Summary and Conclusion: Thinking About Latent BL

Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Findings are described on Burkitt’s lymphoma (BL) over the past 6–7 years, where about 70 % of these tumours occur at major sites in children. Epstein–Barr virus (EBV) is a key component in BL, particularly in Africa. BL is known to be the fastest proliferation known among human tumours. A key point is learning how to diagnose BL occurring at various sites and differentiate it, for example, from diffuse large B-cell lymphomas (DLBCLs) that mainly occur in adults. In tumours found in children, malaria and perhaps HIV may be key components or complicating factors. Mixed latent and lytic EBV infections may also complicate this malignancy; only a few viral products are expressed in latency, compared with the major expression associated with EBV replication. BL research continues to grow, but not rapidly enough, or with sufficient resources.

Keywords

Migration Lymphoma Glutathione Germinal Sarcoma 

Notes

Acknowledgments

The author thanks Drs. John Phillips, Pascale Kropf and Ms. S. van Noorden for reading and considering this manuscript, and giving her relevant suggestions along the way. She also thanks her colleagues for the (DVD) manuscript, “Surviving Burkitts” and to many people in Malawi looking forward to the end of this malignancy which takes now away the lives of many young children there. For the film (DVD) we thank especially Stephanie and Wade who shared their son’s life to this film, Dr. E. Molyneux who also oversaw this film and looked after the children, and finally a wonderful film producer, Alex Tweddle and his crew who produced this film, and my relations in the south of the USA and all friends who helped raise money for the film. Last but not least, a long-time college friend from India, but in this film the children to whom he has (and will continue) to support, with his efforts and his knowledge.

