Tearing Instability of Reconnecting Current Layers

  • Boris V. Somov
Part of the Astrophysics and Space Science Library book series (ASSL, volume 392)


The tearing instability can play a significant role in dynamics of reconnecting current layers, but it is well stabilized in many cases of interest. For this reason, quasi-stationary current layers can exist for a long time in astrophysical plasma, for example in the solar corona, in the Earth magnetospheric tail.


Explosive Flare Compressibility Geophysics Incompressibility 


  1. Abbasi, R., Ackermann, M., Adams, J., et al.: Solar energetic particle spectrum on 2006 December 13 determined by IceTop. Astrophys. J. 689(1), L65–L68 (2008) [Sect.  11.4.3]Google Scholar
  2. Acton, L.: Coronal structures, local and global. In: Uchida, Y., Kosugi, T., Hudson, H. (eds.) Magnetohydrodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity, pp. 3–11. Kluwer, Dordrecht (1996) [Sect.  14.4]
  3. Acton, L., Tsuneta, S., Ogawara, Y., et al.: The Yohkohmission for high-energy solar physics. Science 258(5082), 618–625 (1992) [Intr., Sects.  4.3.5 and 6.1]Google Scholar
  4. Akimov, V.V., Ambroz, P., Belov, A.V., et al.: Evidence for prolongated acceleration in the solar flare of June 15, 1991. Sol. Phys. 166(1), 107–134 (1996) [Sect. 11.4]Google Scholar
  5. Alfvén, H., Carlqvist, P.: Currents in the solar atmosphere and a theory of flares. Sol. Phys. 1(2), 220–228 (1967) [Sects. 5.2.4 and 16.2]Google Scholar
  6. Alfvén, H., Fälthammar, C.-G.: Cosmic Electrodynamics, Fundamental Principles, 2nd edn., p. 228. Clarendon Press, Oxford (1963)Google Scholar
  7. Allred, J.C., Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630(1), 573–586 (2005) [Sect. 17.4.1]Google Scholar
  8. Altyntsev, A.T., Krasov, V.I., Tomozov V.M.: Magnetic field dissipation in neutral current sheets. Sol. Phys. 55(1), 69–81 (1977) [Sect. 5.1.2]Google Scholar
  9. Aly, J.J.: On some properties of force-free fields in infinite regions of space. Astrophys. J. 283(1), 349–362 (1984) [Sect. 16.2]Google Scholar
  10. Aly, J.J.: How much energy can be stored in a force-free field? Astrophys. J. 375(1), L61–L64 (1991) [Sect. 16.2]Google Scholar
  11. Anderson, J.E.: Magnetohydrodynamic Shock Waves, p. 226. M.I.T. Press, Cambridge (1963) [Sect. 12.2]Google Scholar
  12. Anosov, D.V.: Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature, p. 235 American Mathematical Society, Providence (1969) [Sect. 11.2]Google Scholar
  13. Antiochos, S.K.: The magnetic topology of solar eruptions. Astrophys. J. 502, L181–L184 (1998) [Sects. 4.3.4, 5.3.2 and 8.6]Google Scholar
  14. Antiochos, S.K., Karpen, J.T., DeVore, C.R.: The nature of magnetic reconnection in the corona. In: Bentley, R.D., Mariska, J.T. (eds.) Magnetic Reconnection in the Solar Atmosphere. Astronomical Society of the Pacific Conference Series, vol. 111, p. 79–81. Astronomical Society of the Pacific, San Francisco (1997) [Sects. 5.1.2 and 12.1]Google Scholar
  15. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: A model for solar coronal mass ejections. Astrophys. J. 510(1), 485–493 (1999) [Sects. 7.6 and 16.5.2]Google Scholar
  16. Antonova, E.E., Tverskoi, B.A.: On the nature of electric fields in the Earth’s inner magnetosphere (A review). Geomagn. Aeron. Int. 1(1), 9–21 (1998) [Sect. 10.2.2]Google Scholar
  17. Antonucci, E., Benna, C., Somov, B.V.: Interpretation of the observed plasma ‘turbulent’ velocities as a result of reconnection in solar flares. Astrophys. J. 456(2), 833–839 (1996) [Sects. 8.5.5 and 14.1]Google Scholar
  18. Anwar, B., Acton, L.W., Hudson, H.S., et al.: Rapid sunspot motion during a major solar flare. Sol. Phys. 147(2), 287–303 (1993) [Sect. 7.1.2]Google Scholar
  19. Apatenkov, S.V., Sergeev, V.A., Kubyshkina, M.V., et al.: Multi-spacecraft observation of plasma dipolarization/injection in the inner magnetosphere. Ann. Geophys. 25(3), 801–814 (2007) [Sect. 9.8]Google Scholar
  20. Archontis, V., Moreno-Insertis, F., Galsgaard, K., et al.: The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: reconnection, current sheets, and jets. Astrophys. J. 635(2), 1299–1318 (2005) [Sect. 5.2.1]Google Scholar
  21. Arge, C.N., Mullan, D.J.: Modeling of magnetic interactions in partially-ionized gas. Sol. Phys. 182(2), 293–332 (1998) [Sect. 15.4]Google Scholar
  22. Artsimovich, L.A., Sagdeev, R.Z.: Plasma Physics for Physicists, p. 320. Atomizdat, Moscow (1979) [Sect. 8.4.1]Google Scholar
  23. Asai, A., Ishii, T.T., Kurokawa, H., et al.:Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J. 586, 624–629 (2003) [Sect. 7.4.1]Google Scholar
  24. Aschwanden, M.J., Alexander, D.: Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille day event (14 July 2000). Sol. Phys. 204(1), 93–121 (2001) [Sects. 6.2.3, 6.2.4 and 7.1.1]Google Scholar
  25. Aschwanden, M.J., Kliem, B., Schwarz, U., et al.: Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505(2), 941–956 (1998) [Sect. 9.2.3]Google Scholar
  26. Aschwanden, M.J., Kosugi, T., Hanaoka, Y., et al.: Quadrupole magnetic reconnection in solar flares. I. Three-dimensional geometry inferred from Yohkohobservations. Astrophys. J. 526, 1026–1045 (1999) [Sects. 8.6 and 9.1.3]Google Scholar
  27. Aulanier, G., DeLuca, E.E., Antiochos, S.K., et al.: The topology and evolution of the Bastille day 1998 flare. Astrophys. J. 540(2), 1126–1142 (2000) [Sects. 5.3.2 and 7.6]Google Scholar
  28. Ayres, T.R.: Thermal bifurcation of the solar chromosphere. In: Strassmeier, K.G., Linsky, J.L. (eds.) Stellar Surface Structure. IAU Symposium, vol. 176, p. 371–384. Kluwer, Dordrecht (1996) [Sect. 15.5]Google Scholar
  29. Bagalá, L.G., Mandrini, C.H., Rovira, M.G., et al.: A topological approach to understand a multi-loop flare. Sol. Phys. 161(1), 103–121 (1995) [Intr., Sects. 5.3.2, 8.6 and 16.2]Google Scholar
  30. Bai, T., Sturrock, P.A.: Classification of solar flares. Ann. Rev. Astron. Astrophys. 27, 421–467 (1989) [Sects. 11.1 and 11.4]Google Scholar
  31. Bai, T., Hudson, H.S., Pelling, R.M., et al.: First-order Fermi acceleration in solar flares as a mechanism for the second-step acceleration of protons and electrons. Astrophys. J. 267(1), 433–441 (1983) [Sect. 9.2.3]Google Scholar
  32. Barnes, G.: On the relationship between coronal magnetic null points and solar eruptive events. Astrophys. J. 670(1), L53–L56 (2007) [Sects. 6.3.1, 7.1.3 and 8.6]Google Scholar
  33. Barnes, G., Longcope, D.W., Leka, K.D.: Implementing a magnetic charge topology model for solar active regions. Astrophys. J. 629(1), 561–571 (2005) [Sect. 4.3.4]Google Scholar
  34. Barret, D., Olive, J.F., Boirin, L., et al.: Hard X-ray emission from low-mass X-ray binaries. Astrophys. J. 533, 329–351 (2000) [Sect. 10.3]Google Scholar
  35. Batchelor, G.K.: On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Royal Soc. A201, 405–416 (1950) [Sect. 14.1]Google Scholar
  36. Bateman, G., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953) [Sect. 3.4.1]Google Scholar
  37. Baum, P.J., Bratenahl, A., Kamin, G.: Current interruption and flux transfer solar flare models. Astrophys. J. 226(1), 286–300 (1978) [Sects. 5.1.3 and 16.2]Google Scholar
  38. Bazilevskaya, G.A.: Solar cosmic rays in the near Earth space and the atmosphere. Adv. Space Res. 35(3), 458–464 (2005) [Sect.  11.4.3]
  39. Becker, W. (ed.): Neutron Starts and Pulsars, p. 997. Springer, Berlin/Heidelberg (2009) [Intr., Sects. 10.3.2 and 11.5]Google Scholar
  40. Bednarek, W., Protheroe, R.J.: Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. Royal Astron. Soc. 302, 373–380 (1999) [Sect. 10.3]Google Scholar
  41. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984) [Intr.]Google Scholar
  42. Bentley, R.D., Klein, K.-L., van Driel-Gesztelyi, L., et al.: Magnetic activity associated with radio noise storms. Sol. Phys. 193(1–2), 227–245 (2000) [Sect. 5.3.2]Google Scholar
  43. Benz, A.: Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, 2nd edn., p. 299. Kluwer, Dordrecht (2002) [Sects. 6.2.6, 9.3.4 and 9.7]Google Scholar
  44. Benz, A., Krucker, S.: Heating events in the quiet solar corona. Sol. Phys. 182(2), 349–363 (1998) [Sect.  14.4]
  45. Benz, A., Krucker, S.: Heating events in the quiet solar corona: multiwavelength correlations. Astron. Astrophys. 341(1), 286–295 (1999) [Sect.  14.4]
  46. Benz, A.O., Lin, R.P., Sheiner, O.A., et al.: The source regions of impulsive solar electron events. Sol. Phys. 203(1), 131–144 (2001) [Sect. 11.4]Google Scholar
  47. Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics. Fizmatlit, Moscow (2001) (in Russian) [Sect. 9.5.3]Google Scholar
  48. Berger, M.A.: Rigorous limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30(1), 79–104 (1984) [Sect. 14.1]Google Scholar
  49. Berger, M.A.: An energy formula for nonlinear force-free fields. Astron. Astrophys. 201(1), 355–361 (1988) [Sects. 14.1 and 14.2]Google Scholar
  50. Berger, M.A.: Three-dimensional reconnection from a global viewpoint. In: Guyenne, T.D., Hunt, J.J. (eds.) Reconnection in Space Plasma. ESA SP-285, vol. 2, p. 83–86. European Space Agency, Paris (1989) [Sects. 14.1 and 16.2]Google Scholar
  51. Berger, M.A.: Coronal heating by dissipation of magnetic structure. Space Sci. Rev. 68(1), 3–14 (1994) [Sect. 14.2]Google Scholar
  52. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet. Astron. Lett. 33(2), 130–136 (2007) [Sects. 3.2 and 3.4.1]Google Scholar
  53. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Generalized analytical models of Syrovatskii’s current sheet. Astron. Lett. 37(2), 113–130 (2011) [Sects. 3.2, 3.4.3 and 3.6]Google Scholar
  54. Bhattacharjee, A.: Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Ann. Rev. Astron. Astrophys. 42(1), 365–384 (2004) [Sect. 2.4.4]Google Scholar
  55. Birk, G.T., Otto, A.: The resistive tearing instability for generalized resistivity models. Phys. Fluids 3(B7), 1746–1754 (1991) [Sect. 13.1.2]Google Scholar
  56. Biskamp, D.: Magnetic reconnection via current sheets. Phys. Fluids 29(5), 1520–1531 (1986) [Sects. 3.2, 3.4.3 and 4.2.4, 12.1 and 12.5]Google Scholar
  57. Biskamp, D.: Resistive and collisionless magnetic reconnection. In: Chiudery, C., Einaudi, G. (eds.) Plasma Astrophysics, pp. 1–29. Springer, Berlin (1994) [Sect. 8.6]Google Scholar
  58. Biskamp, D.: Nonlinear Magnetohydrodynamics, p. 392. Cambridge University Press, Cambridge, UK (1997) [Sects. 3.1, 3.4.3, 4.2.4, 8.1.3, 12.1 and 12.5]Google Scholar
  59. Bogachev, S.A., Somov, B.V.: Comparison of the Fermi and betatron acceleration efficiencies in collapsing magnetic traps. Astron. Lett. 33(1), 54–62 (2005) [Sects. 9.4.2 and 9.4.3, 9.4.4 and 9.4.5]Google Scholar
  60. Bogachev, S.A., Somov, B.V.: Formation of power-law electron spectra in collapsing magnetic traps. Astron. Lett. 33(1), 54–62 (2007) [Sects. 9.5.1 and 9.5.3]Google Scholar
  61. Bogachev, S.A., Somov, B.V.: Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35(1), 57–69 (2009) [Sects. 9.2.2, 9.6.2, 9.6.3, 9.6.4 and 9.7]Google Scholar
  62. Bogachev, S.A., Somov, B.V., Masuda, S.: On the velocity of a hard X-ray source in the solar corona. Astron. Lett. 24(4), 543–548 (1998) [Sects. 9.2.4 and 9.4.1]Google Scholar
  63. Bogachev, S.A., Somov, B.V., Kosugi, T., et al.: The motions of the hard X-ray sources in solar flares: images and statistics. Astrophys. J. 630(1), 561–572 (2005) [Sect. 7.4.5]Google Scholar
  64. Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., and Markov, V.S.: Magnetic reconnection, generation of plasma fluxes and accelerated particles in laboratory experiments. In: Plasma Astrophys. ESA SP-251, pp. 177–183. ESA Publications Division, Noordwijk (1986) [Sect. 5.1.2]Google Scholar
  65. Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., and Frank, A.G.: Current sheets in magnetic configurations with singular X-lines. JETP Lett. 71(2), 78–84 (2000) [Sect. 5.1.2]Google Scholar
  66. Borovsky, J.E., Funsten, H.O.: Role of the solar wind turbulence in coupling of the solar wind to the Earth’s magnetosphere. J. Geophys. Res. 108(A6), pp. SMP 13–1, CiteID 1246 (2003a) [Sects. 10.2.2 and 14.1.3]Google Scholar
  67. Borovsky, J.E., Funsten, H.O.: MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation, and driving. J. Geophys. Res. 108(A7), pp. SMP 9–1, CiteID 1284 (2003b) [Sects. 10.2.2 and 14.1.3]Google Scholar
  68. Brandenburg, A.: An inverse cascade and nonlinear α-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550(2), 824–840 (2001) [Sect. 14.1]Google Scholar
  69. Brandenburg, A., Subramanian, K.: Large scale dynamos with ambipolar diffusion nonlinearity. Astron. Astrophys. 361, L33–L36 (2000) [Sect. 14.1]Google Scholar
  70. Brissaud, A., Frisch, U., Leorat, J., et al.: Helicity cascades in fully developed isotropic turbulence. Phys. Fluid 16, 1366–1367 (1973) [Sect. 14.1]Google Scholar
  71. Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Sol. Phys. 18(3), 489–502 (1971) [Sect. 17.3.1]Google Scholar
  72. Brown, J.C.: The temperature structure of chromospheric flares heated by non-thermal electrons. Sol. Phys. 31(1), 143–169 (1973) [Sect. 17.4.1]Google Scholar
  73. Brown, J.C., Hoyng, P.: Betatron acceleration in a large solar hard X-ray burst. Astrophys. J. 200(1), 734–746 (1975) [Sect. 17.3.2]Google Scholar
  74. Browning, P.K.: Helicity injection and relaxation in a coronal magnetic loop with a free surface. J. Plasma Phys. 40(2), 263–280 (1988) [Sect. 14.2]Google Scholar
  75. Brushlinskii, K.V., Zaborov, A.M., Syrovatskii, S.I.: Numerical analysis of the current sheet near a magnetic null line. Sov. J. Plasma Phys. 6(2), 165–173 (1980) [Sects. 3.2, 3.4.3, 4.2.4, 5.1.2, 12.1 and 12.5]Google Scholar
  76. Büchner, J., Zelenyi, L.: Regular and chaotic particle motion in magnetotail field reversal. J. Geophys. Res. 94(A9), 11821–11842 (1989) [Sect. 11.2]Google Scholar
  77. Bykov, A.M., Chevalier, R.A., Ellison, D.C., et al.: Non-thermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538(1), 203–216 (2000) [Sect. 9.6.1]Google Scholar
  78. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26(6), 627–630 (1999) [Sect. 4.3.5]Google Scholar
  79. Carrington, R.C.: Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20(1), 13–15 (1859) [Sect. 4.1.1]Google Scholar
  80. Casolino, M., Picozza, P., Altamura, F., et al.: Launch of the space experiment PAMELA. Adv. Space Res. 42(3), 455–466 (2008) [Sect.  11.4.3]
  81. Casolino, M., Bongue, D., De Pascale, M.P., et al.: The Pamela cosmic ray space observatory: detector, objectives and first results. E-print arXiv:0904.4692v1[astro-ph.HE] (2009) [Sect.  11.4.3]
  82. Cassak, P.A., Drake, J.F., Shay, M.A., et al.: Onset of fast magnetic reconnection. Phys. Rev. Lett. 98(21), id. 215001 (2007) [Sect. 4.2.4]Google Scholar
  83. Cattaneo, F.: On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42 (1999) [Sect. 14.1]Google Scholar
  84. Chae, J., Wang, H., Qiu, J., et al.: The formation of a prominence in active region NOAA 8668. 1. SOHO/MDI observations of magnetic field evolution. Astrophys. J. 560(1), 476–489 (2001) [Sect. 7.3]Google Scholar
  85. Chandra, R., Pariat, E., Schmieder, B., et al.: How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Sol. Phys. 261(1), 127–148 (2010) [Sect. 6.4.1]Google Scholar
  86. Chapman, S., Kendall, P.C.: Liquid instability and energy transformation near magnetic neutral line. A soluble non-linear hydromagnetic problem. Proc. Roy. Soc. Lond. A271, 435–448 (1963) [Sects. 2.4.1 and 2.4.2]Google Scholar
  87. Chen, J., Palmadesso, P.J.: Chaos and nonlinear dynamics of single particle orbits in a magnetotail field. J. Geophys. Res. 91(A2), 1499–1508 (1986) [Sect. 11.2]Google Scholar
  88. Chen, P.F., Fang, C., Tang, Y.H., Ding, M.D.: Simulation of magnetic reconnection with heat conduction. Astrophys. J. 513(1), 516–523 (1999a) [Sect. 3.4.3]Google Scholar
  89. Chen, P.F., Fang, C., Ding, M.D., Tang, Y.H.: Flaring loop motion and a unified model for solar flares. Astrophys. J. 520(2), 853–858 (1999b) [Sects. 3.4.3 and 8.5.2]Google Scholar
  90. Cheng, K.S., Romero, G.E. (eds.): Cosmic Gamma-Ray Sources, p. 402 Kluwer, Dordrecht (2004) [Sect. 11.5]Google Scholar
  91. Cho, J., Vishniac, E.T.: The anisotropy of magnetohydrodynamic Alfvenic turbulence. Astrophys. J. 539(1), 273–282 (2000a) [Sect. 14.1]Google Scholar
  92. Cho, J., Vishniac, E.T.: The generation of magnetic fields through driven turbulence. Astrophys. J. 538(1), 217–225 (2000b) [Sect. 14.1]Google Scholar
  93. Chupp, E.L.: In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics. AIP conference proceedings, vol. 374, pp. 3–9 AIP, Woodbury (1996) [Sect. 11.4]Google Scholar
  94. Chupp, E.L., Forrest, D.J., Higbie, P.R., et al.: Solar gamma ray lines observed during the solar activity of August 2 to August 11. Nature 241, 333 (1973) [Sect. 17.4.2]Google Scholar
  95. Colgate, S.A.: Relationship between high-energy phenomena on the Sun and in astrophysics. Sol. Phys. 118(1), 1–15 (1988) [Sect. 11.4]Google Scholar
  96. Colgate, S.A., Furth, H.P.: Stabilization of pinch discharges. Phys. Fluid 3(6), 982–1000 (1960) [Sect. 13.1.2]Google Scholar
  97. Colpi, M., Casella, P., Gorini, V., et al. (eds.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, p. 378 Springer, Dordrecht (2009) [Sect. 11.5]Google Scholar
  98. Contopoulos, G.: Order and Chaos in Dynamical Astronomy, Springer, Berlin (2002) [Sect. 11.2]MATHCrossRefGoogle Scholar
  99. Coppi, B., Laval, G., Pellat, R.: Dynamics of the geomagnetic tail. Phys. Rev. Lett. 6(26), 1207–1210 (1966) [Sects. 13.1.2 and 13.6]Google Scholar
  100. Cowley, S.W.H.: Magnetic reconnection. In: Priest, E.R. (ed.) Solar System Magnetic Fields, p. 121–134 D. Reidel Publishing, Dordrecht (1986) [Sect. 1.2.2]Google Scholar
  101. Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157(3), 1157–1167 (1969) [Sect. 8.1.2]Google Scholar
  102. Craig, I.J.D., McClymont, A.N.: Linear theory of reconnection at an X-type neutral point. Astrophys. J. 405(1), 207–215 (1993) [Sect. 15.2.3]Google Scholar
  103. Crooker, N., Joselyn, J.A., Feynman, J. (eds): Coronal Mass Ejections, p. 299. American Geophysical Union, Washington (1997) [Intr.]Google Scholar
  104. Crooker, N.U., Gosling, J.T., Kahler, S.W.: Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J. Geophys. Res. 107(A2), SSH 3–1 (2002) [Sect. 7.2.2]Google Scholar
  105. Day, C.: SOHO observations implicate ‘magnetic carpet’ as source of coronal heating in quiet Sun. Physics Today. March issue, 19–21 (1998) [Sect.  14.4]
  106. de Feiter, L.D.: Solar flares as source of energetic particles. Space Sci. Rev. 16(1), 3–43 (1974) [Sect. 17.3.2]Google Scholar
  107. de Jager, C.: Solar flares and particle acceleration. Space Sci. Rev. 44(1), 43–90 (1986) [Sect. 14.1]Google Scholar
  108. de Jager, C.: Solar forcing of climate. 1: solar variability. Space Sci. Rev. 120(1), 197–241 (2005) [Intr., Sect. 10.2.3]Google Scholar
  109. de Jager, C., de Jonge, G.: Properties of elementary flare bursts. Sol. Phys. 58(1), 127–137 (1978) [Sect. 17.3.2]Google Scholar
  110. de Kluiver, H., Perepelkin, N.F., Hirose, A.: Experimental results on current-driven turbulence in plasmas – A survey. Phys. Rep. (Review Section of Physics Letters) 199(6), 281–381 (1991) [Sect. 10.1]Google Scholar
  111. Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., et al.: Evidence for magnetic reconnection in solar flares. Astron. Astrophys. 271(1), 292–307 (1993) [Intr., Sects. 5.3.2, 8.6 and 16.2]Google Scholar
  112. Den, O.G., Somov, B.V.: Magnetic field dissipation in a high-temperature plasma as a mechanism of energy release in a solar flare. Sov. Astron. – AJ 33(2), 149–155 (1989) [Sects. 4.3.3, 5.1.1, 8.5.5 and 16.2]Google Scholar
  113. Deng, Y., Wang, J., Yan, Y., et al.: Evolution of magnetic non-potentiality in NOAA AR 9077. Sol. Phys. 204(1), 13–28 (2001) [Sects. 6.2.4, 7.1.1 and 7.6]Google Scholar
  114. Dennis, B.R.: Solar hard X-ray bursts. Sol. Phys. 100(2), 465–490 (1985) [Sect. 8.5.5]Google Scholar
  115. Dennis, B.R.: Solar flare hard X-ray observations. Sol. Phys. 118(1), 49–94 (1988) [Sect. 8.5.5]Google Scholar
  116. DeVore, C.R., Antiochos, S.K., Guillaume, A.: Solar prominence interactions. Astrophys. J. 629(2), 1122–1134 (2005) [Sect. 15.3]Google Scholar
  117. Dobrowolny, M.: Instability of a neutral sheet. Nuovo Cimento B55(1), 427–438 (1968) [Sect. 11.3]Google Scholar
  118. Domingo, V., Fleck, B., Poland, A.A.: SOHO: the solar and heliospheric observatory. Space Sci. Rev. 72(1), 81–84 (1995) [Intr., Sect. 6.1]Google Scholar
  119. Drake, J.F., Biskamp, D., Zeiler, A.: Breakup of the electron current layer during 3-D collisionless reconnection. Geophys. Res. Lett. 24(2), 2921–2924 (1997) [Sect. 3.5]Google Scholar
  120. Dreicer, H.: Electron and ion runaway in a fully ionized gas. Phys. Rev. 115(2), 238–249 (1959) [Sect. 8.1.1]Google Scholar
  121. Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry, p. 515. Nauka, Moscow (1986) (in Russian) [Sects. 4.2.2 and 4.2.3]Google Scholar
  122. Duijveman, A., Hoyng P., Ionson, J.A.: Fast plasma heating by anomalous and inertial resistivity effects in the solar atmosphere. Astrophys. J. 245(2), 721–735 (1981) [Sect. 8.4.1]Google Scholar
  123. Duijveman, A., Somov B.V., Spektor, J.A.: Evolution of a flaring loop after injection of energetic electrons. Sol. Phys. 88(1), 257–273 (1983) [Sect. 4.3.1]Google Scholar
  124. Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. 392(1), L9–L13 (1992) [Intr.]Google Scholar
  125. Dungey, J.W.: Cosmic Electrodynamics, p. 183. Cambridge University Press, England (1958) [Intr., Sects. 1.1.1, 2.1.1, 13.1.2 and 16.2]Google Scholar
  126. Dungey, J.W.: Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47–48 (1961) [Sect. 10.2]Google Scholar
  127. Efthymiopoulos, C., Gontikakis, C., Anastasiadis, A.: Particle dynamics in 3D reconnecting current sheets in the solar atmosphere. Astron. Astrophys. 443(2), 663–678 (2005) [Sect. 11.1.5]Google Scholar
  128. Ermolaev, Yu.I., Zelenyi, L.M., Zastenker, G.N., et al.: Solar and heliospheric disturbances that resulted in the strongest magnetic storm of November 20, 2003. Geomag. Aeron. 45(1), 20–34 (2005) [Sect. 6.4.1]Google Scholar
  129. Fang, C., Ding, M.D.: On the spectral characteristics and atmosphere models of the two types of white-light flares. Astron. Astrophys. Suppl. 110(1), 99–106 (1995) [Sect. 15.2.1]Google Scholar
  130. Field, G.B.: Thermal instability. Astrophys. J. 142(2), 531–567 (1965) [Sects. 5.1.2 and 8.1.2]Google Scholar
  131. Fletcher, L.: On the generation of loop-top impulsive hard X-ray sources. Astron. Astrophys. 303(1), L9–L12 (1995) [Sect. 9.2.1]Google Scholar
  132. Fletcher, L., Hudson, H.: The magnetic structure and generation of EUV flare ribbons. Sol. Phys. 204(1), 71–91 (2001) [Sects. 6.1, 6.2.3, 6.2.4 and 7.1.2]Google Scholar
  133. Fletcher, L., Hudson, H.: Spectral and spatial variations of flare hard X-ray footpoints. Sol. Phys. 210(1), 307–321 (2002) [Intr., Sect. 7.4.1]Google Scholar
  134. Fletcher, L., Hannah, I.G., Hudson, H.S., Metcalf, T.R.: A TRACE white light and RHESSI hard X-ray study of flare energetics. Astrophys. J. 656(2), 1187–1196 (2007) [Sect. 17.4.2]Google Scholar
  135. Forbes, T.G., Acton, L.W.: Reconnection and field line shrinkage in solar flares. Astrophys. J. 459(1), 330–341 (1996) [Sects. 6.1, 6.2.4 and 7.4.1]Google Scholar
  136. Frank, A.G., Bugrov, S.G., Markov, V.S.: Hall currents in a current sheet: structure and dynamics. Phys. Plasma 15, 092102 (2008) [Sect. 2.4.4]Google Scholar
  137. Frank, A., Bugrov, S., Markov, V.: Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line. Phys. Lett. A 373, 1460–1464 (2009) [Sect. 8.2.2]Google Scholar
  138. Froyland, J.: Introduction to Chaos and Coherence, p. 156. Institute of Physics Publishing, Bristol/Philadelphia/Tokyo (1992) [Sect. 11.2]Google Scholar
  139. Furth, H.P.: Sheet pinch instabilities caused by finite conductivity. Bull. Am. Phys. Soc. 6(2), 193 (1961) [Sect. 13.1.2]Google Scholar
  140. Furth, H.P.: In: Proceedings of ESRW Conference of the Stability of Plane Plasmas, pp. 22–25. European Space Research Institute, Frascaty (1967) [Sect. 13.1.2]Google Scholar
  141. Furth, H.P., Killen, J., Rosenbluth, M.N.: Finite-resistivity instabilities of a sheet pinch. Phys. Fluid 6(4), 459–484 (1963) [Sects. 3.2, 6.2.4, 13.1.2, 13.2 and 13.3]Google Scholar
  142. Gal’per, A.M., Zemskov, V.M., Luchkov, B.I., et al.: Temporal fine structure in hard γ radiation in solar flares. JETP Lett. 59(3), 153–157 (1994) [Sect. 11.4]Google Scholar
  143. Galeev, A.A., Zelenyi, L.M.: Tearing instability in plasma configurations. Sov. Phys. – JETP 43(6), 1113–1123 (1976) [Sects. 13.1.2 and 13.6.2]Google Scholar
  144. Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion discs. Astrophys. J. 229(1), 318–326 (1979) [Intr., Sect. 10.3]Google Scholar
  145. Galsgaard, K., Longbottom, A.W.: Formation of solar prominences by flux convergence. Astrophys. J. 510(1), 444–459 (1999) [Sect. 15.3]Google Scholar
  146. Giovanelli, R.G.: A theory of chromospheric flares. Nature 158(4003), 81–82 (1946) [Intr., Sects. 1.1.1 and 16.2]Google Scholar
  147. Giovanelli, R.G.: Magnetic and electric phenomena in the sun’s atmosphere associated with sunspots. Mon. Not. R. Astron. Soc. 107(4), 338–355 (1947) [Sects. 2.1 and 16.2]Google Scholar
  148. Giovanelli, R.G.: Chromospheric flares. Mon. Not. R. Astron. Soc. 108(2), 163–176 (1948) [Sect. 16.2]Google Scholar
  149. Giuliani, P., Neukirch, T., Wood, P.: Particle motion in collapsing magnetic traps in solar flares. 1. Kinematic theory of collapsing magnetic traps. Astrophys. J. 635(1), 636–646 (2005) [Sects. 9.2.2 and 9.3.2]Google Scholar
  150. Glover, A., Ranns, N.D.R., Harra, L.K., et al.: The onset and association of CMEs with sigmoidal active regions. Geophys. Res. Lett., 27(13), 2161–2164 (2000) [Sect. 4.3.5]Google Scholar
  151. Gold, T.: Magnetic energy shedding in the solar atmosphere. In: Hess, W.N. (ed.) AAS-NASA Symposium in the Physics of Solar Flares. NASA-SP 50, pp. 389–396. NASA, Scientific and Technical Information Division, Washington (1964) [Sect.  14.4]
  152. Gold, T., Hoyle, F.: On the origin of solar flares. Mon. Not. R. Astron. Soc. 120(2), 89–105 (1960) [Sects. 4.3.3, 14.2 and 16.2]Google Scholar
  153. Goldreich, P., Sridhar, S.: Magnetohydrodynamic turbulence revisited. Astrophys. J. 485(2), 680–688 (1997) [Sect. 14.1]Google Scholar
  154. Golub, L., Bookbinder, J., DeLuca, E., et al.: A new view of the solar corona from the transition region and coronal explorer (TRACE). Phys. Plasma 6(5), 2205–2212 (1999) [Intr.]Google Scholar
  155. Gontikakis, C., Efthymiopoulos, C., Anastasiadis, A.: Regular and chaotic dynamics in 3D reconnecting current sheets. Mon. Not. R. Astron. Soc. 368(1), 293–304 (2006) [Sect. 11.2.5]Google Scholar
  156. Gopasyuk, S.I.: Solar magnetic fields and large-scale electric currents in the active regions. Adv. Space Res. 10(9), 151–160 (1990) [Sect. 5.1.1]Google Scholar
  157. Gorbachev, V.S., Somov, B.V.: Photospheric vortex flows as a cause for two-ribbon flares: a topological model. Sol. Phys. 117(1), 77–88 (1988) [Sects. 4.2.1, 4.3.5, 5.3.1, 5.3.2 and 7.2.3]Google Scholar
  158. Gorbachev, V.S., Somov, B.V.: Solar flares of November 5, 1980, as the result of magnetic reconnection at a separator. Sov. Astron. – AJ 33(1), 57–61 (1989) [Intr., Sects. 4.2.1, 4.2.4, 4.3.2, 5.3.2, 7.4.2, 8.6 and 16.3]Google Scholar
  159. Gorbachev, V.S., Somov, B.V.: Magnetic reconnection on the separator as a cause of a two-ribbon flare. Adv. Space Res. 10(9), 105–108 (1990) [Intr., Sects. 4.2.1, 4.3.1, 4.3.4, 5.3.1, 5.3.2, 6.2.3, 8.6 and 16.3]Google Scholar
  160. Gorbachev, V.S., Kel’ner, S.R., Somov, B.V., et al.: New topological approach to the question of solar flare trigger. Sov. Astron. – AJ 32(3), 308–314 (1988) [Sects. 4.2.1, 4.2.2 and 7.1.3]Google Scholar
  161. Gosling, J.T., Birn, J., Hesse, M.: Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events. Geophys. Res. Lett. 22(8), 869–872 (1995) [Sect. 7.2.2]Google Scholar
  162. Greco, A., Taktakishvili, A.L., Zimbardo, G., et al.: Ion dynamics in the near-Earth magnetotail: magnetic turbulence versus normal component of the average magnetic field. J. Geophys. Res. 107(A10), CiteID 1267 (2002). doi:  10.1029/2002JA009270[Sect. 11.1.3]
  163. Greene, J.M.: Geometrical properties of three-dimensional reconnecting magnetic fields with nulls. J. Geophys. Res. 93, 8583–8590 (1988) [Sect. 4.2.5]Google Scholar
  164. Gritsyk, P.A., Somov, B.V.: The kinetic description of the accelerated-electron flux in solar flares. Mosc. Univ. Phys. Bull. 66(5), 466–472 (2011) [Sect. 17.4.2]Google Scholar
  165. Groth, C.P.T., De Zeeuw, D.L., Gombosi, T.I., et al.: Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J. Geophys. Res. 105(A11), 25053–25078 (2000) [Sect. 10.2.3]Google Scholar
  166. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983) [Sect. 13.6]MATHGoogle Scholar
  167. Gurevich, A.V.: On the theory of runaway electrons. Sov. Phys. – JETP 12(5), 904–912 (1961) [Sect. 8.1.1]Google Scholar
  168. Gurevich, A.V., Zhivlyuk, Y.N.: Runaway electrons in a non-equilibrium plasma. Sov. Phys. – JETP 22(1), 153–159 (1966) [Sect. 8.1.1]Google Scholar
  169. Haisch, B.M., Strong, K.T., Rodonò M.: Flares on the Sun and other stars. Ann. Rev. Astron. Astrophys. 29, 275–324 (1991) [Intr.]Google Scholar
  170. Haken, H.: Synergetics. Springer, New York (1978) [Sect. 13.6]MATHCrossRefGoogle Scholar
  171. Hanslmeier, A.: The Sun and Space Weather, 2nd edn., p. 315. Springer, Dordrecht (2007) [Intr., Sect. 10.2.3]Google Scholar
  172. Hargreaves, J.K.: The Solar-Terrestrial Environment, p. 420. Cambridge University Press, Cambridge (1992) [Intr.]Google Scholar
  173. Harra-Murnion, L.K., Schmieder, B., van Driel-Gestelyi, L., et al.: Multi-wavelength observations of post flare loops in two long duration solar flares. Astron. Astrophys. 337, 911–920 (1998) [Sect. 9.1.2]Google Scholar
  174. Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23(1), 115–121 (1962) [Sects. 11.1.3, 11.3.2, 11.3.3, 11.4 and 13.6]Google Scholar
  175. Hénoux, J.-C., Somov, B.V.: Generation and structure of the electric currents in a flaring activity complex. Astron. Astrophys. 185(1), 306–314 (1987) [Sects. 7.2.3, 15.5.1 and 16.2.1]Google Scholar
  176. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 1. Magnetic flux-tube generation. Astron. Astrophys. 241(2), 613–617 (1991) [Sects. 15.5 and 15.6]Google Scholar
  177. Hénoux, J.-C., Somov, B.V.: First ionization potential fractionation. In: Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition. Proceedings of the First SOHO Workshop, ESA SP-348, pp. 325–330. European Space Agency, Noordwijk (1992) [Sect. 15.5]Google Scholar
  178. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 2. Physics of thin magnetic flux tubes. Astron. Astrophys. 318(3), 947–956 (1997) [Sect. 15.5]Google Scholar
  179. Hénoux, J.-C., Somov, B.V.: Physics of thin flux tubes in a partially ionized atmosphere. In: Schmieder, B., Hofmann, A., Staude, J. (eds.) Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations. ASP Conference Series, vol. 184, pp. 55–59. Astronomical Society of the Pacific, San Francisco (1999) [Sect. 15.5]Google Scholar
  180. Hesse, M., Birn, J., Baker, D.N., Slavin, J.A.: MHD simulation of the transition of reconnection from closed to open field lines. J. Geophys. Res. 101(A5), 10805–10816 (1996) [Sect. 8.2.1]Google Scholar
  181. Heyvaerts, J., Priest, E.R.: Coronal heating by reconnection in DC current systems. A theory based on Taylor’s hypothesis. Astron. Astrophys. 137(1), 63–78 (1984) [Sect. 14.2]Google Scholar
  182. Hirano, Y., Yagi, Y., Maejima, Y., et al.: Self-organization and its effect on confinement in a reversed field pinch plasma. Plasma Phys. Control. Fusion 39(5A), A393–A400 (1997) [Sect. 14.1]Google Scholar
  183. Hirose, S., Uchida, Y., Uemura, S., et al.: A quadruple magnetic source model for arcade flares and X-ray arcade formations outside active regions. II. Dark filament eruption and the associated arcade flare. Astrophys. J. 551(1), 586–596 (2001) [Sect. 7.2.2]Google Scholar
  184. Hodgson, R.: On a curious Appearance seen in the Sun. Mon. Not. R. Astron. Soc. 20(1), 15–16 (1859) [Sect. 4.1.1]Google Scholar
  185. Hoh, F.C.: Stability of sheet pinch. Phys. Fluid 9, 277–284 (1966) [Sect. 11.3]Google Scholar
  186. Hones, E.W.Jr. (ed.): Magnetic Reconnection in Space and Laboratory Plasmas, p. 386. American Geophysical Union, Washington (1984) [Sect. 16.2]Google Scholar
  187. Horiuchi, R., Sato, T.: Particle simulation study of driven reconnection in a collisionless plasma. Phys. Plasma 1(11), 3587–3597 (1994) [Sect. 8.1.3]Google Scholar
  188. Horiuchi, R., Sato, T.: Particle simulation study of collisionless driven reconnection in a sheared magnetic field. Phys. Plasma 4(2), 277–289 (1997) [Sects. 8.2.1, 8.6, 8.5.6 and 11.2]Google Scholar
  189. Horiuchi, R., Pei, W., Sato, T.: Collisionless driven reconnection in an open system. Earth Planet Space 53(6), 439–445 (2001) [Sects. 8.2.1 and 8.6]Google Scholar
  190. Horwitz, J.L., Gallagher, D.L., Peterson, W.K. (eds): Geospace Mass and Energy Flow, p. 393. American Geophysical Union, Washington (1998) [Intr.]Google Scholar
  191. Hoyng, P., Brown, J.C., van Beek, H.F.: High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Sol. Phys. 48(1), 197–254 (1976) [Sect. 17.3.2]Google Scholar
  192. Hudson, H., Ryan, J.: High-energy particles in solar flares. Ann. Rev. Astron. Astrophys. 33, 239–282 (1995) [Sects. 9.2.1 and 11.1]Google Scholar
  193. Hudson, H.S., Lemen, J.R., St. Cyr, O.C., et al.: X-ray coronal changes during halo CMEs. Geophys. Res. Lett. 25(14), 2481–2484 (1998) [Sect. 4.3.5]Google Scholar
  194. Hurford, G.J., Schwartz, R.A., Krucker, S., et al.: First gamma-ray images of a solar flare. Astrophys. J. 595(2), L77–L80 (2003) [Intr.]Google Scholar
  195. Hurley, K., Boggs, S.E., Smith, D.M., et al.: An exceptionally bright flare from SGR 1806-20 and the origins of short-duration gamma-ray bursts. Nature 434(7037), 1098–1103 (2005) [Intr.]Google Scholar
  196. Ichimoto, K., Hirayama, T., Yamaguchi, A., et al.: Effective geometrical thickness and electron density of a flare of 1991 December 2. Publ. Astron. Soc. Jpn. 44(5), L117–L122 (1992) [Intr.]Google Scholar
  197. Imshennik, V.S., Syrovatskii, S.I.: Two-dimensional flow of an ideally conducting gas in the vicinity of the zero line of a magnetic field. Sov. Phys. – JETP 25(4), 656–664 (1967) [Sects. 2.4.1 and 2.4.2]Google Scholar
  198. Ip, J.T.C., Sonnerup, B.U.: Resistive tearing instability in a current sheet with coplanar viscous stagnation-point flow. J. Plasma Phys. 56(2), 265–284 (1996) [Sect. 13.5]Google Scholar
  199. Iroshnikov, P.S.: Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. – AJ. 7(4), 566–571 (1964) [Sect. 14.1]Google Scholar
  200. Isliker, H.: Structural properties of the dynamics in flares. Sol. Phys. 141(2), 325–334 (1992) [Sect. 11.2]Google Scholar
  201. Jacobsen, C., Carlqvist, P.: Solar flares caused by circuit interruptions. Icarus 3(3), 270–272 (1964) [Sect. 16.2]Google Scholar
  202. Jahnke, E., Emde, F., Losch, F.: Tables of Higher Funtions. McGraw-Hill, New York (1960) [Sect. 9.5.1]Google Scholar
  203. Jain, R., Pradhan, A.K., Joshi, V., et al.: The Fe-like feature of the X-ray spectrum of solar flares: first results from the SOXS Mission. Sol. Phys. 239(1), 217–237 (2006) [Sect. 8.6]Google Scholar
  204. Janicke, L.: The resistive tearing mode in weakly two-dimensional neutral sheets. Phys. Fluid 23(9), 1843–1849 (1980) [Sect. 13.1.2]Google Scholar
  205. Janicke, L.: Resistive tearing mode in coronal neutral sheets. Sol. Phys. 76(1), 29–43 (1982) [Sect. 13.1.2]Google Scholar
  206. Ji, H., Huang, G., Wang, H., et al.: Converging motion of Hα conjugate kernels: the signature of fast relaxation of a sheared magnetic field. Astrophys. J. 636(2), L173–L174 (2006) [Sects. 7.2.2 and 7.5.1]Google Scholar
  207. Ji, H., Huang, G., Wang, H.: The relaxation of sheared magnetic fields: a contracting process. Astrophys. J. 660(1), 893–900 (2007) [Sects. 7.2.2 and 7.5.1]Google Scholar
  208. Joshi, B., Veronig, A., Cho, K.-S., et al.: Magnetic reconnection during the two-phase evolution of a solar eruptive flare. Astrophys. J. 707(2), 1435–1450 (2009) [Sect. 7.5.1]Google Scholar
  209. Kadomtsev, B.B.: Hydrodynamic stability of a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 153–198. Consultants Bureau, New York (1966) [Sect. 5.1.2]Google Scholar
  210. Kadomtsev, B.B.: Collective Phenomena in Plasma, p. 238. Nauka, Moscow (1976) (in Russian) [Sect. 8.4.1]Google Scholar
  211. Kan, J.R., Akasofu, S.I., Lee, L.C.: A dynamo theory of solar flares. Sol. Phys. 84(1), 153–167 (1983) [Sect. 5.1.3]Google Scholar
  212. Karpen, J.T., Antiochos, S.K., De Vore, C.R.: Coronal current sheet formation: the effect of asymmetric and symmetric shears. Astrophys. J. 382(1), 327–337 (1991) [Sects. 16.2 and 16.4]Google Scholar
  213. Karpen, J.T., Antiochos, S.K., De Vore, C.R., et al.: Dynamic responses to reconnection in solar arcades. Astrophys. J. 495(1), 491–501 (1998) [Sects. 4.1.2 and 12.1]Google Scholar
  214. Kivelson, M.G., Russell, C.T. (eds): Introduction to Space Physics, p. 568. Cambridge University Press, Cambridge (1995) [Intr., Sect. 10.2.3]Google Scholar
  215. Klein, K.-L., Chupp, E.L., Trottet, G., et al.: Flare-associated energetic particles in the corona and at 1 AU. Astron. Astrophys. 348(1), 271–285 (1999) [Sect. 11.4]Google Scholar
  216. Klein, K.-L., Trottet, G., Lantos, P., et al.: Coronal electron acceleration and relativistic proton production during the 14 July 2000 flare and CME. Astron. Astrophys. 373, 1073–1082 (2001) [Sect. 7.2.2]Google Scholar
  217. Kokubun, S., Kamide, Y. (eds): Substorms-4, p. 823. Kluwer, Dordrecht/Terra Scientific Publishing, Tokyo (1998) [Intr., Sect. 13.6]Google Scholar
  218. Kontorovich, V.M.: On the interaction between small perturbations and the discontinuities in MHD and the stability of shock waves. Sov. Phys. – JETP 8(5), 851–858 (1959) [Sect. 12.2]Google Scholar
  219. Kopp, R.A., Pneuman, G.W.: Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50(1), 85–94 (1976) [Sect. 7.4.1]Google Scholar
  220. Koppenfels, W., Stallmann, F.: Praxis der Konformen Abbildung. Springer, Berlin/Goettingen/ Heidelberg (1959) [Sect. 3.3]MATHCrossRefGoogle Scholar
  221. Korchak, A.A.: Possible mechanisms for generating hard X-rays in solar flares. Sov. Astron. – AJ 11(2), 258–263 (1967) [Sect. 17.1]Google Scholar
  222. Korchak, A.A.: On the origin of solar flare X-rays. Sol. Phys. 18(2), 284–304 (1971) [Sect. 17.1]Google Scholar
  223. Korchak, A.A.: Coulomb losses and the nuclear composition of the solar flare accelerated particles. Sol. Phys. 66(1), 149–158 (1980) [Sect. 9.6.1]Google Scholar
  224. Kosovichev, A.G., Zharkova, V.V.: Magnetic energy release and transients in the solar flare of 2000 July 14. Astrophys. J. 550(Part 2), L105–L108 (2001) [Sects. 7.1.2 and 7.3]Google Scholar
  225. Kosugi, T.: Solar flare energy release and particle acceleration as revealed by YohkohHXT. In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics, pp. 267–276. American Institute of Physics, New York (1996) [Sects. 9.2.1 and 11.4.2]Google Scholar
  226. Kosugi, T., Somov, B.: Magnetic reconnection and particle acceleration in solar flares. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma astrophysics: Five Years of Yohkoh and Beyond, pp. 297–306. Kluwer, Dordrecht (1998) [Intr., Sect. 11.4.2]Google Scholar
  227. Kosugi, T., Dennis, B.R., Kai, K.: Energetic electrons in impulsive and extended solar flares as deduced from flux correlation between hard X-rays and microwaves. Astrophys. J. 324, 1118–1127 (1988) [Sects. 6.2.6 and 9.7]Google Scholar
  228. Kosugi, T., Makishima, K., Murakami, T., et al.: The hard X-ray telescope (HXT) for the Solar-A mission. Sol. Phys. 136(1), 17–36 (1991) [Intr., Sect. 6.1]Google Scholar
  229. Kosugi, T., Sakao, T., Masuda, S., et al.: Hard and soft X-ray observations of a super-hot thermal flare of 6 February, 1992. In: Enome, S., Hirayama, T. (eds.) New Look at the Sun with Emphasis on Advanced Observations of Coronal Dynamics and Flares, pp. 127–129 (1994) (Proceedings of Kofu Symposium, Kofu, 6–10 Sept 1993) [Sect. 9.1.1]Google Scholar
  230. Kosugi, T., Matsuzaki, K., Sakao, T., et al.: The Hinode (Solar-B) mission: an overview. Sol. Phys. 243(1), 3–17 (2007) [Intr., Sects. 16.6 and 17.4.2]Google Scholar
  231. Kovalev, V.A., Somov, B.V.: The role of collisions in the particle acceleration in solar-flare magnetic traps. Astron. Lett. 29(6), 465–472 (2003) [Sect. 14.3.1]Google Scholar
  232. Kraichnan, R.H.: Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluid 8(7), 1385–1389 (1965) [Sect. 14.1]Google Scholar
  233. Krause, F., Rädler, K.-H.: Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford (1980) [Sect. 14.1]MATHGoogle Scholar
  234. Krucker, S., Benz, A.O.: Are heating events in the quiet solar corona small flares? Multiwavelength observations of individual events. Sol. Phys. 191(2), 341–358 (2000) [Sect.  14.4]
  235. Krucker, S., Benz, A.O., Aschwanden, M.J.: Yohkohobservation of the source regions of solar narrowband, millisecond spike events. Astron. Astrophys. 317(2), 569–579 (1997) [Sect. 11.4]Google Scholar
  236. Krucker, S., Hurford, G.J., Lin, R.P.: Hard X-ray source motions in the 2002 July 23 gamma-ray flare. Astrophys. J. 595, L103–L106 (2003) [Intr., Sects. 6.2.6, 7.4.1 and 9.1.2]Google Scholar
  237. Krucker, S., Hudson, H.S., Jeffrey, N.L.S., et al.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739(2), id. 96 (7pp) (2011) [Sects. 6.2.6, 16.6, 17.4.2 and 17.5]Google Scholar
  238. Kubát, J., Karlický, M.: Electric conductivity in the solar photosphere and chromosphere. Bull. Astron. Inst. Czechosl. 37(3), 155–163 (1986) [Sect. 15.2.2]Google Scholar
  239. Kundt, W.: Astrophysics: A Primer, p. 183. Springer, New York/Berlin/Heidelberg/Tokyo (2001) [Intr.]Google Scholar
  240. Kurths, J., Herzel, H.: Can a solar pulsation event be characterized by a low-dimensional chaotic attractor? Sol. Phys. 10(1), 39–45 (1986) [Sect. 11.2]Google Scholar
  241. Kurths, J., Benz, A., Aschwanden, M.J.: The attractor dimension of solar decimetric radio pulsation. Astron. Astrophys. 248(1), 270–276 (1991) [Sect. 11.2]Google Scholar
  242. Kusano, K.: Simulation study of the formation mechanism of sigmoidal structure in the solar corona. Astrophys. J. 631(2), 1260–1269 (2005) [Sects. 7.6 and 14.2.2]Google Scholar
  243. Kusano, K., Nishikawa, K.: Bifurcation and stability of coronal arcades in a linear force-free field. Astrophys. J. 461(1), 415–423 (1996) [Sects. 4.1.2 and 5.1.1]Google Scholar
  244. Laming, J.M., Drake, J.J.: Stellar coronal abundances. VI. The FIP effect and ξ Bootis A – Solar-like anomalies. Astrophys. J. 516(1), 324–334 (1999) [Sect. 15.4]Google Scholar
  245. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn., p. 165. Pergamon Press, Oxford/London/Paris (1976) [Sects. 5.2.4 and 11.2]Google Scholar
  246. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, p. 460. Pergamon Press, Oxford/New York (1984) [Sect. 12.2.2]Google Scholar
  247. LaRosa, T.N., Moore, R.L.: A mechanism for bulk energization in solar flares: MHD turbulent cascade. Astrophys. J. 418(2), 912–918 (1993) [Sect. 14.1]Google Scholar
  248. LaRosa, T.N., Moore, R.L., Miller, J.A., et al.: New promise for electron bulk energization in solar flares: preferential Fermi acceleration of electrons over protons in reconnection-driven MHD turbulence. Astrophys. J. 467(1), 454–464 (1996) [Sect. 14.3.1]Google Scholar
  249. Lau, Y.-T.: Magnetic nulls and topology in a class of solar flare models. Sol. Phys. 148(2), 301–324 (1993) [Sects. 4.2.1 and 16.3]Google Scholar
  250. Lau, Y.-T., Finn, J.M.: Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672–691 (1990) [Sect. 4.2.5]Google Scholar
  251. Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, p. 736. Nauka, Moscow (1973) (in Russian) [Sects. 3.3, 3.4.1 and 16.3]Google Scholar
  252. Leamon, R.J., Smith, C.W., Ness, N.F., et al.: Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103(A3), 4775–4787 (1998) [Sect. 14.1]Google Scholar
  253. Ledentsov, L.S., Somov, B.V.: On discontinuos plasma flows in the vicinity of reconnecting current layers in solar flares. Astron. Lett. 37(2), 131–140 (2011) [Sect. 3.4.3]Google Scholar
  254. Lembege, B., Pellat R.: Stability of a thick two-dimensional quasi-neutral sheet. Phys. Fluid 25(11), 1995–2004 (1982) [Sects. 11.1.3 and 13.6]Google Scholar
  255. Lesch, H., Pohl, M.: A possible explanation for intraday variability in active galactic nuclei. Astron. Astrophys. 254(1), 29–38 (1992) [Sect. 10.3]Google Scholar
  256. Li, Y.P., Gan, W.Q.: The shrinkage of flare radio loops. Astrophys. J. 629(2), L137–L139 (2005) [Sects. 7.5.1 and 9.7]Google Scholar
  257. Li, C., Tang, Y.H., Dai, Y., et al.: The acceleration characteristics of solar energetic particles in the 2000 July 14 event. Astron. Astrophys. 461(3), 1115–1119 (2007) [Sect. 6.2.5]Google Scholar
  258. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion, p. 314. Springer, New York (1983) [Sect. 11.2]Google Scholar
  259. Lilensten, J. (ed.): Space Weather, Research Towards Applications in Europe, p. 330. Springer, Dordrecht (2007) [Intr., Sect. 10.2.3]Google Scholar
  260. Lin, R.P., Hudson, H.S.: 10-100 keV electron acceleration and emission from solar flares. Sol. Phys. 17(2), 412–435 (1971) [Sect. 17.3.1]Google Scholar
  261. Lin, R.P., Schwartz, R.A., Pelling, R.M., et al.: A new component of hard X-rays in solar flares. Astrophys. J. 251(2), L109–L114 (1981) [Sect. 8.5.5]Google Scholar
  262. Lin, Y., Wei, X., Zhang, H.: Variations of magnetic fields and electric currents associated with a solar flare. Sol. Phys. 148(1), 133–138 (1993) [Sect. 4.1.1]Google Scholar
  263. Lin, R.P., Larson, D., McFadden, J., et al.: Observations of an impulsive solar electron event extending down to ∼ 0.5 keV energy. Geophys. Res. Lett. 23(10), 1211–1214 (1996) [Sect. 11.4]Google Scholar
  264. Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Sol. Phys. 210(1), 3–32 (2002) [Intr., Sects. 9.1.1 and 17.4.2]Google Scholar
  265. Lin, R.P., Krucker, S., Hurford, G.J., et al.: RHESSIobservations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. 595(2), L69–L76 (2003a) [Intr., Sects. 6.2.6, 9.1.2 and 9.7]Google Scholar
  266. Lin, R.P., Krucker, S., Holman, G.D., et al.: In: Kajita, T., Asaoka, Y., Kawachi, A., et al. (eds.) Proceedings of the 28th International Cosmic Ray Conference, p. 3207. Universal Academy Press, Tokyo (2003b) [Sect. 9.5.3]Google Scholar
  267. Litvinenko, Y.E.: Regular versus chaotic motion of particles in non-neutral current sheets. Sol. Phys. 147(2), 337–342 (1993) [Sect. 11.2]Google Scholar
  268. Litvinenko, Y.E.: Interpretation of particle acceleration in a simulation study of collisionless reconnection. Phys. Plasma 4(9), 3439–3441 (1997) [Sect. 11.2]Google Scholar
  269. Litvinenko, Y.E.: Photospheric reconnection and cancelling magnetic features on the Sun. Astrophys. J. 515(1), 435–440 (1999) [Sects. 14.4 and 15.2.1]Google Scholar
  270. Litvinenko, Y.E., Somov, B.V.: Electron acceleration in current sheets in solar flares. Sov. Astron. Lett. 17(5), 353–356 (1991) [Sect. 11.1]Google Scholar
  271. Litvinenko, Y.E., Somov, B.V.: Particle acceleration in reconnecting current sheets. Sol. Phys. 146(1), 127–133 (1993) [Sects. 11.2 and 11.3]Google Scholar
  272. Litvinenko, Y.E., Somov, B.V.: Electromagnetic expulsion force in cosmic plasma. Astron. Astrophys. 287(1), L37–L40 (1994a) [Sect. 7.3]Google Scholar
  273. Litvinenko, Y.E., Somov, B.V.: Magnetic reconnection in the temperature minimum and prominence formation. Sol. Phys. 151(2), 265–270 (1994b) [Sects. 7.3, 14.4 and 15.2.1]Google Scholar
  274. Litvinenko, Y.E., Somov, B.V.: Relativistic acceleration of protons in current sheets of solar flares. Sol. Phys. 158(1), 317–330 (1995) [Sects. 11.3.3 and 11.4]Google Scholar
  275. Litvinenko, Y.E., Somov, B.V.: Aspects of the global MHD equilibria and filament eruptions in the solar corona. Space Sci. Rev. 95(1), 67–77 (2001) [Sect. 7.3]Google Scholar
  276. Liu, Y., Zhang, H.: Relationship between magnetic field evolution and major flare event on July 14, 2000. Astron. Astrophys. 372(3), 1019–1029 (2001) [Sects. 6.1, 6.2.3, 6.2.4, 6.2.6, 7.2.3 and 7.3]Google Scholar
  277. Liu, Y., Zhang, H.: Analysis of a delta spot. Astron. Astrophys. 386(2), 648–652 (2002) [Sect. 6.1]Google Scholar
  278. Liu, Y., Srivastava, N., Prasad, D., et al.: A possible explanation of reversed magnetic field features observed in NOAA AR 7321. Sol. Phys. 158(1), 249–258 (1995) [Sect. 15.3]Google Scholar
  279. Liu, C., Deng, N., Liu, Y., et al.: Rapid change of δ spot structure associated with seven major flares. Astrophys. J. 622(1), 722–736 (2005) [Sects. 4.1.1 and 4.1.3]Google Scholar
  280. Liu, S., Petrosian, V., Mason, G.M.: Stochastic acceleration of 3He and 4He in solar flares by parallel-propagating plasma waves: general results. Astrophys. J. 636(1), 462–474 (2006) [Sect. 14.3.2]Google Scholar
  281. Liu, W., Petrosian, V., Dennis, B.R., et al.: Double coronal hard and soft X-ray source observed by RHESSI: evidence of magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676(1), 704–716 (2008) [Sects. 7.2.2, 7.4.4 and 9.1.4]Google Scholar
  282. Liu, W., Petrosian, V., Dennis, B.R., et al.: Conjugate hard X-ray footpoints in the 2003 29 X10 flare: unshearing motions, correlations, and asymmetries. Astrophys. J. 693(1), 847–867 (2009) [Sects. 7.4.4, 7.5.1 and 7.5.2]Google Scholar
  283. Longcope, D.W.: Topology and current ribbons: a model for current, reconnection and flaring. Sol. Phys. 169(1), 91–121 (1996) [Sects. 5.3.2, 6.2.3 and 6.2.4]Google Scholar
  284. Longcope, D.W., Beveridge, C.: A quantitative topological model of reconnection and flux rope formation. Astrophys. J. 669(1), 621–635 (2007) [Sect. 8.6]Google Scholar
  285. Longcope, D.W., Cowley, S.C.: Current sheet formation along 3D magnetic separators. Phys. Plasma 3(8), 2885–2897 (1996) [Sects. 4.2.4, 5.1.1 and 6.2.3]Google Scholar
  286. Longcope, D.W., Silva, A.V.R.: A current ribbon model for energy storage and release with application to the flare of 7 January 1992. Sol. Phys. 179(2), 349–377 (1998) [Intr., Sects. 5.3.2 and 8.6]Google Scholar
  287. Longcope, D.W., McKenzie, D.E., Cirtain, J., et al.: Observations of separator reconnection to an emerging active region. Astrophys. J. 630(1), 596–614 (2005) [Sects. 5.1.3 and 5.3.3]Google Scholar
  288. Longmire, C.L.: Elementary Plasma Physics, p. 296. Interscience Publishing, New York/London (1963) [Sect. 11.3]Google Scholar
  289. Low, B.C.: Electric current sheet formation in a magnetic field induced by footpoint displacements. Astrophys. J. 323(1), 358–367 (1987) [Sect. 2.1.4]Google Scholar
  290. Low, B.C.: On the spontaneous formation of current sheets above a flexible solar photosphere. Astrophys. J. 381(1), 295–305 (1991) [Sects. 16.2 and 16.3]Google Scholar
  291. Low, B.C., Smith, D.F.: The free energies of partially open coronal magnetic fields. Astrophys. J. 410(1), 412–425 (1993) [Sect. 16.2]Google Scholar
  292. Low, B.C., Wolfson, R.: Spontaneous formation of current sheets and the origin of solar flares. Astrophys. J. 324(1), 574–581 (1988) [Sect. 2.1.4]Google Scholar
  293. Lu, E.T., Hamilton, R.J.: Avalanches and distribution of solar flares. Astrophys. J. 380(2), L89–L92 (1991) [Sect. 14.1]Google Scholar
  294. Lyon J.G.: The solar wind-magnetosphere-ionosphere system. Science 288, 1987–1991 (2000) [Sect. 10.2.3]Google Scholar
  295. Mackay, D.H., Priest, E.R., Gaizauskas, V. et al.: Role of helicity in the formation of intermediate filaments. Sol. Phys. 180(1), 299–312 (1998) [Sect. 15.3]Google Scholar
  296. Mandrini, C.H., Machado, M.E.: Large-scale brightenings associated with flares. Sol. Phys. 141(1), 147–164 (1993) [Sect. 5.3.2]Google Scholar
  297. Mandrini, C.H., Demoulin, P., Hénoux, J.C., et al.: Evidence for the interaction of large scale magnetic structures in solar flares. Astron. Astrophys. 250(2), 541–547 (1991) [Intr., Sect. 5.3.2]Google Scholar
  298. Mandrini, C.H., Rovira, M.G., Demoulin, P., et al.: Evidence for reconnection in large-scale structures in solar flares. Astron. Astrophys. 272(2), 609–620 (1993) [Intr., Sect. 5.3.2]Google Scholar
  299. Manoharan, P.K., Tokumaru, M., Pick, M., et al.: Coronal mass ejection of 2000 July 14 flare event: imaging from near-sun to Earth environment. Astrophys. J. 559(2), 1180–1189 (2001) [Sects. 7.1.1, 7.1.2 and 7.2.2]Google Scholar
  300. Markovskii, S.A., Skorokhodov, S.L.: Disintegration of trans-Alfvénic shocks due to variable viscosity and resistivity. J. Geophys. Res. 105(A6), 12702–12711 (2000) [Sect. 3.4.3]Google Scholar
  301. Markovskii, S.A., Somov, B.V.: A model of magnetic reconnection in a current sheet with shock waves. In: Fizika Solnechnoi Plasmy (Physics of Solar Plasma), pp. 456–472. Nauka, Moscow (1989) (in Russian) [Sect. 3.2]Google Scholar
  302. Markovskii, S.A., Somov, B.V.: A criterion for splitting of a reconnecting current sheet into MHD discontinuities. J. Plasma Phys. 55(3), 303–325 (1996) [Sect. 12.2]Google Scholar
  303. Marsh, G.E.: Force-Free Magnetic Fields: Solutions, Topology and Applications, River Edge, p. 159. World Scientific Publishing, London (1996) [Sect. 14.2]Google Scholar
  304. Martens, P.C.H.: The generation of proton beams in two-ribbon flares. Astrophys. J. 330(2), L131–L133 (1988) [Sects. 11.3 and 11.4]Google Scholar
  305. Martin, S.F.: Recent observations of the formation of filaments. In: Coronal and Prominence Plasmas, NASA CP-2442, pp. 73–80. National Aeronautics and Space Administration, Scientific and Technical Information Branch, Washington (1986) [Sects. 7.3 and 15.1]Google Scholar
  306. Martin, S.F.: Conditions for the formation and maintenance of filaments. Sol. Phys. 182(1), 107–137 (1998) [Sects. 7.3 and 15.3]Google Scholar
  307. Martin, S.F., Livi, S.H.B., Wang, J.: The cancellation of magnetic flux. II. In a decaying active region. Aust. J. Phys. 38, 929–959 (1985) [Sect. 7.3]Google Scholar
  308. Masuda, S.: Ph.D. thesis, University of Tokyo (1994) [Sect. 9.1.3]Google Scholar
  309. Masuda, S.: Hard X-ray solar flares revealed with YohkohHXT - A review. In: Martens, P.C.H., Cauffman, D.P. (eds.) Multi-wavelength Observations of Coronal Structure and Dynamics, Yohkoh 10th Anniversary Meeting, pp. 351–359. Pergamon, Amsterdam (2002) [Sect. 9.1.1]Google Scholar
  310. Masuda, S., Kosugi, T., Hara, H., et al.: A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994) [Intr., Sect. 9.1.1]Google Scholar
  311. Masuda, S., Kosugi, T., Hara, H., et al.: Hard X-ray sources and the primary energy-release site in solar flares. Publ. Astron. Soc. Jpn. 47, 677–689 (1995) [Intr.]Google Scholar
  312. Masuda, S., Kosugi, T., Sakao, T., et al.: Coronal hard X-ray sources in solar flares observed with Yohkoh/HXT. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 259–267. Kluwer, Dordrecht (1998) [Sect. 9.1.1]Google Scholar
  313. Masuda, S., Kosugi, T., Hudson, H.S.: A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Sol. Phys. 204(1), 57–69 (2001) [Intr., Sects. 6.1, 6.2.3, 6.2.6, 7.1.2, 7.4.1 and 9.7]Google Scholar
  314. Mathieu, J., Scott, J.: An Introduction to Turbulent Flow. Cambridge University Press, New York (2000) [Sect. 14.1.2]MATHGoogle Scholar
  315. Mauas, P.J.: The white-light flare of 1982 June 15 – Observations. Astrophys. J. Suppl. 74, 609–646 (1990) [Sect. 15.2.1]Google Scholar
  316. McIntosh, P.S., Donnelly, R.F.: Properties of white light flares. I: association with Hα flares and sudden frequency deviations. Sol. Phys. 23(2), 444–456 (1972) [Sect. 17.4.2]Google Scholar
  317. McKenzie, D.E., Hudson, H.S.: X-ray observations of motions and structure above a solar flare arcade. Astrophys. J. 519, L93–L96 (1999) [Sects. 9.2.2 and 9.2.5]Google Scholar
  318. Mikhailovskii, A.B.: The Theory of Plasma Instabilities, p. 272. Atomizdat, Moscow (1975) (in Russian) [Sect. 8.4.1]Google Scholar
  319. Milano, L.J., Gómez, D.O., Martens, P.C.H.: Solar coronal heating: AC versus DC. Astrophys. J. 490(1), 442–451 (1997) [Sect.  14.4]Google Scholar
  320. Miller, J.A., Reames, D.V.,: Heavy ion acceleration by cascading Alfvén waves in impulsive solar flares. In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics, pp. 450–460. AIP, Woodbury/New York (1996) [Sect. 14.3.2]Google Scholar
  321. Miller, J.A., LaRosa, T.N., Moore, R.L.: Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares. Astrophys. J. 461(1), 445–464 (1996) [Sect. 14.3.1]Google Scholar
  322. Miroshnichenko, L.I.: Solar Cosmic Rays, p. 480. Kluwer, Dordrecht/Boston/London (2001) [Intr., Sect. 11.1]Google Scholar
  323. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press, London/New York/Melbourne (1978) [Sects. 14.1 and 14.5]Google Scholar
  324. Moiseev, S.S., Chkhetiani, O.G.: Helical scaling in turbulence. JETP 83(1), 192–198 (1996) [Sect. 14.1]Google Scholar
  325. Moore, R.L., Falconer, D.A., Porter, J.G., et al.: On heating the Sun’s corona by magnetic explosions: feasibility in active regions and prospects for quiet regions and coronal holes. Astrophys. J. 526(1), 505–522 (1999) [Sect.  14.4]
  326. Moreton, G.E., Severny, A.B.: Magnetic fields and flares. Sol. Phys. 3(2), 282–297 (1968) [Sect. 5.1.1]Google Scholar
  327. Morita, S., Uchida, Y., Hirose, S., et al.: 3D structure of arcade-type flares derived from the homologous flare series. Sol. Phys. 200(1), 137–156 (2001) [Sects. 7.1.2 and 8.6]Google Scholar
  328. Morozov, A.I., Solov’ev, L.S.: The structure of magnetic fields. In: Leontovich M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 1–101. Consultans Bureau, New York (1966a) [Sect. 16.3]Google Scholar
  329. Mukerjee, K., Agrawal, P., Paul, B., et al.: Pulse characteristics of the X-ray pulsar 4U1907+09. Astrophys. J. 548(1), 368–376 (2001) [Sect. 10.3]Google Scholar
  330. Murty, G.S.: Instabilities of a conducting fluid slab carrying uniform current in the presence of a magnetic field. Ark. Fys. 19(6), 499–510 (1961) [Sect. 13.1.2]Google Scholar
  331. Nagai, T., Fuijimoto, M., Saito, Y., et al.: Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J. Geophys. Res. 103, 4419–4428 (1998) [Intr., Sect. 13.6]Google Scholar
  332. Nakar, E., Piran, T., Sari, R.: Pure and loaded fireballs in Soft Gamma-Ray repeater giant flares. Astrophys. J. 635(1), 516–521 (2005) [Sect. 10.4]Google Scholar
  333. Newkirk, G., Altschuler, M.D.: Magnetic fields and the solar corona. III: the observed connection between magnetic fields and the density structure of the corona. Sol. Phys. 13(1), 131–152 (1970) [Sect. 3.7]Google Scholar
  334. Nishida, A., Nagayama, N.: Synoptic survey for the neutral line in the magnetotail during the substorm expansion phase. J. Geophys. Res. 78(19), 3782–3798 (1973) [Intr.]Google Scholar
  335. Nishida, A., Baker, D.N., Cowley, S.W.H. (eds): New Perspectives on the Earth’s Magnetotail, p. 339. American Geophysical Union, Washington (1998) [Intr.]Google Scholar
  336. Nishikawa, K.I., Sakai, J.: Stabilizing effect of a normal magnetic field on the collisional tearing mode. Phys. Fluid 25(8), 1384–1387 (1982) [Sect. 13.4]Google Scholar
  337. Ogawara, Y., Takano, T., Kato, T., et al.: The Solar-A mission: an overview. Sol. Phys. 136(1), 1–16 (1991) [Intr., Sect. 6.1]Google Scholar
  338. Ono, Y., Yamada,M., Akao, T., et al.: Ion acceleration and direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76(18), 3328–3331 (1996) [Sects. 8.2.1 and 8.5.6]Google Scholar
  339. Oreshina, A.V., Somov, B.V.: Slow and fast magnetic reconnection. I. Role of radiative cooling. Astron. Astrophys. 331, 1078–1086 (1998) [Sects. 8.1.2 and 15.2.3]Google Scholar
  340. Oreshina, A.V., Somov, B.V.: Analytical description of charged particle motion in a reconnecting current layer. Astron. Lett. 35(3), 195–206 (2009a) [Sect. 11.1.2]Google Scholar
  341. Oreshina, I.V., Somov, B.V.: Evolution of photospheric magnetic field and coronal zeroth points before solar flares. Astron. Lett. 35(3), 207–213 (2009b) [Sects. 6.3.2 and 6.4.4]Google Scholar
  342. Oreshina, A.V., Oreshina, I.V., Somov, B.V.: Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18. Astron. Astrophys. 538, A138 (2012) [Sects. 6.4.1, 6.4.2, 6.4.3 and 6.4.4]Google Scholar
  343. Ott, E.: Chaotic flows and kinematic magnetic dynamos. Phys. Plasma 5(5), 1636–1646 (1998) [Sect. 14.1]Google Scholar
  344. Otto, A.: The resistive tearing instability for generalized resistive models: theory. Phys. Fluid 3B(7), 1739–1745 (1991) [Sect. 13.1.2]Google Scholar
  345. Ozernoy, L.M., Somov, B.V.: The magnetic field of a rotating cloud and magneto-rotational explosions. Astrophys. Space Sci. 11(2), 264–283 (1971) [Intr.]Google Scholar
  346. Paesold, G., Benz, A.O.: Electron firehose instability and acceleration of electrons in solar flares. Astron. Astrophys. 351, 741–746 (1999) [Sect. 14.3.1]Google Scholar
  347. Paesold, G., Benz, A.O., Klein, K.-L., et al.: Spatial analysis of solar type III events associated with narrow band spikes at metric wavelengths. Astron. Astrophys. 371, 333–342 (2001) [Sect. 11.4]Google Scholar
  348. Pallavicini, R., Serio, S., Vaiana, G.S.: A survey of soft X-ray limb flare images – The relation between their structure in the corona and other physical parameters. Astrophys. J. 216(1), 108–122 (1977) [Sects. 6.1.1 and 8.5.2]Google Scholar
  349. Palmer, I.D., Smerd, S.F.: Evidence for a two-component injection of cosmic rays from the solar flare of 1969, March 30. Sol. Phys. 26(2), 460–467 (1972) [Sect. 11.4]Google Scholar
  350. Park, B.T., Petrosian, V., Schwartz, R.A.: Stochastic acceleration and photon emission in electron-dominated solar flares. Astrophys. J. 489(1), 358–366 (1997) [Sect. 14.3.4]Google Scholar
  351. Parker, E.N.: Suprathermal particle generation in the solar corona. Astrophys. J. 128(2), 677–685 (1958) [Sect. 3.7]Google Scholar
  352. Parker, E.N.: Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174(1), 499–510 (1972) [Sects. 2.1.4 and 14.1]Google Scholar
  353. Parker, E.N.: Cosmic Magnetic Fields. Their Origin and Their Activity, p. 841. Clarendon Press, Oxford (1979) [Sects. 8.1 and 14.1]Google Scholar
  354. Parker, E.N.: Nanoflares and the solar X-ray corona. Astrophys. J. 330(1), 474–479 (1988) [Sects. 14.1 and 14.4]Google Scholar
  355. Parker, E.N.: A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408(2), 707–719 (1993) [Sect. 14.1]Google Scholar
  356. Parnell, C.E.: Multiply connected source and null pairs. Sol. Phys. 242(1), 21–41 (2007) [Sect. 4.3.4]Google Scholar
  357. Pellat, R., Coroniti, F.V., Pritchett, P.L.: Does ion tearing exist? Geophys. Res. Lett. 18(2), 143–146 (1991) [Sect. 13.1.2]Google Scholar
  358. Peratt, A.L.: Physics of the Plasma Universe, p. 342. Springer, New York/Berlin/Heidelberg (1992) [Intr.]Google Scholar
  359. Peres, G., Rosner, R., Serio, S., et al.: Coronal closed structures. 4. Hydrodynamical stability and response to heating perturbations. Astrophys. J. 252(2), 791–799 (1982) [Sect. 15.2.3]Google Scholar
  360. Peterson, L.E., Winckler, J.B.: Gamma-ray burst from a solar flare. J. Geophys. Res. 64(7), 697–707 (1959) [Sects. 17.1 and 11.1.3]Google Scholar
  361. Petrosian, V.: Impulsive solar X-ray bursts: bremsstrahlung radiation from a beam of electrons in the solar chromosphere and the total energy of solar flares. Astrophys. J. 186(1), 291–304 (1973) [Sect. 17.4.1]Google Scholar
  362. Petrosian, V., Donaghy, T.Q., McTiernan, J.M.: Loop top hard X-ray emission in solar flares: images and statistics. Astrophys. J. 569(1), 459–473 (2002) [Sects. 9.1.1 and 9.1.3]Google Scholar
  363. Petrovskii, I.G.: Lectures on the Theory of Ordinary Differential Equations, p. 272. Nauka, Moscow (1964) (in Russian) [Sect. 4.2.3]Google Scholar
  364. Petschek, H.E.: Magnetic field annihilation. In: Hess, W.N. (ed.) AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, pp. 425–439. NASA, Scientific and Technical Information Division, Washington (1964) [Sects. 3.1, 3.4.3, 12.1 and 12.6]Google Scholar
  365. Pevtsov, A.A.: Transequatorial loops in the solar corona. Astrophys. J. 531(1), 553–560 (2000) [Sect. 5.3.3]Google Scholar
  366. Pevtsov, A.A., Longcope, D.W.: NOAA 7926: a kinked Ω-loop? Astrophys. J. 508(2), 908–915 (1998) [Sect. 4.3.3]Google Scholar
  367. Pevtsov, A.A., Canfield, R.C., Zirin, H.: Reconnection and helicity in a solar flare. Astrophys. J. 473(1), 533–538 (1996) [Sects. 4.3.3 and 14.2]Google Scholar
  368. Pike, C.D., Mason, H.E.: Rotating transition region features observed with the SOHO CDS, coronal diagnostic spectrometer. Sol. Phys. 182(2), 333–348 (1998) [Sect. 15.5]Google Scholar
  369. Pneuman, G.W.: Magnetic structure responsible for coronal disturbances. In: Newkirk, G. (ed.) Coronal Disturbances, (IAU Symposium. 57), pp. 35–68. D. Reidel Publishing, Dordrecht/Boston (1974) [Sect. 13.1.2]Google Scholar
  370. Pneuman, G.W.: The formation of solar prominences by magnetic reconnection and condensation. Sol. Phys. 88(2), 219–239 (1983) [Sect. 15.1]Google Scholar
  371. Podgornii, A.I., Syrovatskii, S.I.: Formation and development of a current sheet for various magnetic viscosities and gas pressures. Sov. J. Plasma Phys. 7(5), 580–584 (1981) [Sects. 12.1 and 12.5]Google Scholar
  372. Pollard, R.K., Taylor, Y.B.: Influence of equilibrium flows on tearing modes. Phys. Fluid 22(1), 126–131 (1979) [Sect. 13.5]Google Scholar
  373. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000) [Sect. 14.1.2]MATHCrossRefGoogle Scholar
  374. Porter, L.J., Klimchuk, J.A., Sturrock, P.A.: Cylindrically symmetric force-free magnetic fields. Astrophys. J. 385(2), 738–745 (1992) [Sect. 16.2]Google Scholar
  375. Priest, E.R.: Solar Magnetohydrodynamics, p. 472. D. Reidel Publishing, Dordrecht/Boston/ London (1982) [Sects. 3.1, 14.4 and 16.2]Google Scholar
  376. Priest, E.R., Forbes, T.: Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press, Cambridge (2000) [Intr., Sects. 3.1 and 8.6]CrossRefGoogle Scholar
  377. Priest, E.R., Titov, V.S., Vekstein, G.E., et al.: Steady linear X-point magnetic reconnection. J. Geophys. Res. 99(A11), 21467–21479 (1994) [Sect. 15.2.3]Google Scholar
  378. Qiu, J., Lee, J., Gary, D.E.: Impulsive and gradual nonthermal emissions in an X-class flare. Astrophys. J. 603(1), 335–347 (2004) [Sects. 6.2.6 and 9.7]Google Scholar
  379. Raadu, M.A.: Global effects of double layers. In: Schrittwieser, R., Eder, G. (eds.) Second Symposium on Plasma Double Layers and Related Topics, p. 3–27. University of Innsbruck, Institute of Theoretical Physics, Innsbruck (1984) [Sect. 16.2]Google Scholar
  380. Ramaty, R., Kozlovsky, B., Lingenfelter, R.E.: Solar gamma rays. Space Sci. Rev. 18, 341–388 (1975) [Sect. 17.4.2]Google Scholar
  381. Ranns, N.D.R., Harra, L.K., Matthews, S.A., et al.: Emerging flux as a driver for homologous flares. Astron. Astrophys 360, 1163–1169 (2000) [Sect. 5.3.2]Google Scholar
  382. Reiman, A.: Minimum energy state of a toroidal discharge. Phys. Fluid 23(1), 230–231 (1980) [Sect. 14.5]Google Scholar
  383. Ren, Y., Yamada, M., Gerhardt, S., et al.: Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 95(5), id. 055003 (2005) [Sect. 2.4.4]Google Scholar
  384. Richmond, A.D.: Modeling the ionosphere wind dynamo: a review. Pure Appl. Geophys. 131(2), 413–435 (1989) [Sect. 15.5.1]Google Scholar
  385. Roald, C.B., Sturrock, P.A., Wolfson, R.: Coronal heating: energy release associated with chromospheric magnetic reconnection. Astrophys. J. 538(2), 960–967 (2000) [Sect.  14.4]Google Scholar
  386. Roikhvarger, Z.B., Syrovatskii, S.I.: Evolutionarity of MHD discontinuities with allowance for dissipative waves. Sov. Phys. – JETP 39(4), 654–656 (1974) [Sects. 3.4.3 and 12.2]Google Scholar
  387. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., et al.: Three-dimensional simulations of disk accretion to an inclined dipole. II. Hot spots and variability. Astrophys. J. 610(2), 929–932 (2004) [Sect. 10.3]Google Scholar
  388. Rose, W.K.: Advanced Stellar Astrophysics, p. 494. Cambridge University Press, Cambridge (1998) [Intr.]Google Scholar
  389. Roumeliotis, G., Moore, R.L.: A linear solution for magnetic reconnection driven by converging or diverging footpoint motions. Astrophys. J. 416(1), 386–391 (1993) [Sect. 15.1]Google Scholar
  390. Runov, A., Angelopoulos, V., Sitnov, M.I., et al.: THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009). doi:  10.1029/2009GL038980[Sect. 9.2.5]ADSCrossRefGoogle Scholar
  391. Russell, C.T.: A brief history of solar-terrestrial physics. In: Kivelson, M.G., Russel, C.T. (eds.) Introduction to Space Physics, pp. 1–26. Cambridge University Press, Cambridge (1995) [Sect. 10.2.2]Google Scholar
  392. Rust, D.M., Hegwer, F.: Analysis of the August 7, 1972 white light flare: light curves and correlation with hard X-rays. Sol. Phys. 40(1), 141–157 (1975) [Sect. 17.4.2]Google Scholar
  393. Rust, D.M., Kumar, A.: Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. 464(2), L199–L202 (1996) [Sect. 4.3.5]Google Scholar
  394. Rust, D.M., Somov, B.V.: Flare loops heated by thermal conduction. Sol. Phys. 93(1), 95–104 (1984) [Sect. 4.3.1]Google Scholar
  395. Ryan, J.M.: Long-duration solar gamma-ray flares. Space Sci. Rev. 93(3/4), 581–610 (2000) [Sect.  11.4.3]
  396. Ryan, J.M., Lockwood, J.A., Debrunner, H.: Solar energetic particles. Space Sci. Rev. 93(1/2), 35–53 (2000) [Sect.  11.4.3]Google Scholar
  397. Sakai, J.I., de Jager, C.: Solar flares and collisions between current-carrying loops. Space Sci. Rev. 77(1), 1–192 (1996) [Sects. 4.3.3 and 16.2]Google Scholar
  398. Sakao, T.: Ph.D. thesis, The University of Tokyo (1994) [Sect. 7.4.2]Google Scholar
  399. Sakao, T., Kosugi, T., Masuda, S.: Energy release in solar flares with respect to magnetic loops. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 273–284 Kluwer Academic Publishing, Dordrecht (1998) [Sects. 5.3.1, 6.1 and 7.4.2]Google Scholar
  400. Sato, J.: Ph.D. thesis, Graduate University of Advanced Science, Tokyo (1997) [Sect. 9.1.1]Google Scholar
  401. Sato, J.: Observation of the coronal hard X-ray sources of the 1998 April 23 flare. Astrophys. J. 558, L137–L140 (2001) [Sect. 9.1.1]Google Scholar
  402. Sato, J., Kosugi, T., Makishima, K.: Improvement of Yohkoh hard X-ray imaging. Publ. Astron. Soc. Jpn. 51, 127–150 (1999) [Sects. 9.1.1 and 9.1.2]Google Scholar
  403. Sato, J., Sawa, M., Yoshimura, K., et al.: The Yohkoh HXT/SXT Flare Catalogue. Montana State University, Montana/Institute of Space and Astronautical Science, Sagamihara (2003) [Sect. 9.1.3]Google Scholar
  404. Schabansky, V.P.: Some processes in the magnetosphere. Space Sci. Rev. 12(3), 299–418 (1971) [Sect. 11.3]Google Scholar
  405. Scherrer, P.H., Bogart, R.S., Bush, R.I., et al.: The solar oscillations investigation – Michelson Doppler Imager. Sol. Phys. 162(1), 129–188 (1995) [Intr., Sect. 6.1]Google Scholar
  406. Schindler, K.: A theory of the substorm mechanism. J. Geophys. Res. 79(19), 2803–2810 (1974) [Sects. 13.1.2 and 13.6.2]Google Scholar
  407. Scholer, M., Sidorenko, I., Jaroschek, C.H., et al.: Onset of collisionless magnetic reconnection in thin current sheets: three-dimensional particle simulations. Phys. Plasma 10(9), 3521–3527 (2003) [Sects. 1.2.1 and 3.5]Google Scholar
  408. Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., et al.: Sustaining the quiet photospheric network: the balance of flux emergence, fragmentation, merging, and cancellation. Astrophys. J. 487(1), 424–436 (1997) [Sect.  14.4]Google Scholar
  409. Schrijver, C.J., DeRosa M.L., Title, A.M., et al.: The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628(1), 501–513 (2005) [Sects. 5.1.3 and 7.2.3]Google Scholar
  410. Schuster, H.G.: Deterministic Chaos. An Introduction, p. 220. Physik-Verlag, Weinheim (1984) [Sect. 11.2]Google Scholar
  411. Sergeev, V., Kubyshkina, M., Alexeev, I., et at.: Study of near-Earth reconnection events with Cluster and Double Star. J. Geophys. Res. 113, A07S36 (2008). doi:  10.1029/2007JA012902[Sect. 9.2.5]
  412. Severny, A.B.: The stability of plasma layer with a neutral-point magnetic field. Sov. Astron. – AJ 6(6), 770–773 (1962) [Sect. 2.1.1]Google Scholar
  413. Severny, A.B.: Solar flares. Ann. Rev. Astron. Astrophys. 2, 363–400 (1964) [Sect. 4.1.1]Google Scholar
  414. Shafranov, V.D.: Plasma equilibrium in a magnetic field. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 103–151. Consultants Bureau, New York (1966) [Sect. 16.3]Google Scholar
  415. Share, G.H., Murphy, R.J., Tulka, A.J., et al.: Gamma-ray line observations of the 2000 July 14 flare and SEP impact on the Earth. Sol. Phys. 204(1), 43–55 (2001) [Sects. 6.2.5 and 7.1.1]Google Scholar
  416. Shay, M.A., Drake, J.F., Denton, R.E., Biskamp, D.: Structure of the dissipative region during collisionless magnetic reconnection. J. Geophys. Res. 103(A5), 9165–9176 (1998) [Sect. 3.5]Google Scholar
  417. Sheeley, N.R. Jr., Bohling, J.D., Brueckner, G.E., et al.: XUV observations of coronal magnetic fields. Sol. Phys. 40(1), 103–121 (1975) [Sect. 5.3.3]Google Scholar
  418. Shibasaki, K.: High-beta disruption in the solar atmosphere. Astrophys. J. 557(1), 326–331 (2001) [Sect. 7.6]Google Scholar
  419. Shibata, K., Masuda, S., Shimojo, M., et al.: Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. 451(2), L83–L86 (1995) [Sect. 7.1.2]Google Scholar
  420. Shimizu, T., Ugai, M.: Magnetohydrodynamic study of adiabatic supersonic and subsonic expansion accelerations in spontaneous fast magnetic reconnection. Phys. Plasma 10(4), 921–929 (2003) [Sect. 3.6]Google Scholar
  421. Simnett, G.M.: Studies of the dynamic corona from SOHO. In: Ramaty, R., Mandzhavidze, N. (eds.) High Energy Solar Physics: Anticipating HESSI. ASP Conference Series, Greenbelt, Maryland, vol. 206, pp. 43–53 (2000) [Sect. 9.2.2]Google Scholar
  422. Sitnov, M.I., Sharma, A.S.: Role of transient electrons and microinstabilities in the tearing instability of the geomagnetotail current sheet, and the general scenario of the substorms as a catastrophe. In: Kokubun, S., Kamide, Y. (eds.) Substorms-4, pp. 539–542. Kluwer, Dordrecht/Terra Scientific Publishing, Tokyo (1998) [Sect. 13.6]Google Scholar
  423. Sitnov, M.I., Malova, H.V., Lui, A.T.Y.: Quasi-neutral sheet tearing instability induced by electron preferential acceleration from stochasticity. J. Geophys. Res. 102(A1), 163–173 (1997) [Sect. 13.6]Google Scholar
  424. Shmeleva, O.P., Syrovatskii, S.I.: Distribution of temperature and emission measure in a steadily heated solar atmosphere. Sol. Phys. 33(2), 341–362 (1973) [Sect. 17.4.1]Google Scholar
  425. Smets, R., Delcourt, D., Sauvaud, J.A., et al.: Electron pitch angle distributions following the dipolarization phase of a substorm: interball-tail observations and modeling. J. Geophys. Res. 104(A7), 14571–14576 (1999) [Sects. 9.7 and 9.8]Google Scholar
  426. Smith, H.J., Smith, E.v.P.: Solar Flares, p. 426. Macmillan, New York (1963) [Sect. 4.1.1]Google Scholar
  427. Somov, B.V.: X-ray heating of a low-temperature region in chromospheric flares. Sol. Phys. 42(1), 235–246 (1975) [Sect. 17.4.2]Google Scholar
  428. Somov, B.V.: Comments on hydrodynamic models for the influence of flares upon the chromosphere. Sov. Astron. Lett. 6(5), 312–315 (1980) [Sect. 17.4.2]Google Scholar
  429. Somov, B.V.: Fast reconnection and transient phenomena with particle acceleration in the solar corona. Bull. Acad. Sci. USSR, Phys. Ser. 45(4), 114–116 (1981) [Sects. 8.1.1, 10.1 and 11.4.2]Google Scholar
  430. Somov, B.V.: New theoretical models of solar flares. Sov. Phys. Usp. 28(3), 271–272 (1985) [Sects.  4.3.5, 8.6 and 16.3]
  431. Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163(1), 210–218 (1986) [Sects.  4.3.5 and 8.6]
  432. Somov, B.V.: A scenario for the large-scale magnetic field evolution in CMEs. J. Geomag. Geoelectr. 43(Suppl), 31–36 (1991) [Sect. 9.2.2]Google Scholar
  433. Somov, B.V.: Physical Processes in Solar Flares, p. 248. Kluwer, Dordrecht/Boston/London (1992) [Sects. 3.1, 4.2.4, 4.3.3, 6.1, 8.2.1, 8.2.2, 8.3.1, 8.3.2, 8.3.3, 8.4.1, 8.4.2, 8.5.3, 10.1, 11.1, 11.2, 11.3, 12.1, 13.5, 13.6, 16.2, 17.4.1 and 17.4.2]Google Scholar
  434. Somov, B.V.: Cosmic electrodynamics and solar physics. Bull. Russ. Acad. Sci. Phys. 63(8), 1157–1162 (1999) [Sect.  14.4]
  435. Somov, B.V.: Cosmic Plasma Physics, p. 652. Kluwer, Dordrecht/Boston/London (2000) [Intr., Sects. 8.5.2 and 8.6]Google Scholar
  436. Somov, B.V.: On the topological trigger of large eruptive solar flares. Astron. Lett. 34(9), 635–645 (2008a) [Sects. 4.2.3, 6.3.1, 6.3.2 and 6.4.1]Google Scholar
  437. Somov, B.V.: Magnetic reconnection and topological trigger in physics of large solar flares. Asian J. Phys. 17(2–3), 421–454 (2008b). [Sects. 4.2.3, 6.3.1, 6.3.2 and 6.4.1]Google Scholar
  438. Somov, B.V.: Interpretation of the observed motions of hard X-ray sources in solar flares. Astron. Lett. 36(7), 514–519 (2010) [Sect. 7.5.2]Google Scholar
  439. Somov, B.V.: A new scenario for impulsive bursts of hard electromagnetic radiation in space plasma. Astron. Lett. 37(10), 679–691 (2011) [Sect. 11.5]Google Scholar
  440. Somov, B.V.: Plasma Astrophysics, Part I, Fundamentals and Practice, p. 498. Springer Science+Business Media, New York (2012a) [Intr.]Google Scholar
  441. Somov, B.V.: On the magnetic reconnection of electric currents in solar flares. Astron. Lett. 38(2), 128–138 (2012b) [Sect. 16.1]Google Scholar
  442. Somov, B.V., Bogachev, S.A.: The betatron effect in collapsing magnetic trap. Astron. Lett. 29, 621–628 (2003) [Sects. 9.3.1, 9.3.2, 9.3.3, 9.3.4, 9.5.1, 9.4.3, 9.4.4, 9.4.5 and 9.7]Google Scholar
  443. Somov, B.V., Hénoux J.C.: Generation and interaction of electric currents in the quiet photospheric network. In: Magnetic Fields and Solar Processes. Proceedings of the 9th European Meeting on Solar Physics, ESA SP-448, pp. 659–663. European Space Agency, Noordwijk (1999) [Sects. 14.4 and 16.2]Google Scholar
  444. Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485(2), 859–868 (1997) [Sects. 6.1, 6.2.6, 7.5.2, 8.6, 9.2.1, 9.2.2, 9.2.3, 9.7, 9.8 and 10.1]Google Scholar
  445. Somov, B.V., Kozlova, L.M.: Fine structure of the solar chromosphere from infrared He I line observations. Astron. Rep. 42(6), 819–826 (1998) [Sect. 15.5]Google Scholar
  446. Somov, B.V., Litvinenko, Yu.E.: Magnetic reconnection and particle acceleration in the solar corona. In: Linsky, J., Serio, S. (eds.) Physics of Solar and Stellar Coronae, pp. 603–606. Kluwer, Dordrecht (1993) [Sect. 11.1]Google Scholar
  447. Somov, B.V., Merenkova, E.Yu.: Model computations of magnetic fields in solar flares. Bull. Russ. Acad. Sci. Phys. 63(8), 1186–1188 (1999) [Sects. 5.3.1, 11.2 and 16.3]Google Scholar
  448. Somov, B.V., Oreshina, A.V.: Slow and fast magnetic reconnection. II. High-temperature turbulent-current sheet. Astron. Astrophys. 354, 703–713 (2000) [Sects. 8.1.2 and 8.3.2]Google Scholar
  449. Somov, B.V., Syrovatskii, S.I.: Appearance of a current sheet in a plasma moving in the field of a two-dimensional magnetic dipole. Sov. Phys. – JETP 34(5), 992–997 (1972) [Sects. 2.1.4, 3.4.1, 3.7, 6.3.2, 8.1.1, 10.3 and 16.3]Google Scholar
  450. Somov, B.V., Syrovatskii, S.I.: Electric and magnetic fields arising from the rupture of a neutral current sheet. Bull. Acad. Sci. USSR Phys. Ser. 39(2), 109–111 (1975) [Sects. 3.2, 3.6 and 5.1.2]Google Scholar
  451. Somov, B.V., Syrovatskii, S.I.: Physical processes in the solar atmosphere associated with flares. Sov. Phys. Usp. 19(10), 813–835 (1976a) [Sects. 8.1.2 and 17.4.2]Google Scholar
  452. Somov, B.V., Syrovatskii, S.I.: Hydrodynamic plasma flows in a strong magnetic field. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasma. Proceedings of the P.N. Lebedev Physics Institute, vol. 74, pp. 13–71. Consultants Bureau, New York/London (1976b) [Sects. 2.2.1, 3.1 and 12.1]Google Scholar
  453. Somov, B.V., Syrovatskii, S.I.: Current sheets as the source of heating for solar active regions. Solar Phys. 55(2), 393–399 (1977) [Sect. 5.1.1]Google Scholar
  454. Somov, B.V., Syrovatskii, S.I.: Thermal trigger for solar flares and coronal loops formation. Solar Phys. 75(1), 237–244 (1982) [Sect. 8.1.2]Google Scholar
  455. Somov, B.V., Titov, V.S.: Magnetic reconnection as a mechanism for heating the coronal loops. Sov. Astron. Lett. 9(1), 26–28 (1983) [Sect. 10.1]Google Scholar
  456. Somov, B.V., Titov, V.S.: Effect of longitudinal magnetic field in current sheets on the Sun. Sov. Astron. – AJ 29(5), 559–563 (1985a) [Sects. 8.2.2 and 14.2]Google Scholar
  457. Somov, B.V., Titov, V.S.: Magnetic reconnection in a high-temperature plasma of solar flares. 2. Effects caused by transverse and longitudinal magnetic fields. Sol. Phys. 102(1), 79–96 (1985b) [Sects. 8.2.2, 8.3.1, 13.5 and 14.2]Google Scholar
  458. Somov, B.V., Verneta, A.I.: Magnetic reconnection in a high-temperature plasma of solar flares. 3. Stabilization effect of a transverse magnetic field in non-neutral current sheets. Sol. Phys. 117(1), 89–95 (1988) [Sects. 13.1.2 and 13.6.2]Google Scholar
  459. Somov, B.V., Verneta, A.I.: Magnetic reconnection in a high-temperature plasma of solar flares. 4. Resistive tearing mode in non-neutral current sheets. Sol. Phys. 120(1), 93–115 (1989) [Sects. 13.1.2 and 13.4]Google Scholar
  460. Somov, B.V., Verneta, A.I.: Tearing instability of reconnecting current sheets in space plasmas. Space Sci. Rev. 65(3), 253–288 (1993) [Sects. 13.1.2, 13.5.2 and 13.6.2]Google Scholar
  461. Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Heating by accelerated electrons. Sol. Phys. 73(1), 145–155 (1981) [Sect. 17.4.2]Google Scholar
  462. Somov, B.V., Kosugi, T., Sakao, T.: Collisionless 3D reconnection in impulsive solar flares. Astrophys. J. 497(2), 943–956 (1998) [Sects. 5.3.1, 6.1, 7.1.3, 7.2.3, 7.4.1, 7.6, 8.6, 10.1 and 11.2]Google Scholar
  463. Somov, B.V., Litvinenko, Y.E., Kosugi, T., et al.: Coronal hard X-rays in solar flares: Yohkohobservations and interpretation. In: Magnetic Fields and Solar Processes. Proceedings of the 9th European Meeting on Solar Physics, ESA SP-448, pp. 701–708. European Space Agency, Noordwijk (1999) [Sects. 9.2.4 and 9.8]Google Scholar
  464. Somov, B.V., Kosugi, T., Litvinenko, Y.E., et al.: Collisionless reconnection in the structure and dynamics of active regions. In: Brekke, P., Fleck, B., Gurman, J.B. (eds.) Recent Insight into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions. Proceedings of the IAU Symposium, vol. 203, pp. 558–561. Sheridan Books, Chelsea (2001) [Sects. 4.3.3 and 16.3]Google Scholar
  465. Somov, B.V., Kosugi, T., Hudson, H.S., et al.: Magnetic reconnection scenario of the Bastille day 2000 flare. Astrophys. J. 579(2), 863–873 (2002a) [Sects. 6.1.1, 7.2.3, 7.4.1, 7.4.4, 7.5.1, 7.5.2, 7.6, 8.6 and 14.2]Google Scholar
  466. Somov, B.V., Kosugi, T., Litvinenko, Y.E., et al.: Three-dimensional reconnection at the Sun: Space observations and collisionless models. Adv. Space Res. 29(7), 1035–1044 (2002b) [Sect. 4.3.3]Google Scholar
  467. Somov, B.V., Hénoux, J.C., Bogachev, S.A.: Is it possible to accelerate ions in collapsing magnetic trap? Adv. Space Res. 30(1), 55–60 (2002c) [Sect. 9.8]Google Scholar
  468. Somov, B.V., Oreshina, A.V., Oreshina, I.V., et at.: Flares in accretion disk coronae. Adv. Space Res. 32(6), 1087–1096 (2003a) [Intr., Sect. 10.3]Google Scholar
  469. Somov, B.V., Kosugi, T., Hudson, H.S., et al.: Modeling large solar flares. Adv. Space Res. 32(12), 2439–2450 (2003b) [Sects. 7.4.4 and 7.4.5]Google Scholar
  470. Somov, B.V., Kosugi, T., Bogachev, S.A., et al.: Motion of the HXR sources in solar flares: Yohkohimages and statistics. Adv. Space Res. 35(10), 1700–1706 (2005a) [Sects. 7.4.2, 7.4.5 and 7.5.2]Google Scholar
  471. Somov, B.V., Kosugi, T., Bogachev, S.A., et al.: On upward motions of coronal hard X-ray sources in solar flares. Adv. Space Res. 35(10), 1690–1699 (2005b) [Sect. 9.1.3]Google Scholar
  472. Somov, B.V., Kosugi, T., Oreshina, I.V., et al.: Large-scale reconnection in a large flare. Adv. Space Res. 35(10), 1712–1722 (2005c) [Sects. 6.2.1, 6.2.4, 6.2.5 and 6.2.6]Google Scholar
  473. Somov, B.V., Oreshina, I.V., Kovalenko, I.A.: Magnetic reconnection, electric field, and particle acceleration in the July 14, 2000 solar flare. Astron. Lett. 34(5), 327–336 (2008) [Sect. 4.1.3]Google Scholar
  474. Sotirelis, T., Meng, C.-I.: Magnetopause from pressure balance. J. Geophys. Res 104(A4), 6889–6898 (1999) [Sect. 10.2]Google Scholar
  475. Speiser, T.W.: Particle trajectories in model current sheets. 1. Analytical solutions. J. Geophys. Res. 70(17), 4219–4226 (1965) [Sects. 1.2.3, 11.1, 11.2, 11.3 and 11.4]Google Scholar
  476. Speiser, T.W.: On the uncoupling of parallel and perpendicular particle motion in a neutral sheet. J. Geophys. Res. 73(3), 1112–1113 (1968) [Sect. 11.2]Google Scholar
  477. Speiser, T.W., Lyons, L.R.: Comparison of an analytical approximation for particle motion in a current sheet with precise numerical calculations. J. Geophys. Res. 89(A1), 147–158 (1984) [Sect. 11.3]Google Scholar
  478. Spicer, D.S.: Magnetic energy storage and conversion in the solar atmosphere. Space Sci. Rev. 31(1), 351–435 (1982) [Sects. 5.1.3 and 16.4]Google Scholar
  479. Srivastava, N., Mathew, S.K., Louis, R.E. et al.: Source region of the 18 November 2003 coronal mass ejection that led to the strongest magnetic storm of cycle 23. J. Geophys. Res. 114(A3), CiteID A03107 (2009) [Sect. 6.4.1]Google Scholar
  480. Stenzel, R.L., Gekelman, W.: Particle acceleration during reconnection in laboratory plasmas. Adv. Space Res. 4(2), 459–470 (1984) [Sects. 5.1.2, 5.1.3 and 16.2]Google Scholar
  481. Sterling, A.C., Hudson, H.S.: Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. 491(1), L55–L58 (1997) [Sect. 4.3.5]Google Scholar
  482. Stewart, R.T., Labrum, N.R.: Meter-wavelength observations of the solar radio storm of August 17–22, 1968. Sol. Phys. 27(1), 192–202 (1972) [Sect. 11.4]Google Scholar
  483. Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. (eds): The Many Faces of the Sun, p. 610. Springer, New York/Berlin/Heidelberg/Tokyo (1999) [Intr., Sect. 6.1]Google Scholar
  484. Sturrock, P.A.: Maximum energy of semi-infinite magnetic field configurations. Astrophys. J. 380(2), 655–659 (1991) [Sect. 16.2]Google Scholar
  485. Sturrock, P.A.: Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, p. 335. Cambridge University Press, Cambridge (1994) [Intr.]Google Scholar
  486. Sudol, J.J., Harvey, J.W.: Longitudinal magnetic field changes accompanying solar flares. Astrophys. J. 635(1), 647–658 (2005) [Sects. 4.1.1 and 4.1.3]Google Scholar
  487. Sui, L., Holman, G.D.: Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. 596, L251–L254 (2003) [Sects. 7.5.1, 9.1.2 and 9.1.3]Google Scholar
  488. Sui, L., Holman, G.D., Dennis, B.R.: Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612(1), 546–556 (2004) [Sects. 7.5.1, 9.1.2 and 9.1.3]Google Scholar
  489. Svestka, Z.: The Hα flare as a secondary product of a coronal instability. Sol. Phys. 31(2), 389–400 (1973) [Sect. 17.4.1]Google Scholar
  490. Svestka, Z.: Solar Flares. D. Reidel Publishing, Dordrecht (1976) [Sects. 6.1, 7.1.2 and 7.4.3]CrossRefGoogle Scholar
  491. Sweet, P.A.: The production of high energy particles in solar flares. Nuovo Cimento Suppl. 8(Serie 10), 188–196 (1958) [Intr., Sect. 16.2]Google Scholar
  492. Sweet, P.A.: Mechanisms of solar flares. Ann. Rev. Astron. Astrophys. 7, 149–176 (1969) [Sects. 2.1.1, 4.2.4, 4.3.1, 8.1.1 and 11.1]Google Scholar
  493. Syrovatskii, S.I.: Some properties of discontinuity surfaces in MHD. Proc. P.N. Lebedev Phys. Inst. 8, 13–64 (1956) (in Russian) [Sect. 12.3]Google Scholar
  494. Syrovatskii, S.I.: The stability of plasma in a nonuniform magnetic field and the mechanism of solar flares. Sov. Astron. – AJ 6(6), 768–769 (1962) [Sect. 2.1.1]Google Scholar
  495. Syrovatskii, S.I.: Dynamical dissipation of a magnetic field and particle acceleration. Sov. Astron. – AJ 10(2), 270–276 (1966a) [Sects. 2.1.1, 2.2.1, 2.3.2, 3.1, 4.2.4, 5.3.2, 8.6, 8.5.6 and 16.3]Google Scholar
  496. Syrovatskii, S.I.: Dynamical dissipation of magnetic energy in the vicinity of a neutral line. Sov. Phys. – JETP 23(4), 754–762 (1966b) [Sects. 2.1.6, 2.1.7, 2.3.2 and 8.6]Google Scholar
  497. Syrovatskii, S.I.: MHD cumulation near a zero field line. Sov. Phys. – JETP 27(5), 763–766 (1968) [Sect. 2.4.2]Google Scholar
  498. Syrovatskii, S.I.: On the mechanism of solar flares. In: de Jager, C., Svestka, Z. (eds.) Solar Flares and Space Research. 11th COSPAR Symposium, pp. 346–355. North-Holland Publishing, Amsterdam (1969) [Sects. 5.2.3 and 5.2.4]Google Scholar
  499. Syrovatskii, S.I.: Formation of current sheets in a plasma with a frozen-in strong field. Sov. Phys. – JETP 33(5), 933–940 (1971) [Sects. 3.1, 12.1 and 16.3]Google Scholar
  500. Syrovatskii, S.I.: Particle acceleration and plasma ejection from the Sun. In: Dryer, E.R. (ed.) Solar-Terrestrial Physics 1970, Part 1, pp. 119–133. D. Reidel Publishing, Dordrecht (1972) [Sects. 5.2.1, 5.2.4, 7.1.2 and 8.4.1]Google Scholar
  501. Syrovatskii, S.I.: Neutral current sheets in laboratory and space plasmas. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasmas. Proceedings of the P.N. Lebedev Physics Institute, vol. 74, pp. 2–10. Consultants Bureau, New York/London (1976a) [Sects. 3.1, 8.1.1 and 12.1]Google Scholar
  502. Syrovatskii, S.I.: Current-sheet parameters and a thermal trigger for solar flares. Sov. Astron. Lett. 2(1), 13–14 (1976b) [Sects. 5.1.1, 5.1.3 and 8.1.2]Google Scholar
  503. Syrovatskii, S.I.: Pinch sheets and reconnection in astrophysics. Ann. Rev. Astron. Astrophys. 19, 163–229 (1981) [Sects. 4.2.4, 5.1.1, 5.3.2, 8.1.1, 8.4.1, 11.1, 11.4, 13.5.2 and 16.2]Google Scholar
  504. Syrovatskii, S.I.: Model for flare loops, fast motions, and opening of magnetic field in the corona. Sol. Phys. 76(1), 3–20 (1982) [Sects.  4.3.5, 6.3.1, 11.1 and 15.1]
  505. Syrovatskii, S.I., Shmeleva, O.P.: Heating of plasma by high-energy electrons, and the non-thermal X-ray emission in solar flares. Sov. Astron. – AJ 16(2), 273–283 (1972) [Sects. 17.2.2, 17.2.4 and 17.3.1]Google Scholar
  506. Syrovatskii, S.I., Somov, B.V.: Physical driving forces and models of coronal responses. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics. IAU Symposium, vol. 91, pp. 425–441. Reidel, Dordrecht (1980) [Sects.  4.3.5, 6.3.1 and 16.2]
  507. Tanaka, K.: Impact of X-ray observations from the Hinotori satellite on solar flare research. Publ. Astron. Soc. Jpn. 39(1), 1–45 (1987) [Sect. 8.5.5]Google Scholar
  508. Tandberg-Hanssen, E.: The Nature of Solar Prominences, p. 308. Kluwer, Dordrecht/Boston/ London (1995) [Sect. 15.1]Google Scholar
  509. Tarbell, T.D.: Early results from the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Bull. Am. Astron. Soc. 43, AAS Meeting 217, No. 115.09, p. 122 (2011) [Intr.]Google Scholar
  510. Taylor, J.B.: Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33(19), 1139–1141 (1974) [Sects. 14.1 and 14.2.2]Google Scholar
  511. Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58(3), 741–763 (1986) [Sect. 14.1]Google Scholar
  512. Tian, L., Wang, J., Wu, D.: Non-potentiality of the magnetic field beneath the eruptive filament in the Bastille event. Sol. Phys. 209, 375–389 (2002) [Sect. 6.2.4]Google Scholar
  513. Titov, V.S., Priest, E.R., Démoulin, P.: Conditions for the appearance of ‘bald patches’ at the solar surface. Astron. Astrophys. 276(2), 564–570 (1993) [Sect. 16.3]Google Scholar
  514. Tsalas, M., Chapman, S.C., Rowlands, G.: The stability of charged-particle motion in sheared magnetic reversals. J. Plasma Phys. 65(4), 331–352 (2001) [Sect. 11.1.2]Google Scholar
  515. Tsuneta, S.: Solar flares as an ongoing magnetic reconnection process. In: Zirin, H., Ai, G., Wang, H. (eds.) ASP Conference Series, vol. 46, pp. 239–248. Astronomical Society of the Pacific, San Francisco (1993) [Intr., Sect. 16.2]Google Scholar
  516. Tsuneta, S.: Structure and dynamics of reconnection in a solar flare. Astrophys. J. 456(2), 840–849 (1996) [Sects. 6.1, 7.1.2, 8.1.1, 8.6 and 8.5.5]Google Scholar
  517. Tsuneta, S., Naito, T.: Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top hard X-ray source. Astrophys. J. 495, L67–L70 (1998) [Sect. 9.3.1]Google Scholar
  518. Tsuneta, S., Nitta, N., Ohki, K., et al.: Hard X-ray imaging observations of solar hot thermal flares with the Hinotorispacecraft. Astrophys. J. 284(2), 827–832 (1984) [Sect. 8.5.5]Google Scholar
  519. Tsuneta, S., Acton, L., Bruner, M., et al.: The soft X-ray telescope for the Solar-A mission. Solar Phys. 136(1), 37–67 (1991) [Intr., Sect. 6.1]Google Scholar
  520. Tsuneta, S., Hara, H., Shimuzu, T., et al.: Observation of a solar flare at the limb with the Yohkohsoft X-ray telescope. Publ. Astron. Soc. Jpn. 44(5), L63–L69 (1992) [Intr.]Google Scholar
  521. Tsuneta, S., Masuda, S., Kosugi, T., et al.: Hot and super-hot plasmas above an impulsive-flare loop. Astrophys. J. 478(2), 787–796 (1997) [Sects. 8.1.1, 8.5.4, 8.6, 9.2.3 and 9.6.4]Google Scholar
  522. Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: The Solar Optical Telescope for the Hinode mission: an overview. Solar Phys. 249(2), 167–196 (2008) [Intr., Sects. 16.6 and 17.4.2]Google Scholar
  523. Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., et al. (eds): Magnetic Storms, p. 266. American Geophysical Union, Washington (1997) [Intr.]Google Scholar
  524. Tsyganenko, N.A.: Effects of the solar wind conditions on the global magnetospheric configuration as deduced from data-based field models. In: Proceedings of 3rd International Conference on Substorms (ICS-3), ESA SP-389, pp. 181–190. European Space Agency Publications Division, Noordwijk (1996) [Sect. 10.2]Google Scholar
  525. Uchida, Y., Hirose, S., Morita, S., et al.: Observations of flares and active regions from Yohkoh, and magnetohydrodynamic models explaining them. Astrophys. Space Sci. 264(1), 145–169 (1998) [Sects. 7.1.2 and 7.6]Google Scholar
  526. Ugai, M.: The evolution of fast reconnection in a three-dimensional current sheet system. Phys. Plasma 15(8), 082306–082306-10 (2008) [Sect. 3.4.3]Google Scholar
  527. Ugai, M.: Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet. Phys. Plasma 16(11), 112902–112902-8 (2009) [Sect. 3.4.3]Google Scholar
  528. Ugarte-Urra, I., Warren, H.P., Winebarger, A.R.: The magnetic topology of coronal mass ejection sources. Astrophys. J. 662(2), 1293–1301 (2007) [Sects. 6.3.1 and 8.6]Google Scholar
  529. Ulmschneider, P., Rosner, R., Priest, E.R. (eds): Mechanisms of Chromospheric and Coronal Heating. Springer, Berlin (1991) [Sect.  14.4]CrossRefGoogle Scholar
  530. Uzdensky, D.A.: Self-regulation of solar coronal heating process via the collisionless reconnection condition. Phys. Rev. Lett. 99(26), id. 261101 (2007a) [Sect. 4.2.4]Google Scholar
  531. Uzdensky, D.A.: Fast collisionless reconnection condition and self-organization of solar coronal heating. Astrophys. J. 671(2), 2139–2153 (2007b) [Sect. 8.3.1]Google Scholar
  532. Uzdensky, D.A., Kulsrud, R.M.: Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection. Phys. Plasma 13(66), 062305–062305-14 (2006) [Sect. 2.4.4]Google Scholar
  533. van Ballegooijen, A.A., Martens, P.C.H.: Formation and eruption of solar prominences. Astrophys. J. 343(3), 971–984 (1989) [Sects. 7.3 and 15.1]Google Scholar
  534. van Ballegooijen, A.A., Martens, P.C.H.: Magnetic fields in quiescent prominences. Astrophys. J. 361(1), 283–289 (1990) [Sect. 15.1]Google Scholar
  535. van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41(1), 189–223 (1975) [Sect. 17.4.2]Google Scholar
  536. Vekstein, G.E., Priest, E.R.: Magnetohydrodynamic equilibria and cusp formation at an X-type neutral line by footpoint shearing. Astrophys. J. 384(1), 333–340 (1992) [Sects. 16.2 and 16.3]Google Scholar
  537. Veltri, P., Zimbardo, G., Taktakishvili, A.L., et al.: Effect of magnetic turbulence on the ion dynamics in the distant magnetotail. J. Geophys. Res. 103(A7), 14897–14910 (1998) [Sect. 11.1.3]Google Scholar
  538. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. Basic computations and summary of results. Astrophys. J. 184, 605–632 (1973) [Sect. 17.4.2]Google Scholar
  539. Vernazza, J.E., Avrett, E.H., Loeser, R.: Structure of the solar chromosphere. 3. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. 45, 635–725 (1981) [Sect. 15.2.2]Google Scholar
  540. Verneta, A.I., Somov, B.V.: Effect of compressibility on the development of the tearing instability in a non-neutral current sheet in the solar atmosphere. Astron. Rep. 37(3), 282–285 (1993) [Sect. 13.5.2]Google Scholar
  541. Vladimirov, V.S.: Equations of Mathematical Physics, p. 418. M. Dekker, New York (1971) [Sect. 13.6]Google Scholar
  542. Voronov, G.S., Kyrie, N.P., Markov, V.S., et al.: Spectroscopic measurements of the electron and ion temperatures and effective ion charge in current sheets formed in two- and three-dimensional magnetic configurations. Plasma Phys. Rep. 34(12), 999–1015 (2008) [Sect. 5.1.2]Google Scholar
  543. Vorpahl, J.A.: The triggering and subsequent development of a solar flare. Astrophys. J. 205(1), 868–873 (1976) [Sects. 17.3.2 and 17.4.1]Google Scholar
  544. Wang, J.: Vector magnetic fields and magnetic activity of the Sun. Fundam. Cosm. Phys. 20(3), 251–382 (1999) [Sects. 4.1.1 and 15.3]Google Scholar
  545. Wang, H., Qiu, J.: Relationship between flare kernels in Hα far-blue wing and magnetic fields. Astrophys. J. 568(1), 408–412 (2002) [Sect. 6.1]Google Scholar
  546. Wang, Y.M., Sheeley, N.R.: Observations of core fallback during coronal mass ejections. Astrophys. J. 567(2), 1211–1224 (2002) [Sect. 9.2.5]Google Scholar
  547. Wang, J., Shi, Z.: The flare-associated magnetic changes in an active region. II. Flux emergence and cancellation. Sol. Phys. 143(1), 119–139 (1993) [Sects. 6.2.4 and 7.6]Google Scholar
  548. Wang, J.X., Shi, Z.X., Wang, H., et al.: Flares and the magnetic non-potentiality. Astrophys. J. 456(2), 861–878 (1996) [Sect. 5.1.1]Google Scholar
  549. Wang, H., Qiu, J., Jing, J., et al.: Study of ribbon separation of a flare associated with a quiescent filament eruption. Astrophys. J. 593(1), 564–570 (2003) [Sect. 7.4.5]Google Scholar
  550. Wang, H., Liu, C., Deng, Y., et al.: Reevaluation of the magnetic structure and evolution associated with the Bastille day flare on 2000 July 14. Astrophys. J. 627(2), 1031–1039 (2005) [Sects. 4.1.1, 4.1.3, 7.1.1 and 7.1.2]Google Scholar
  551. Watanabe, K., Krucker, S., Hudson, H., et al.: G-band and hard X-ray emissions of the 2006 December 14 flare observed by Hinode/SOT and RHESSI. Astrophys. J. 715(1), 651–655 (2010) [Sect. 17.4.2]Google Scholar
  552. Wedemeyer-Böhm, S.: Point spread functions for the Solar optical telescope onboard Hinode. Astron. Astrophys. 487(1), 399–412 (2008) [Sect. 16.6]Google Scholar
  553. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44(6), 489–491 (1958) [Sect. 14.1]Google Scholar
  554. Woltjer, L.: Hydromagnetic equilibrium: II. Stability in the variational formulation. Proc. Nat. Acad. Sci. USA 45(6), 769–771 (1959) [Sect. 14.5]Google Scholar
  555. Wright, J.M.: National Space Weather Program: The Implementation Plan, FCM-P31. Office of the Federal Coordinator for Meteorological Services and Supporting Research, Washington (1997) [Intr., Sect. 10.2.3]Google Scholar
  556. Wright, A.N., Berger, M.A.: The effect of reconnection upon the linkage and interior structure of magnetic flux tubes. J. Geophys. Res. 94(A2), 1295–1302 (1989) [Sect. 14.1]Google Scholar
  557. Wright, A.N., Berger, M.A.: A physical description of magnetic helicity evolution in the presence of reconnection lines. J. Plasma Phys. 46(1), 179–199 (1991) [Sect. 14.2]Google Scholar
  558. Xiao, C.J., Wang, X.G., Pu, Z.Y., et al.: Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature Phys. 3(9), 609–613 (2007) [Intr., Sect.  4.2.1]Google Scholar
  559. Xu, Y., Cao, W., Liu, C., et al.: High-resolution observations of multiwavelength emissions during two X-class white-light flares. Astrophys. J. 641(2), 1210–1216 (2006) [Sect. 17.4.2]Google Scholar
  560. Yamada, M., Ren, Y., Ji, H., et al.: Identification of two-scale diffusion layer during magnetic reconnection in a laboratory plasma. Bull. Am. Phys. Soc. 52(11), abstract ID: BAPS.2007.DPP.TP8.6 (2007) [Sect. 4.2.4]Google Scholar
  561. Yan, Y., Deng, Y., Karlicky, M., et al.: The magnetic rope structure and associated energetic processes in the 2000 July 14 solar flare. Astrophys. J. 551(Part 2), L115–L118 (2001) [Sects. 6.1 and 7.2.3]Google Scholar
  562. Yokoyama, T., Shibata, K.: Magnetic reconnection coupled with heat conduction. Astrophys. J. 474(1), L61–L64 (1997) [Sect. 3.6]Google Scholar
  563. Yokoyama, T., Akita, K., Morimoto, T., et al.: Clear evidence of reconnection inflow of a solar flare. Astrophys. J. 546(1), L69–L72 (2001) [Sect. 8.1.1]Google Scholar
  564. Zeiler, A., Biskamp, D., Drake, J.F., et al.: Three-dimensional particle simulation of collisionless magnetic reconnection. J. Geophys. Res. 107(A9), SPM 6-1, CiteID 1230 (2002) [Sects. 3.4.3 and 3.5]Google Scholar
  565. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol.1, p. 464; vol. 2, p. 452. Academic, New York/San Francisco/London (1966) [Sect. 2.4.1]Google Scholar
  566. Zel’dovich, Ya.B., Raizer, Yu.P.: In: Hayes, W.D., Probstein, R.F. (eds.) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) [Sect. 2.4.1]Google Scholar
  567. Zelenyi, L.M., Dolgonosov, M.S., Grigorenko, E.E., et al.: Universal properties of the nonadiabatic acceleration of ions in current sheets. JETP Lett. 85(4), 187–193 (2007) [Sect. 11.1.3]Google Scholar
  568. Zelenyi, L.M., Artemyev, A.V., Petrukovich, A.A., et al.: Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations. Ann. Geophys. 27(2), 861–868 (2009) [Sects. 11.1.3 and 13.1.1]Google Scholar
  569. Zhang, H.: Configuration of magnetic shear and vertical current in the active region NOAA 5395 in 1989 March. Astron. Astrophys. Suppl. 111(1), 27–40 (1995) [Sect. 5.1.1]Google Scholar
  570. Zhang, H.: Magnetic field, helicity and the 2000 July 14 flare in solar active region 9077. Mon. Not. R. Astron. Soc. 332(2), 500–512 (2002) [Sects. 6.2.4 and 7.1.1]Google Scholar
  571. Zhang, H.-Q., Chupp, E. L.: Studies on post-flare prominence of 1981 April 27. Astrophys. Space Sci. 153(1), 95–108 (1989) [Sect. 11.4]Google Scholar
  572. Zhang, J., Wang, J., Deng, Y., et al.: Magnetic flux cancelation associated with the major solar event on 2000 July 14. Astrophys. J. 548(Part 2), L99–L102 (2001) [Sects. 6.1, 7.2.2, 7.2.3 and 7.3]Google Scholar
  573. Zhang, J., Li, L., Song, Q.: Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13. Astrophys. J. 662(1), Part 2, L35–L38 (2007) [Sect.  11.4.3]
  574. Zhou, T., Ji, H., Huang, G.: Converging motion of conjugate flaring kernels during two large solar flares. Adv. Space Res. 41(8), 1195–1201 (2008) [Sects. 7.2.2 and 7.5.1]Google Scholar
  575. Zirin, H.: Astrophysics of the Sun. D. Reidel, Dordrecht (1988) [Sects. 6.1 and 7.1.2]Google Scholar
  576. Zirin, H., Tanaka, K.: The flare of August 1972. Sol. Phys. 32(1), 173–207 (1973) [Sect. 17.4.1]Google Scholar
  577. Zirker, J.B., Cleveland, F.M.: Avalanche models of active region heating and flaring. Sol. Phys. 145(1), 119–128 (1993) [Sect. 14.1]Google Scholar
  578. Zuccarello, F., Burm, H., Kuperus, M., et al.: Varying self-inductance and energy storage in a sheared force-free arcade. Astron. Astrophys. 180(1), 218–222 (1987) [Sect. 16.4]Google Scholar
  579. Zweibel, E.G.: Magnetic reconnection in partially ionized gases. Astrophys. J. 340(2), 550–557 (1989) [Sect. 15.2.3]Google Scholar
  580. Zwingmann, W., Schindler, K., Birn, J.: On sheared magnetic field structures containing neutral points. Sol. Phys. 99(1), 133–143 (1985) [Sects. 13.1, 16.2 and 16.3]Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Boris V. Somov
    • 1
  1. 1.Astronomical Institute and Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoskvaRussia

Personalised recommendations