Confocal Imaging

  • Devanand AnanthamEmail author


Confocal imaging is based on the principle of point-source illumination and pinhole light detection. Out-of-focus signals are removed and optical sectioning is narrowed so that cellular level images can be produced. These optical biopsies can potentially target lesions for bronchoscopic sampling and eventually facilitate a noninvasive diagnosis. Optical biopsies may also be used to monitor either disease progression or therapeutic response. Using a probe-based version of confocal microscopy with a proximal scanning unit located outside the scope, airways and distal airspaces can be studied using standard flexible bronchoscopy. A 488-nm excitation light facilitates imaging of the elastin component of the pulmonary connective tissue. Elastin fibers are concentrated in the basement membrane of the bronchi, as well as the axial framework of alveolar ducts and alveolar entrance rings. Confocal imaging is further enhanced by the presence of mobile, fluorescent macrophages in smokers and by the use of exogenous fluorophores such as intravenous fluorescein or topical methylene blue. The safety profile of this technology has been established, and reproducible images of normal lungs have been obtained. With emerging data showing that elastin structures become disorganized in both malignant and nonmalignant disease, continued research is needed to characterize pathological lesions. Further developments to visualize the epithelial cell layer will also be needed before confocal imaging can become an established tool in diagnostic bronchoscopy.


Methylene Blue Interstitial Lung Disease Lung Cancer Screening Flexible Bronchoscopy Alveolar Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. David S. Wilson, FCCP from the Lung Institute at Columbus Regional Hospital, Columbus, Indiana, USA, provided the confocal images in Figs. 22.3, 22.3, 22.4, 22.5, 22.7, 22.8, and 22.10.

Suggested Reading

  1. 1.
    Uzbeck M, Quinn C, Saleem I, Cotter P, Gilmartin JJ, O’Keeffe ST. Randomised controlled trial of the effect of standard and detailed risk disclosure prior to bronchoscopy on peri-procedure anxiety and satisfaction. Thorax. 2009;64(3):224–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Salaün M, Roussel F, Hauss PA, Lachkar S, Thiberville L. In vivo imaging of pulmonary alveolar proteinosis using confocal endomicroscopy. Eur Respir J. 2010;36(2):451–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Thiberville L, Salaün M. Bronchoscopic advances: on the way to the cells. Respiration. 2010;79(6):441–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Thiberville L, Salaün M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, Bourg-Heckly G. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J. 2009;33(5):974–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Thiberville L, Moreno-Swirc S, Vercauteren T, Peltier E, Cavé C, Bourg Heckly G. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2007;175(1):22–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Newton RC, Kemp SV, Yang GZ, Darzi A, Sheppard MN, Shah PL. Tracheobronchial amyloidosis and confocal endomicroscopy. Respiration. 2011;82(2):209–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Newton RC, Kemp SV, Shah PL, Elson D, Darzi A, Shibuya K, Mulgrew S, Yang GZ. Progress toward optical biopsy: bringing the microscope to the patient. Lung. 2011;189(2):111–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Thiberville L, Salaün M, Bourg Heckly G. In vivo confocal microendoscopy: from the proximal bronchus down to the pulmonary acinus,  chapter 6. Published in: Interventional Pulmonology Edited by Strausz J, Bolliger CT. Eur Respir Soc Monograph. 2010;48:73–89.
  9. 9.
    Becker V, Vercauteren T, von Weyhern CH, Prinz C, Schmid RM, Meining A. High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video). Gastrointest Endosc. 2007;66(5):1001–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Refaq S, Ernst A, Majid A, Michaud G, Reddy C, Herth F. Bronchoscopic imaging using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2009;179:A5772.Google Scholar
  11. 11.
    Thiberville L, Salaün M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, Bourg-Heckly G. Confocal fluorescence endomicroscopy of the human airways. Proc Am Thorac Soc. 2009; 6(5):444–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Merker HJ. Morphology of the basement membrane. Microsc Res Tech. 1994;28:95–124.PubMedCrossRefGoogle Scholar
  13. 13.
    Newton RC, Kemp S, Elson DC, Yang GZ, Thomas CMR, Shah PL. Confocal endomicroscopy in diffuse lung diseases-initial results and future directions. Am J Respir Crit Care Med. 2010;181:A6620.Google Scholar
  14. 14.
    Honda T, Ota H, Arai K, Hayama M, Fujimoto K, et al. Three-dimensional analysis of alveolar structure in usual interstitial pneumonia. Virchows Arch. 2002;441:47–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Mariani TJ, Crouch E, Roby JD, Starcher B, Pierce RA. Increased elastin production in experimental granulomatous lung disease. Am J Pathol. 1995;147:988–1000.PubMedGoogle Scholar
  16. 16.
    Hoff CR, Perkins DR, Davidson JM. Elastin gene expression is upregulated during pulmonary fibrosis. Connect Tissue Res. 1999;40:145–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Keller CA, Erasmus D, Alvarez F, Wallace M. Preliminary observations in the use of confocal alveolar endomicroscopy in the recipients of single lung transplantation. Am J Respir Crit Care Med. 2010;181:A4316.Google Scholar
  18. 18.
    Toshima M, Ohtani Y, Ohtani O. Three-dimensional architecture of elastin and collagen fiber networks in the human and rat lung. Arch Histol Cytol. 2004;67:31–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Black PN, Ching PS, Beaumont B, Ranasinghe S, Taylor G, et al. Changes in elastic fibres in the small airways and alveoli in COPD. Eur Respir J. 2008;31:998–1004.PubMedCrossRefGoogle Scholar
  20. 20.
    Ghio AJ, Sangani RG, Brighton LE, Carson JL. MRT letter: auto-fluorescence by human alveolar macrophages after in vitro exposure to air pollution particles. Microsc Res Tech. 2010;73(6):579–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Lane PM, Lam S, McWilliams A, Leriche JC, Anderson MW, et al. Confocal fluorescence microendoscopy of bronchial epithelium. J Biomed Opt. 2009;14:024008.PubMedCrossRefGoogle Scholar
  22. 22.
    Thiberville L, Salaun M, Lachkar S, Moreno-Swirc S, Bourg-Heckly G. In-vivo confocal endomicroscopy of peripheral lung nodules using 488 nm/660 nm induced fluorescence and topical methylene blue. Eur Respir J. 2008;263–4s.Google Scholar
  23. 23.
    Filner JJ, Bonura EJ, Lau ST, Abounasr KK, Naidich D, Morice RC, Eapen GA, Jimenez CA, Casal RF, Ost D. Bronchoscopic fibered confocal fluorescence microscopy image characteristics and pathologic correlations. J Bronchol Interv Pulm. 2011;18(1): 23–30.CrossRefGoogle Scholar
  24. 24.
    Fuchs FS, Zirlik S, Hildner K, Frieser M, Ganslmayer M, Schwarz S, Uder M, Neurath MF. Fluorescein-aided confocal laser endomicroscopy of the lung. Respiration. 2011;81(1):32–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Buchner AM, Gomez V, Heckman MG, Shahid MW, Achem S, Gill KR, Jamil LH, Kahaleh M, Lo SK, Picco M, Riegert-Johnson D, Raimondo M, Sciemeca D, Wolfsen H, Woodward T, Wallace MB. The learning curve of in vivo probe-based confocal laser endomicroscopy for prediction of colorectal neoplasia. Gastrointest Endosc. 2011;73(3):556–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Musani AI, Sims M, Sareli C, Russell W, McLaren WJ, Delaney PM, Litzky LA, Panettieri RA. A pilot study of the feasibility of confocal endomicroscopy for examination of the human airway. J Bronchol Interv Pulm. 2010;17:126–30.CrossRefGoogle Scholar
  27. 27.
    Thiberville L, Salaun M, Moreno-Swirc S, Bourg-Heckly G. Alveoscopy in diffuse interstitial lung disease. Eur Respir J. 2007;712S.Google Scholar
  28. 28.
    Salaün M, Bourg-Heckly G, Roussel F, Lachkar S, Hauss PA, Thiberville L. In vivo imaging of amiodarone-induced pneumonitis using fibred confocal endomicroscopy. Eur Respir Soc. 2010;2179.Google Scholar
  29. 29.
    Arenberg DA, Gildea T, Wilson D. Proposed classification of probe-based confocal laser endomicroscopy (pcle) findings for evaluation of indeterminate peripheral lung nodules. Am J Respir Crit Care Med. 2011;183:A6097.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Respiratory and Critical Care MedicineSingapore General HospitalSingaporeSingapore

Personalised recommendations