References

  1. 1.
    The Leroy Martin Family (1999) Burkitt’s lymphoma resources. Web site. Nat Cancer InsGoogle Scholar
  2. 2.
    Vonka V (2000) Causality in medicine: the case of tumours and viruses. Philos Trans R Soc Lond B Biol Sci 355:1831–1841PubMedCrossRefGoogle Scholar
  3. 3.
    Kazembe P, Hesseling PB, Griffin BE, Lambert I, Wessels G, (2002) Long term survival of children with Burkitt lymphoma in Malawi after cyclophosphamide monotherapy. Med Pediatr Oncol 40:22–25Google Scholar
  4. 4.
    Witty A (2011) New strategies for innovation in global health: a pharmaceutical industry perspective. Health Aff 2011:118–126CrossRefGoogle Scholar
  5. 5.
    Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program 523–531Google Scholar
  6. 6.
    Bornkamm GW (2009) Epstein-Barr and its role in the pathogenesis of Burkitt’s: an unresolved issue. Semin Cancer Biol 19:351–365PubMedCrossRefGoogle Scholar
  7. 7.
    Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol 6:913–924PubMedCrossRefGoogle Scholar
  8. 8.
    Boerma EG, Siebert R, Kluin PN, Baudis M (2009) Translocations involving 8q24 Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia 23:225–234PubMedCrossRefGoogle Scholar
  9. 9.
    Lenses D, Leoncini L, Hummel M, Volinia S, Liu C (2011) The different epidemiologic subtypes of Burkitt Lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 25(12):1869–1876CrossRefGoogle Scholar
  10. 10.
    Orem J, Mbidda EK, Lambert B, de Sanjos S, Weiderpass E (2007) Burkitt’s lymphoma in Africa, a review of the epidemiology and etiology. Afr Health Sci 7:166–175PubMedGoogle Scholar
  11. 11.
    Iwakiri D, Takada K (2010) Role of EBERs in the pathogenesis of EBV infection. Adv Cancer Res 107:119–136PubMedCrossRefGoogle Scholar
  12. 12.
    Chuang S-S, Huang W-T, Hsieh P-P, Jung Y-C, He H et al (2008) Sporadic paediatric and adult Burkitt lymphomas share similar phenotypic and genotypic features. Histopathology 52:427–435PubMedCrossRefGoogle Scholar
  13. 13.
    Phillips JA (2008) Is Burkitt’s lymphoma sexy enough? Lancet 368:2251–2252CrossRefGoogle Scholar
  14. 14.
    Labrecque LG, Lampert I, Xue S-A, Kazembe G, Phillips J et al (1999) Expression of Epstein-Barr virus lytically related genes in African Burkitt’s lymphoma: correlations with patient response to therapy. Int J Cancer 81:6–11PubMedCrossRefGoogle Scholar
  15. 15.
    Xue S-A, Griffin BE (2009) Update on the Epstein-Barr Virus-associated malignancy, endemic Burkitt’s lymphoma. In: Yoshida K (ed) Molecular biology of tumor virus gene products. Research Signpost, KeralaGoogle Scholar
  16. 16.
    Van Noorden S, Lampert IA, Xue S-A, Lykidin D, Phillips JA et al (2011) Burkitt’s lymphoma: maximizing the use of fine needle aspirates by long-term preservation for diagnosis and research. Trans R Soc Trop Med Hyg 105(2):86–94PubMedCrossRefGoogle Scholar
  17. 17.
    Rochford R, Cannon MJ, Moormann AD (2005) Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol 3:182–187PubMedCrossRefGoogle Scholar
  18. 18.
    Mbulaiteye SM, Talisuna AO, Ogwang MD, McKenzie FE, Ziegler JL et al (2010) African Burkitt’s lymphoma: could collaboration with HIV-1 and malaria programmes reduce the high mortality rate. Lancet 375:2010–2014CrossRefGoogle Scholar
  19. 19.
    Nilsson JA, Cleveland JL (2003) Myc pathways promoting cell suicide and cancer. Oncogene 22:9007–9021PubMedCrossRefGoogle Scholar
  20. 20.
    Allday MJ (2009) How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma. Semin Cancer Biol 19:366–376PubMedCrossRefGoogle Scholar
  21. 21.
    Reardon S (2011) A world of chronic disease. Science 333:558–559PubMedCrossRefGoogle Scholar
  22. 22.
    Jeon AP, Nam HY, Shim SM, Han BG (2009) Sustained viral activity of Epstein-Barr virus contributes to cellular immortalization of lymphoblastoid cell lines. Mol Cell 27:143–148CrossRefGoogle Scholar
  23. 23.
    Scheller H, Tobollik S, Kutzera A, Eder M, Unterlehberg J et al (2010) c-Myc overexpression promotes a germinal center-like program in Burkitt’s lymphoma. Oncogene 29:888–897PubMedCrossRefGoogle Scholar
  24. 24.
    Zeller KI, Zhao S, Lee CW, Chiu KP, Yao F et al (2006) Global mapping of c-Myc binding sites and target gene networks in human cells. Proc Natl Acad Sci U S A 103:17834–17839PubMedCrossRefGoogle Scholar
