. Chang, L. Chung-Yu, H. Jui-Chien, L. Ching-Ting, Changes of electrical characteristics for AlGaN/GaN HEMTs under uniaxial tensile strain. IEEE Electron Device Lett. 30, 213–215 (2009)

    Article  ADS  Google Scholar 

  37. B.S. Kang, S. Kim, J. Kim, R. Mehandru, F. Ren, K. Baik, S.J. Pearton, B.P. Gila, C.R. Abernathy, C.C. Pan, G.T. Chen, J.I. Chyi, V. Chandrasekaran, M. Sheplak, T. Nishida, S.N.G. Chu, AlGaN/GaN high electron mobility transistor structures for pressure and pH sensing. Phys. Status Solidi (c) 2, 2684–2687 (2005)

    Article  ADS  Google Scholar 

  38. A.D. Koehler, A. Gupta, M. Chu, S. Parthasarathy, K.J. Linthicum, J.W. Johnson, T. Nishida, S.E. Thompson, Extraction of AlGaN/GaN HEMT Gauge factor in the presence of traps. IEEE Electron Device Lett. 31, 665–667 (2010)

    Article  ADS  Google Scholar 

  39. M. Chu, T. Nishida, X.L. Lv, N. Mohta, S.E. Thompson, Comparison between high-field piezoresistance coefficients of Si metal-oxide-semiconductor field-effect transistors and bulk Si under uniaxial and biaxial stress. J. Appl. Phys. 103 (2008)

    Google Scholar 

  40. M. Chu, A.D. Koehler, A. Gupta, T. Nishida, S.E. Thompson, Simulation of AlGaN/GaN high-electron-mobility transistor gauge factor based on two-dimensional electron gas density and electron mobility. J. Appl. Phys. 108, 104502–104506 (2010)

    Article  ADS  Google Scholar 

  41. M. Nido, Effect of biaxial strain on cubic and hexagonal gan analyzed by tight-binding method. Jpn. J. Appl. Phys. Part 2-Lett. 34, 1513–1516 (1995)

    Article  Google Scholar 

  42. B. Jogai, Effect of in-plane biaxial strains on the band structure of wurtzite GaN. Phys. Rev. B 57, 2382–2386 (1998)

    Article  ADS  Google Scholar 

  43. T. Yang, S. Nakajima, S. Sakai, Electronic structures of wurtzite GaN, InN and their alloy Ga1-xInxN calculated by the tight-binding method. Jpn. J. Appl. Phys. 34, 5912–5921 (1995)

    Article  ADS  Google Scholar 

  44. J.C. Slater, G.F. Koster, Simplified Lcao method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  ADS  MATH  Google Scholar 

  45. M. Chu, Y.K. Sun, U. Aghoram, S.E. Thompson, Strain: a solution for higher carrier mobility in nanoscale MOSFETs. Ann. Rev. Mat. Res. 39, 203–229 (2009)

    Article  ADS  Google Scholar 

  46. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Piezoresistive effect in wurtzite n-type GaN. Appl. Phys. Lett. 68, 818–819 (1996)

    Article  ADS  Google Scholar 

  47. S. Mingiacchi, P. Lugli, A. Bonfiglio, G. Conte, M. Eickhoff, O. Ambacher, A. Rizzi, A. Passaseo, P. Visconti, R. Cingolani, Thermoresistive and piezoresistive properties of wurtzite N-GaN. Phys. Stat. Soli. A 190, 281–286 (2002)

    Article  ADS  Google Scholar 

  48. M. Yamaguchi, T. Yagi, T. Sota, T. Deguchi, K. Shimada, S. Nakamura, Brillouin scattering study of bulk GaN. J. Appl. Phys. 85, 8502–8504 (1999)

    Article  ADS  Google Scholar 

  49. C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, G. Fischerauer, Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave measurements. Appl. Phys. Lett. 72, 2400–2402 (1998)

    Article  ADS  Google Scholar 

  50. K. Tsubouchi, N. Mikoshiba, Zero-temperature-coefficient saw devices on Aln epitaxial-films. IEEE Trans. Sonics Ultrason. 32, 634–644 (1985)

    Article  ADS  Google Scholar 

  51. J. Jungwoo, X. Ling, J.A. del Alamo, Gate current degradation mechanisms of GaN high electron mobility transistors, in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 385–388

    Google Scholar 

  52. H. Zhang, E.J. Miller, E.T. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25 Ga0.75N/GaN grown by molecular-beam epitaxy. J. Appl. Phys. 99, 023703 (2006)

    Article  ADS  Google Scholar 

  53. O. Mitrofanov, M. Manfra, Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors. J. Appl. Phys. 95, 6414–6419 (2004)

    Article  ADS  Google Scholar 

  54. D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, Y. Zheng, On the reverse gate leakage current of AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 97, 153503 (2010)

    Article  ADS  Google Scholar 

  55. S. Karmalkar, D.M. Sathaiya, M.S. Shur, Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 82, 3976–3978 (2003)

    Article  ADS  Google Scholar 

  56. D.M. Sathaiya, S. Karmalkar, Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors. J. Appl. Phys. 99, 093701 (2006)

    Article  ADS  Google Scholar 

  57. W. Chikhaoui, J.M. Bluet, P. Girard, G. Bremond, C. Bru-Chevallier, C. Dua, R. Aubry, Deep levels investigation of AlGaN/GaN heterostructure transistors. Phys. B: Condens. Matter 404, 4877–4879 (2009)

    Article  ADS  Google Scholar 

  58. E.J. Miller, X.Z. Dang, E.T. Yu, Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 88, 5951–5958 (2000)

    Article  ADS  Google Scholar 

  59. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)

    Article  ADS  Google Scholar 

  60. J.W. Chung, J.C. Roberts, E.L. Piner, T. Palacios, Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs. Electron Device Lett. IEEE 29, 1196–1198 (2008)

    Article  ADS  Google Scholar 

  61. J. W. Chung, X. Zhao, T. Palacios, Estimation of trap density in AlGaN/GaN HEMTs from subthreshold slope study, in Device Research Conference, 2007 65th Annual, 2007, pp. 111–112

    Google Scholar 

  62. L.K.A.R. Kakanakov, Ohmic contacts for high power and high temperature microelectronics, Micro Electronic and Mechanical Systems, 2009

    Google Scholar 

  63. K.L. Jensen, Electron emission theory and its application: Fowler--Nordheim equation and beyond, Lyon, France, 2003, pp. 1528–1544

    Google Scholar 

  64. S. Fleischer, P.T. Lai, Y.C. Cheng, Simplified closed-form trap-assisted tunneling model applied to nitrided oxide dielectric capacitors. J. Appl. Phys. 72, 5711–5715 (1992)

    Article  ADS  Google Scholar 

  65. J. Frenkel, On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647 (1938)

    Article  ADS  Google Scholar 

  66. P. Pipinys, V. Lapeika, Temperature dependence of reverse-bias leakage current in GaN Schottky diodes as a consequence of phonon-assisted tunneling. J. Appl. Phys. 99, 093709 (2006)

    Article  ADS  Google Scholar 

  67. P. Ohlckers, P. Pipinys, Phonon-assisted tunneling process in amorphous silicon nanostructures and GaAs nanowires. Physica E 40, 2859–2861 (2008)

    Article  ADS  Google Scholar 

  68. J.-G. Tartarin, G. Soubercaze-Pun, J.-L. Grondin, L. Bary, J. Mimila-Arroyo, J. Chevallier, Generation-recombination defects in AlGaN/GaN HEMT on SiC substrate, evidenced by low frequency noise measurements and SIMS characterization. AIP Conf. Proc. 922, 163–166 (2007)

    Article  ADS  Google Scholar 

  69. S. Bradley, A. Young, L. Brillson, M. Murphy, W. Schaff, Role of barrier and buffer layer defect states in AlGaN/GaN HEMT structures. J. Electron. Mater. 30, 123–128 (2001)

    Article  ADS  Google Scholar 

  70. M. Wolter, P. Javorka, M. Marso, A. Fox, R. Carius, A. Alam, M. Heuken, P. Kordoš, H. Lüth, Photoionization spectroscopy of traps in doped and undoped AlGaN/GaN HEMTs. Phys. Status Solidi (c) 0, 82–85 (2003)

    Article  Google Scholar 

  71. T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, T. Mizutani, Drain current DLTS of AlGaN-GaN MIS-HEMTs. IEEE Electron Device Lett. 25, 523–525 (2004)

    Article  ADS  Google Scholar 

  72. N. Sghaier, N. Yacoubi, J.M. Bluet, A. Souifi, G. Guillot, C. Gaquiere, J.C. De Jaeger, Current instabilities and deep level investigation on AlGaN/GaN HEMT’s on silicon and sapphire substrates, in Microelectronics, 2004. ICM 2004 Proceedings. The 16th International Conference on, 2004, pp. 672–675

    Google Scholar 

  73. A.R. Arehart, Investigation of electrically active defects in GaN, AlGaN, and AlGaN/GaN high electron mobility transistors, Ohio State University, 2009

    Google Scholar 

  74. Y.S. Choi, T. Nishida, S.E. Thompson, Impact of mechanical stress on direct and trap-assisted gate leakage currents in p-journal article silicon metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 92, 173507 (2008)

    Article  ADS  Google Scholar 

  75. S. Adachi, Handbook on Physical Properties of Semiconductors, vol. 1 (Kluwer, Boston, 2004)

    Google Scholar 

  76. S.R.M. Levinstein, M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, London, 1999)

    Google Scholar 

  77. S.M.A.F.M. Anwar, S. Wu, R.T. Webster, Temperature dependent transport properties in GaN, AlxGa1-xN semiconductors. Transport 48, 567 (2001)

    Google Scholar 

  78. R. Quay, A temperature dependent model for the saturation velocity in semiconductor materials. Mater. Sci. Semicond. Process. 3, 149 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Nishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chu, M. et al. (2013). Strain Effects in AlGaN/GaN HEMTs. In: Ueda, O., Pearton, S. (eds) Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4337-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4337-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4336-0

  • Online ISBN: 978-1-4614-4337-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics