Skip to main content

Current and Potential Future Trends in the Management of the Brain-Dead Organ Donor

  • Chapter
  • First Online:
  • 1568 Accesses

Abstract

Despite advances in the prevention and treatment of end-stage organ ­failure, solid-organ transplantation remains for many the best option for improving the quality of life and the likelihood of survival. Procurement of organs from brain-dead donors is the only option for the majority of patients with end-stage heart and lung failure needing and qualifying for transplantation. It has been known for quite some time, however, that the brain death process can lead to a pathophysiologic cascade that potentially produces significant donor organ dysfunction. As a result, a significant effort has been made to explore approaches to improve donor organ function by removing the organ from the brain death milieu and by protecting the organs in vivo and ex vivo from the cascade of events that is initiated during the brain death process and the inevitable and obligatory ischemia–reperfusion event. This chapter summarizes some of the exciting approaches ranging from attempts at improving the logistics of donor procurement to controlling the molecular events that lead to organ dysfunction. Thankfully, the altruism of truly generous families and donors offers hope to many.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jendrisak MD, Hruska K, Wagner J, Chandler D, Kappel D. Cadaveric-donor organ recovery at a hospital-independent facility. Transplantation. 2002;74:978–82.

    Article  PubMed  Google Scholar 

  2. Conte JV, Baumgartner WA. Commentary on Cadaveric-donor organ recovery at a hospital-independent facility. Transplantation. 2002;74:931–2.

    Article  PubMed  CAS  Google Scholar 

  3. Jendrisak MD, Hruska K, Wagner J, Chandler D, Kappel D. Hospital-independent organ recovery from deceased donors: a two-year experience. Am J Transplant. 2005;5:1105–11110.

    Article  PubMed  Google Scholar 

  4. Moazami N, Javadi OH, Kappel DF, Wagner J, Jendrisak MD. The feasibility of organ procurement at a hospital-independent facility: a working model of efficiency. J Thorac Cardiovasc Surg. 2007;133: 1389–90.

    Article  PubMed  Google Scholar 

  5. Billingham ME, Baumgartner WA, Watson DC, et al. Distant heart procurement for human transplantation. Ultrastructural studies. Circulation. 1980;62:I11–9.

    PubMed  CAS  Google Scholar 

  6. Watson DC, Reitz BA, Baumgartner WA, et al. Distant heart procurement for transplantation. Surgery. 1979;86:56–9.

    PubMed  CAS  Google Scholar 

  7. St Peter SD, Imber CJ, Friend PJ. Liver and kidney preservation by perfusion. Lancet. 2002;359:604–13.

    Google Scholar 

  8. Collins MJ, Moainie SL, Griffith BP, Poston RS. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur J Cardiothorac Surg. 2008;34:318–25.

    Article  PubMed  Google Scholar 

  9. Wicomb WN, Cooper DK, Novitzky D, Barnard CN. Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg. 1984;37:243–8.

    Article  PubMed  CAS  Google Scholar 

  10. Steen S, Sjoberg T, Pierre L, Liao Q, Eriksson L, Algotsson L. Transplantation of lungs from a non-heart-beating donor. Lancet. 2001;357:825–9.

    Article  PubMed  CAS  Google Scholar 

  11. Steen S, Liao Q, Wierup PN, Bolys R, Pierre L, Sjoberg T. Transplantation of lungs from non-heart-beating donors after functional assessment ex vivo. Ann Thorac Surg. 2003;76:244–52.

    Article  PubMed  Google Scholar 

  12. Steen S, Ingemansson R, Eriksson L, et al. First human transplantation of a nonacceptable donor lung after reconditioning ex vivo. Ann Thorac Surg. 2007;83:2191–4.

    Article  PubMed  Google Scholar 

  13. Cypel M, Liu M, Rubacha M, et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med. 2009;1:4ra9.

    Google Scholar 

  14. Hardy JD, Eraslan S, Webb WR. Transplantation of the lung. Ann Surg. 1964;160:440–8.

    Article  PubMed  CAS  Google Scholar 

  15. Allan JS. Invited commentary. Ann Thorac Surg. 2007;83:2194–5.

    Article  PubMed  Google Scholar 

  16. Wilkes DS. A breath of fresh air for lung transplant recipients. Sci Transl Med 2009;1:4ps5.

    Google Scholar 

  17. Bashyam H. Th1/Th2 cross-regulation and the discovery of IL-10. J Exp Med. 2007;204:237.

    Article  PubMed  Google Scholar 

  18. Izant JG, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell. 1984;36:1007–15.

    Article  PubMed  CAS  Google Scholar 

  19. Sen GL, Blau HM. A brief history of RNAi: the silence of the genes. FASEB J. 2006;20:1293–9.

    Article  PubMed  CAS  Google Scholar 

  20. Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol. 1992;6:3343–53.

    Article  PubMed  CAS  Google Scholar 

  21. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995;81:611–20.

    Google Scholar 

  22. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279–89.

    PubMed  CAS  Google Scholar 

  23. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  24. Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13:541–52.

    Article  PubMed  CAS  Google Scholar 

  25. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286:950–2.

    Article  PubMed  CAS  Google Scholar 

  26. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.

    Article  PubMed  CAS  Google Scholar 

  27. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.

    Article  PubMed  CAS  Google Scholar 

  28. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404: 293–6.

    Article  PubMed  CAS  Google Scholar 

  29. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.

    Article  PubMed  CAS  Google Scholar 

  30. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol. 2003;14: 128–38.

    Article  PubMed  CAS  Google Scholar 

  31. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The nympathetic nerve-an Integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52:595–638.

    PubMed  CAS  Google Scholar 

  32. van Westerloo DJ, Giebelen IA, Florquin S, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis. 2005;191:2138–48.

    Article  PubMed  Google Scholar 

  33. Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med. 2005;257:156–66.

    Article  PubMed  CAS  Google Scholar 

  34. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117:289–96.

    Article  PubMed  CAS  Google Scholar 

  35. Hoeger S, Bergstraesser C, Selhorst J, et al. Modulation of brain dead induced inflammation by vagus nerve stimulation. Am J Transplant. 2010;10:477–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. Shree Smith and Ms. Laurie Dean for their assistance in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio E. Pajaro M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pajaro, O.E., Kirklin, J.K. (2013). Current and Potential Future Trends in the Management of the Brain-Dead Organ Donor. In: Novitzky, D., Cooper, D. (eds) The Brain-Dead Organ Donor. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4304-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4304-9_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4303-2

  • Online ISBN: 978-1-4614-4304-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics