Advertisement

Impact of Brain Death on Abdominal Organs and Allograft Preservation Strategies

  • Coney Bae
  • Anthony Watkins
  • Scot D. Henry
  • James V. Guarrera
Chapter

Abstract

In the vast majority of cases, clinical solid organ transplantation utilizes organs from brain-dead donors. Brain death imposes hemodynamic, neuroendocrine, and inflammatory stresses upon end organs, which may jeopardize the functional and structural integrity of allografts. Furthermore, these injuries are compounded by cold ischemia associated with organ preservation. As the success of transplantation relies on optimal condition of the grafts, beneficial interventions are necessary at every stage of the donation and recovery process, starting from medical management of potential donors, to static cold storage, and “reconditioning” of the organs by hypothermic machine perfusion. As opposed to static cold storage, hypothermic machine perfusion has many advantages, including reductions in graft primary nonfunction, early allograft dysfunction, and postsurgical complications. In addition, increased graft viability in marginal organs which might otherwise be deemed unusable by some clinicians has the potential to expand the donor pool. Further work in dynamic preservation techniques is necessary to more efficiently ameliorate the injuries associated with brain death and cold ischemia.

Keywords

Reperfusion Injury Brain Death Cold Storage Organ Preservation Cold Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Terasaki PI, Cecka JM, Gjertson DW, Takemoto S. High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med. 1995;333:333–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000;342:605–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Weiss S, Kotsch K, Francuski M, et al. Brain death activates donor organs and is associated with a worse I/R injury after liver transplantation. Am J Transplant. 2007;7:1584–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Wood KE, Becker BN, McCartney JG, D’Alessandro AM, Coursin DB. Care of the potential organ donor. N Engl J Med. 2004;351:2730–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Mertes PM. Physiology of brain death. In: Tilney NL, Storm TB, Paul LC, editors. Transplantation biology: cellular and molecular aspects, vol. 275. Philadelphia: Lippincott; 1996.Google Scholar
  7. 7.
    Herijgers P, Leunens V, Tjandra-Maga TB, Mubagwa K, Flameng W. Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation. 1996;62:330–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Novitzky D. Detrimental effects of brain death on the potential organ donor. Transplant Proc. 1997;29: 3770–2.CrossRefPubMedGoogle Scholar
  9. 9.
    Shivalkar B, Van Loon J, Wieland W, et al. Variable effects of explosive or gradual increase of intracranial pressure on myocardial structure and function. Circulation. 1993;87:230–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Satur CM, Martin W, Darracott-Cankovic S, Morrison J, Wheatley DJ. An experimental method to induce variable patterns of brain death and myocardial injury. Transplant Proc. 1998;30:211–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Rosendale JD, Chabalewski FL, McBride MA, et al. Increased transplanted organs from the use of a standardized donor management protocol. Am J Transplant. 2002;2:761–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Smith M. Physiologic changes during brain stem death—lessons for management of the organ donor. J Heart Lung Transplant. 2004;23(9 Suppl):S217–222.CrossRefPubMedGoogle Scholar
  13. 13.
    Totsuka E, Fung JJ, Ishii T, et al. Influence of donor condition on postoperative graft survival and function in human liver transplantation. Transplant Proc. 2000;32:322–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen EP, Bittner HB, Kendall SW, Van Trigt P. Hormonal and hemodynamic changes in a validated animal model of brain death. Crit Care Med. 1996;24:1352–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Novitzky D, Cooper DK, Human PA, Reichart B, Zuhdi N. Triiodothyronine therapy for heart donor and recipient. J Heart Transplant. 1988;7:370–6.PubMedGoogle Scholar
  16. 16.
    Masson F, Thicoipe M, Latapie MJ, Maurette P. Thyroid function in brain-dead donors. Transpl Int. 1990;3:226–33.PubMedGoogle Scholar
  17. 17.
    Gramm HJ, Meinhold H, Bickel U, et al. Acute endocrine failure after brain death? Transplantation. 1992;54:851–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Takada M, Nadeau KC, Hancock WW, et al. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation. 1998;65:1533–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Pratschke J, Wilhelm MJ, Kusaka M, et al. Accelerated rejection of renal allografts from brain-dead donors. Ann Surg. 2000;232:263–71.CrossRefPubMedGoogle Scholar
  20. 20.
    van der Hoeven JAB. Effects of brain death and hemodynamic status on function and immunologic activation of the potential donor liver in the rat. Ann Surg. 2000;232:804.CrossRefGoogle Scholar
  21. 21.
    Koudstaal LG, ‘t Hart NA, van den Berg A, et al. Brain death causes structural and inflammatory changes in donor intestine. Transplant Proc. 2005;37:448–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Contreras JL, Eckstein C, Smyth CA, et al. Brain death significantly reduces isolated pancreatic islet yields and functionality in vitro and in vivo after transplantation in rats. Diabetes. 2003;52:2935–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Jassem W, Koo DD, Cerundolo L, Rela M, Heaton ND, Fuggle SV. Leukocyte infiltration and inflammatory antigen expression in cadaveric and living-donor livers before transplant. Transplantation. 2003;75:2001–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Gatti S, Colombo G, Turcatti F, et al. Reduced expression of the melanocortin-1 receptor in human liver during brain death. Neuroimmunomodulation. 2006;13:51–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Nijboer WN, Schuurs TA, van der Hoeven JA, et al. Effect of brain death on gene expression and tissue activation in human donor kidneys. Transplantation. 2004;78:978–86.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim YS, Lim CS, Kim S, et al. Cadaveric renal allograft at the time of implantation has the similar immunological features with the rejecting allograft. Transplantation. 2000;70:1080–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Araki M, Fahmy N, Zhou L, et al. Expression of IL-8 during reperfusion of renal allografts is dependent on ischemic time. Transplantation. 2006;81:783–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Kaminska D, Tyran B, Mazanowska O, et al. Cytokine gene expression in kidney allograft biopsies after donor brain death and ischemia-reperfusion injury using in situ reverse-transcription polymerase chain reaction analysis. Transplantation. 2007;84:1118–24.CrossRefPubMedGoogle Scholar
  29. 29.
    van Der Hoeven JA, Ter Horst GJ, Molema G, et al. Effects of brain death and hemodynamic status on function and immunologic activation of the potential donor liver in the rat. Ann Surg. 2000;232:804–13.CrossRefGoogle Scholar
  30. 30.
    Tullius SG, Volk HD, Neuhaus P. Transplantation of organs from marginal donors. Transplantation. 2001;72:1341–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Pratschke J, Tullius SG, Neuhaus P. Brain death associated ischemia/reperfusion injury. Ann Transplant. 2004;9:78–80.PubMedGoogle Scholar
  32. 32.
    Clavien PA, Harvey PR, Strasberg SM. Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation. 1992;53:957–78.CrossRefPubMedGoogle Scholar
  33. 33.
    Kupiec-Weglinski JW, Busuttil RW. Ischemia and reperfusion injury in liver transplantation. Transplant Proc. 2005;37:1653–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Kosieradzki M, Kuczynska J, Piwowarska J, et al. Prognostic significance of free radicals: mediated injury occurring in the kidney donor. Transplantation. 2003;75:1221–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Martikainen TJ, Kurola J, Karja V, Parviainen I, Ruokonen E. Vasopressor agents after experimental brain death: effects of dopamine and vasopressin on vitality of the small gut. Transplant Proc. 2010;42:2449–56.CrossRefPubMedGoogle Scholar
  36. 36.
    Rosendale JD, Kauffman HM, McBride MA, et al. Aggressive pharmacologic donor management results in more transplanted organs. Transplantation. 2003;75: 482–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Totsuka E, Dodson F, Urakami A, et al. Influence of high donor serum sodium levels on early postoperative graft function in human liver transplantation: effect of correction of donor hypernatremia. Liver Transpl Surg. 1999;5:421–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Markmann JF, Markmann JW, Markmann DA, et al. Preoperative factors associated with outcome and their impact on resource use in 1148 consecutive primary liver transplants. Transplantation. 2001;72:1113–22.CrossRefPubMedGoogle Scholar
  39. 39.
    Momii S, Koga A. Time-related morphological changes in cold-stored rat livers. A comparison of Euro-Collins solution with UW solution. Transplantation. 1990;50:745–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Gebhard MM, Bretschneider HJ, Gersing E, Preusse CJ, Schnabel PA, Ulbricht LJ. Calcium-free cardioplegia—pro. Eur Heart J. 1983;4 Suppl H:151–60.Google Scholar
  41. 41.
    Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988;45: 673–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Menasche P, Termignon JL, Pradier F, et al. Experimental evaluation of Celsior, a new heart preservation solution. Eur J Cardiothorac Surg. 1994;8:207–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Bessems M, Doorschodt BM, van Vliet AK, van Gulik TM. Machine perfusion preservation of the non-heart-beating donor rat livers using polysol, a new preservation solution. Transplant Proc. 2005;37:326–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Guarrera JV, Henry SD, Samstein B, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 2010;10:372–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Guarrera JV, Henry SD, Chen SW, et al. Hypothermic machine preservation attenuates ischemia/reperfusion markers after liver transplantation: preliminary results. J Surg Res. 2011;167:e365–373.CrossRefPubMedGoogle Scholar
  46. 46.
    Ploeg RJ, Goossens D, Vreugdenhil P, McAnulty JF, Southard JH, Belzer FO. Successful 72-hour cold storage kidney preservation with UW solution. Transplant Proc. 1988;20(1 Suppl 1):935–8.PubMedGoogle Scholar
  47. 47.
    Hosgood SA, Yang B, Bagul A, Mohamed IH, Nicholson ML. A comparison of hypothermic machine perfusion versus static cold storage in an experimental model of renal ischemia reperfusion injury. Transplantation. 2010;89:830–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Sellers MT, Gallichio MH, Hudson SL, et al. Improved outcomes in cadaveric renal allografts with pulsatile preservation. Clin Transplant. 2000;14: 543–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Kwiatkowski A, Wszola M, Kosieradzki M, et al. Machine perfusion preservation improves renal allograft survival. Am J Transplant. 2007;7:1942–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Shah AP, Milgrom DP, Mangus RS, Powelson JA, Goggins WC, Milgrom ML. Comparison of pulsatile perfusion and cold storage for paired kidney allografts. Transplantation. 2008;86:1006–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Moers C, Smits JM, Maathuis MH, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360:7–19.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee CY, Zhang JX, Jones Jr JW, Southard JH, Clemens MG. Functional recovery of preserved livers following warm ischemia: improvement by machine perfusion preservation. Transplantation. 2002;74: 944–51.CrossRefPubMedGoogle Scholar
  53. 53.
    Iwamoto H, Matsuno N, Narumi Y, et al. Beneficial effect of machine perfusion preservation on liver transplantation from non-heart-beating donors. Transplant Proc. 2000;32:1645–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Balupuri S, Buckley P, Mohamad M, et al. Early results of a non-heartbeating donor (NHBD) programme with machine perfusion. Transpl Int. 2000;13 Suppl 1:S255–258.PubMedGoogle Scholar
  55. 55.
    Matsuoka L, Shah T, Aswad S, et al. Pulsatile perfusion reduces the incidence of delayed graft function in expanded criteria donor kidney transplantation. Am J Transplant. 2006;6:1473–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Guarrera JV, Karim NA. Liver preservation: is there anything new yet? Curr Opin Organ Transplant. 2008;13:148–54.CrossRefPubMedGoogle Scholar
  57. 57.
    Kaizu T, Nakao A, Tsung A, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery. 2005;138:229–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology. 2002;35:815–23.CrossRefPubMedGoogle Scholar
  59. 59.
    de Rougemont O, Lehmann K, Clavien PA. Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver. Liver Transpl. 2009;15:1172–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Yang CW, Li C, Jung JY, et al. Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J. 2003;17:1754–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115:610–21.PubMedGoogle Scholar
  62. 62.
    Tolboom H, Pouw RE, Izamis ML, et al. Recovery of warm ischemic rat liver grafts by normothermic extracorporeal perfusion. Transplantation. 2009;87:170–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Brockmann J, Reddy S, Coussios C, et al. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg. 2009;250:1–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Fondevila C, Hessheimer AJ, Ruiz A, et al. Liver transplant using donors after unexpected cardiac death: novel preservation protocol and acceptance criteria. Am J Transplant. 2007;7:1849–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Coney Bae
    • 1
  • Anthony Watkins
    • 1
  • Scot D. Henry
    • 1
  • James V. Guarrera
    • 1
  1. 1.Division of Abdominal Organ Transplantation, Department of SurgeryColumbia University Medical CenterNew YorkUSA

Personalised recommendations