  25. 25.
    Anastasiadou E, Vaeth S, Cuomo L, Boccellato F, Vincenti S et al (2009) Epstein-Barr virus infection leads to partial phenotypic reversion of terminally differentiated malignant B cells. Cancer Lett 284:165–174PubMedCrossRefGoogle Scholar
  26. 26.
    Kim J, Lee J-H, Lyer VR (2008) Global identification of MYC target genes reveals its direct role in mitochondrial biogenesis and its e-box usage in vivo. PLoS One 3:e1798PubMedCrossRefGoogle Scholar
  27. 27.
    Klapperoth K, Wirth T (2010) Advancers in the understanding of Myc-induced lymphomagenesis. Br J Haematol 149:484–497CrossRefGoogle Scholar
  28. 28.
    Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S et al (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419–2430PubMedCrossRefGoogle Scholar
  29. 29.
    Dave SS, Fu K, Wright GW, Lam LT, Kluin P et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442PubMedCrossRefGoogle Scholar
  30. 30.
    Harris NL, Homing SJ (2006) Burkitt’s lymphoma, the message from microarrays. N Engl J Med 354:2495–2498Google Scholar
  31. 31.
    Queiroga EM, Gualco G, Weiss LM, Dittmer DP, Araujo I et al (2008) Burkitt lymphoma in Brazil is characterized by geographically distinct clinicopathologic features. Am J Clin Pathol 130:946–956PubMedCrossRefGoogle Scholar
  32. 32.
    Molyneux EM, Rochford R, Griffin BE, Newton R, Jackson G et al (2012) Burkitt’s lymphoma. Lancet 379(9822):1234–1244PubMedCrossRefGoogle Scholar
  33. 33.
    Piccaluga PP, Di Falco G, Kustagi M, Gazzola A, Agostinelli C et al (2011) Gene expression analysis uncovers similarity and differences among Burkett lymphoma subtypes. Blood 117:3596–3608PubMedCrossRefGoogle Scholar
  34. 34.
    Tumwine LK, Campidelli C, Righi S, Neda S, Byarugaba W et al (2008) B-cell non-Hodgkin lymphomas in Uganda: an immunohistochemical appraisal on tissue microarray. Hum Pathol 39:817–823PubMedCrossRefGoogle Scholar
  35. 35.
    Tumwine LK, Agostinelli C, Campidelli C, Othieno E, Wabaiga H et al (2009) Immunohistochemical and other prognostic factors in B cell non Hodgkin lymphoma patients, Kampala, Uganda. BMC Clin Pathol 9:11PubMedCrossRefGoogle Scholar
  36. 36.
    Yang WP, Zhu CD, Gong LP, Lu BB, Zou Y et al (2009) Clinicopathologic and immunohistochemical study of intra-abdominal non-Hodgkin B-cell lymphoma occurring in children. Zhonghua Bing Li Xue Za Zhi 38:759–764 (abstract in English)PubMedGoogle Scholar
  37. 37.
    Takada K (2001) Role of Epstein-Barr virus in Burkitt’s Lymphoma. Curr Top Microbiol Immunol 258:141–151PubMedCrossRefGoogle Scholar
  38. 38.
    Gualco G, Queiroga EM, Weiss LM, Klumb CE, Harrington WJ et al (2009) Frequent expression of multiple myeloma 1/interferon regulatory factor 4 in Burkitt lymphoma. Hum Pathol 40:565–571PubMedCrossRefGoogle Scholar
  39. 39.
    Gualco G, Weiss LM, Bacchi CE (2010) MumI/IRF4: a review. Appl Immunohistochem Mol Morphol 18:301–310PubMedCrossRefGoogle Scholar
  40. 40.
    Hesseling PB, Molyneux E, Kamiza S, Broadhead R (2008) Rescue chemotherapy for patients with resistant or relapsed endemic Burkitt’s lymphoma. Trans R Soc Trop Med Hyg 102:602–607PubMedCrossRefGoogle Scholar
  41. 41.
    Fatzer BC, Hosseinipour MC, Kamthuzi P, Hyde L, Bramson B et al (2009) Predictors for mortality and loss to follow-up among children receiving anti-retroviral therapy in Lilongwe, Malawi. Trop Med Int Health 14:862–869CrossRefGoogle Scholar
  42. 42.
    Xue S-A, Labrecque LG, Lu QL, Ong SK, Lampert IA et al (2002) Promiscuous expression of Epstein-Barr virus genes in Burkitt’s lymphoma from the central African country Malawi. Int J Cancer 99:635–643CrossRefGoogle Scholar
  43. 43.
    Kelly GT, Long HM, Stylianou J, Thomas WAE, Leese A et al (2009) An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in Burkitt lymphomagenesis: the Wp/BHR1 link. PLoS Pathog 5:e1000341PubMedCrossRefGoogle Scholar
  44. 44.
    Daigle D, Megyola C, El-Guidy A, Gradoville Y, Tuck D et al (2010) Upregulation of STAT 3 marks Burkitt lymphoma cells refectory to Epstein-Barr virus lytic cycle induction by HDAC inhibitors. J Virol 84:993–1004PubMedCrossRefGoogle Scholar
  45. 45.
    Novak U, Basso K, Pasqualucci L, Dalla-Favara R, Bhagat G (2011) Genomic analysis of non-splenic marginal zone lymphomas (MZL) indicates similarities between nodal and extranodal MZL and supports their derivation from memory B-cells. Br J Haematol 155(3):362–365PubMedCrossRefGoogle Scholar
  46. 46.
    Sumba PO, Kabiru EW, Namuyenga E, Fiore N, Otieno RO et al (2010) Microgeographic variations in Burkitt’s lymphoma incidence correlate with differences in malnurition, malaria and Epstein-Barr virus. Br J Cancer 103(11):1736–1741PubMedCrossRefGoogle Scholar
  47. 47.
    Emmanuel B, Kawira E, Ogwang MD, Wabinga H, Magatti J et al (2010) African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers. Am J Trop Med Hyg 84:397–401Google Scholar
  48. 48.
    Guech-Ongey M, Yagi M, Palacpag NM, Emmanuel B, Talisuna AO et al (2012) Antibodies reactive to Plasmodium falciparum serine repeat antigen in children with Burkitt lymphoma from Ghana. Int J Cancer 130(8):1908–1914PubMedCrossRefGoogle Scholar
  49. 49.
    Yuan J, Cheng KC, Johnson RL, Huang R, Pattaradilokrat S et al (2011) Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. Science 333:724–729PubMedCrossRefGoogle Scholar
  50. 50.
    Ogwang MD, Zhao W, Ayers LM, Mbulaiteye SM (2011) Accuracy of Burkitt lymphoma diagnosis in constrained pathology settings: importance to epidemiology. Arch Pathol Lab Med 135:445–450PubMedGoogle Scholar
  51. 51.
    Smith DS, Cohen JM, Moonen B, Tatem AJ, Sabot OJ et al (2011) Solving the Sisyphean problem of Malaria in Zanzibar. Science 332:1384–1385PubMedCrossRefGoogle Scholar
  52. 52.
    Bhutia SK, Maiti TK (2008) Targeting tumors with peptides from natural sources. Trends Biotechnol 26:210–217PubMedCrossRefGoogle Scholar
  53. 53.
    Fetzer BC, Hosseinipour MC, Kamthuzi P, Hyde L, Bramson et al (2009) Predictors for loss mortality and loss to follow up among children receiving anti-retroviral therapy in Lilongwi, Malawi. Trop Med Int Health 14:862–869PubMedCrossRefGoogle Scholar
  54. 54.
    Fathallah I, Parroche P, Gruffat H, Zannetti C, Johansson H et al (2010) EBV latent membrane protein 1 is a negative regulator of TLR9. J Immunol 185:6439–6447PubMedCrossRefGoogle Scholar
  55. 55.
    Chene A, Donati D, Orem J, Mbidde ER, Kironde F et al (2009) Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol 19:411–420 (and earlier papers from same sources)PubMedCrossRefGoogle Scholar
  56. 56.
    Zauner L, Nadal E (2012) Understanding TRP9 action in Epstein-Barr virus infection. Front Biosci 17:1219–1231 (and 4 other papers)PubMedCrossRefGoogle Scholar
  57. 57.
    Arama C, Giusti P, Bostrom S, Dara V, Traore B et al (2009) Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during Plasmodium falciparum malaria. PLoS One 6:e18319PubMedCrossRefGoogle Scholar
  58. 58.
    Orem J, Maganda A, Mbidde EK, Weiderpass E (2009) Clinical characteristics and outcome of children with Burkitt lymphoma in Uganda according to HIV infection. Pediatr Blood Cancer 52:455–458CrossRefGoogle Scholar
  59. 59.
    Mutalima N, Molyneux E, Jaffe H, Kamiza S, Borgstein E et al (2008) Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case–control-study. PLoS One 3:e2505PubMedCrossRefGoogle Scholar
  60. 60.
    Mutalima N, Molyneux EM, Johnston WT, Jaffe HW, Kamiza S et al (2010) Impact of infection with human immunodeficiency virus-1 (HIV) on the risk of cancer among children in Malawi – preliminary findings. Infect Agent Cancer 5:5, Feb 12PubMedCrossRefGoogle Scholar
  61. 61.
    Mantina H, Wiggill TM, Carcoma S, Perner Y, Stevens WS (2010) Characterization of lymphomas in a high prevalence HIV setting. J Acquir Immune Defic Syndr 53:656–660PubMedGoogle Scholar
  62. 62.
    Gormley RP, Madan R, Dulau AE, Xu D, Tamas EF et al (2005) Germinal center and activated B-cell profiles separate Burkitt lymphoma and diffuse large B-cell lymphoma in AIDS and non-AIDS cases. Am J Clin Pathol 124:790–798PubMedCrossRefGoogle Scholar
  63. 63.
    Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JS Jr et al (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716PubMedCrossRefGoogle Scholar
  64. 64.
    Guech-Ongey M, Simard EP, Anderson WF, Engels EA, Bhatia K et al (2010) AIDS-related Burkitt lymphoma in the United States: what do age and CD4 lymphoma patterns tell us about etiology and/or biology? Blood 116:5600–5604PubMedCrossRefGoogle Scholar
  65. 65.
    Brower V (2011) AIDS-related cancers increase in Africa. J Natl Cancer Inst 103:918–919PubMedCrossRefGoogle Scholar
  66. 66.
    Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF (2009) HIV-associated lymphomas and gamma-herpesviruses. Blood 113:1213–1224PubMedCrossRefGoogle Scholar
  67. 67.
    Mwanda WO, Orem J, Fu P, Banura C, Kakembo J et al (2009) Dose-modified oral chemotherapy in the treatment of AIDS-related non-Hodgkin’s lymphoma in East Africa. J Clin Oncol 27:3480–3488PubMedCrossRefGoogle Scholar
  68. 68.
    Seto E, Moosmann A, Gromminger S, Walz N, Grundhoff A et al (2010) Micro RNAs of Epstein-Barr virus progression and prevent apoptosis of primary human B cells. PLoS Pathog 6:E1001063PubMedCrossRefGoogle Scholar
  69. 69.
    De Falco G, Antonicelli G, Onnis A, Lassi S, Bellan C et al (2009) Role of EBV in microRNA dysregulation in Burkitt lymphoma. Semin Cancer Biol 19:401–406PubMedCrossRefGoogle Scholar
  70. 70.
    Sandhu SK, Croce CM, Garzon R (2011) MicroRNA expression and function in Lymphomas. Adv Hematol 247137Google Scholar
  71. 71.
    Onnis A, De Falco G, Antonicelli G, Onorati M, Bellan C et al (2010) Alteration of microRNAs regulated by c-MYC in Burkitt lymphoma. PLoS One 5:e212960CrossRefGoogle Scholar
  72. 72.
    Lenze D, Leoncini L, Hummel M, Volinia S, Liu CG et al (2011) The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 25(12):1869–1876PubMedCrossRefGoogle Scholar
  73. 73.
    Akao Y, Nakagawa Y, Kitade Y, Kinoshira T, Naoe T (2007) Downregulation of micro RNAs 143- and -145 in B-cell malignancies. Cancer Sci 98:1914–1920PubMedCrossRefGoogle Scholar
  74. 74.
    Xue S-A, Griffin BE (2007) Complexities associated with expression of Epstein-Barr virus (EBV) lytic origins of DNA replication. Nucleic Acids Res 35:3391–3406PubMedCrossRefGoogle Scholar
  75. 75.
    Vrzalikova K, Vockerodt M, Leonard S, Bell A, Wei W et al (2011) Down-regulation of BLIMP1a by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents replication in B cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood 117:5907–5917PubMedCrossRefGoogle Scholar
  76. 76.
    Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M et al (2010) Blimp1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large Bcell lymphoma. Cancer Cell 18:565–579CrossRefGoogle Scholar
  77. 77.
    Basso K, Dalla-Favera R (2010) BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomageneis. Adv Immunol 105:193–210PubMedCrossRefGoogle Scholar
  78. 78.
    Basso K, Saito M, Sumazin P, Margoliin AA, Wang K et al (2010) Integrated biochemical and computational approach identified BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 115:975–984PubMedCrossRefGoogle Scholar
  79. 79.
    Diehl SA, Schmidlin H, Nagasawa M, van Haren SD, Kwakkenbos MJ et al (2008) Stat3-mediated up-regulation of BLIMP1 is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol 180:4805–4815PubMedGoogle Scholar
  80. 80.
    Kirano M, Moriyama S, Ando Y, Hikida M, Mori Y et al (2011) Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34:961–972CrossRefGoogle Scholar
  81. 81.
    Johnson NA, Savage KJ, Ludkovski O, Ben-Neriah S, Woods R et al (2009) Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood 114:2273–2279PubMedCrossRefGoogle Scholar
  82. 82.
    Komano J, Takada K (2001) Role of bcl-2 in Epstein-Barr Virus-induced malignant conversion Burkitt’s Lymphoma cell line Akata. J Virol 75:1561–1564PubMedCrossRefGoogle Scholar
  83. 83.
    Srimathandada P, Loomis R, Calbone R, Srimathandada S, Lacy J (2008) Combined protesome and Bcl-2 inhibition stimulates apoptosis and inhibits growth in EBV transformed lymphocytes: a potential therapeutic approach to EBV-associated lymphoproliferative diseases. Eur J Haematol 80:407–418CrossRefGoogle Scholar
  84. 84.
    Cohen JI, Fauci AS, Varmus H, Nabel GJ (2011) Epstein-Barr virus: an important vaccine target for cancer prevention. Sci Transl Med 3(107):1–3CrossRefGoogle Scholar
  85. 85.
    Kaiser J (2011) Piloting cancer research with a shrinking budget. Science 333:397CrossRefGoogle Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  1. 1.Department of Medicine at St. Mary’sImperial CollegeLondonUK

Personalised recommendations