Adiabatic Invariants in Astrophysical Plasma

  • Boris V. Somov
Part of the Astrophysics and Space Science Library book series (ASSL, volume 391)


Adiabatic invariants are useful to understand many interesting properties of collisionless plasma in cosmic magnetic fields: trapping and acceleration of charged particles in collapsing magnetic traps, the Fermi acceleration, “cosmic rays” origin.


Solar Wind Solar Flare Magnetic Cloud Radiation Belt Trap Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acton, L.: Coronal structures, local and global. In: Uchida, Y., Kosugi, T., Hudson, H. (eds.) Magnetohydrodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity, pp. 3–11. Kluwer Academic, Dordrecht (1996) [Sect. 19.3.4]Google Scholar
  2. Akhiezer, A.I., Lyubarskii, G.Ya., Polovin, R.V.: On the stability of shock waves in MHD. Sov. Phys. JETP 8(3), 507–512 (1959) [Sect. 17.2.1]Google Scholar
  3. Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., et al.: Plasma Electrodynamics. Oxford, Pergamon (1975) [Sects. 15.4.5, 17.2.2]Google Scholar
  4. Alekseyev, I.I., Kropotkin, A.P.: Passage of energetic particles through a MHD discontinuity. Geomagn. Aeron. 10(6), 755–758 (1970) [Sect. 18.3.1]Google Scholar
  5. Alexander, D., Daou, A.G.: Saturation of nonthermal hard X-ray emission in solar flares. Astrophys. J. 666(2), 1268–1276 (2007) [Sects. 4.5.6, 4.6]Google Scholar
  6. Alfaro, E.J., Pérez, E., Franco, J. (eds.): How does the Galaxy work? A galactic tertulia with Don Cox and Ron Reynolds. Kluwer Academic, Dordrecht (2004) [Sect. 9.8]Google Scholar
  7. Alfvén, H.: On the solar origin of cosmic radiation. Phys. Rev. 75(11), 1732–1735 (1949) [Sect. 7.2]Google Scholar
  8. Alfvén, H.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1950) [Intr., Sects. 12.2.2, 13.4, 15.2.2, 20.1.4]Google Scholar
  9. Alfvén, H.: Cosmic Plasma, p. 164. D. Reidel Publishers, Dordrecht (1981) [Sect. 20.1.4]Google Scholar
  10. Alfvén, H., Fälthammar, C.-G.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1963) [Sects. 8.1.4, 8.2.3, 11.1, 15.4.5]Google Scholar
  11. Allred, J.C; Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630(1), 573–586 (2005) [Sect. 8.3.2]Google Scholar
  12. Alperovich, L.S., Fedorov, E.N.: Hydromagnetic Waves in the Magnetosphere and Ionosphere, p. 426. Springer, Berlin (2007) [Sects. 11.1, 11.4.1]Google Scholar
  13. Altyntsev, A.T., Krasov, V.I., Tomozov V.M.: Magnetic field dissipation in neutral current sheets. Solar Phys. 55(1), 69–81 (1977) [Sect. 12.3.1]Google Scholar
  14. Anderson, J.E.: Magnetohydrodynamic Shock Waves, p. 226. MIT, Cambridge (1963) [Sects. 16.2.4(c), 17.4.2]Google Scholar
  15. Andres, U.T., Polak, L.S., Syrovatskii, S.I.: Electromagnetic expulsion of spherical bodies from a conductive fluid. Soviet Phys. Tech. Phys. 8(3), 193–196 (1963) [Sects. 19.4.2, 20.4]Google Scholar
  16. Anile, A.M.: Relativistic Fluids and Magneto-Fluids, p. 336. Cambridge University Press, Cambridge (1989) [Sect. 12.2]Google Scholar
  17. Antonucci, E., Somov, B.V.: A diagnostic method for reconnecting magnetic fields in the solar corona. In: Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition, Proceedings of First SOHO Workshop, ESA SP-348, pp. 293–294 (1992) [Sects. 8.3.3, 20.4]Google Scholar
  18. Antonucci, E., Benna, C., Somov, B.V.: Interpretation of the observed plasma ‘turbulent’ velocities as a result of reconnection in solar flares. Astrophys. J. 456(2), 833–839 (1996) [Sects. 8.3.3, 20.4]Google Scholar
  19. Arons, J.: Pulsar emission: Where to go? In: Becker, W. (ed.) Neutron Stars and Pulsars, pp. 373–420. Springer-Verlag, Berlin, Heidelberg (2009) [Sect. 12.2.5]Google Scholar
  20. Aschwanden, M.J.: Particle Acceleration and Kinematics in Solar Flares: A Synthesis of Recent Observations and Theoretical Concepts, p. 227. Kluwer Academic, Dordrecht (2002) [Sect. 4.5.7]Google Scholar
  21. Aschwanden, M.J.: Physics of the Solar Corona: An Introduction, p. 227. Springer, Berlin (2004) [Sect. 15.5]Google Scholar
  22. Aschwanden, M.J., Kliem, B., Schwarz, U., et al.: Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505(2), 941–956 (1998) [Sect. 4.5.7]Google Scholar
  23. Aschwanden, M.J., Nightingale, R.W., Andries, J., et al.: Observational tests of damping by resonant absorption in coronal loop oscillations. Astrophys. J. 598, 1375–1386 (2003) [Sect. 15.5]Google Scholar
  24. Asmussen, S., Glynn, P.W.: Stochastic Simulations: Algorithms and Analysis, p. 476. Springer, New York (2007) [Sect. 3.4]Google Scholar
  25. Atkinson, G., Unti, T.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The interior field. J. Geophys. Res. Space Phys. 74(14), 3713–3716 (1969) [Sect. 14.2.2(a)]Google Scholar
  26. Atoyan, A.M., Aharonian, F.A.: Modeling of the non-thermal flares in the Galactic microquasar GRS 1915+105. Mon. Not. Roy. Astron. Soc. 302(1), 253–276 (1999) [Sect. 20.1.3]Google Scholar
  27. Axford, W.I., Leer, E., Skadron, G.: The acceleration of cosmic rays by shock waves. In: Proc. 15th Int. Cosmic Ray Conf. (Plovdiv, August 13–26, 1977), Bulgarian Acad. Sci., Sofia, vol. 11, pp. 132–137 (1977) [Sect. 18.2.1]Google Scholar
  28. Bachiller, R.: Bipolar molecular outflows from young stars and protostars. Ann. Rev. Astron. Astrophys. 34, 111–154 (1996) [Sect. 20.2]Google Scholar
  29. Bai, T., Hudson, H.S., Pelling, R.M., et al.: First-order Fermi acceleration in solar flares as a mechanism for the second-step acceleration of protons and electrons. Astrophys. J. 267(1), 433–441 (1983) [Sect. 6.2.4]Google Scholar
  30. Balbus, S.A., Papaloizou, J.C.B.: On the dynamical foundations of α disks. Astrophys. J. 521(2), 650–658 (1999) [Sect. 13.2.1]Google Scholar
  31. Balescu, R.: Statistical Mechanics of Charged Particles, p. 477. Wiley, London (1963) [Sect. 4.1.2]Google Scholar
  32. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, London (1975) [Sect. 3.1.4]MATHGoogle Scholar
  33. Balescu, R.: Transport Processes in Plasmas. North-Holland, Amsterdam (1988) [Sect. 9.5]Google Scholar
  34. Balikhin, M., Gedalin, M., Petrukovich, A.: New mechanism for electron heating in shocks. Phys. Rev. Lett. 70, 1259–1262 (1993) [Sect. 18.3.2(a)]Google Scholar
  35. Balogh, A., Erdös, G.: Fast acceleration of ions at quasi-perpendicular shocks. J. Geophys. Res. 96(A9), 15853–15862 (1991) [Sect. 18.3.2(b)]Google Scholar
  36. Barenblatt, G.I.: Similarity, Self-Similarity, and Intermediate Asymptotics. Plenum, New York (1979) [Sect. 20.4]MATHCrossRefGoogle Scholar
  37. Becker, W. (ed.): Neutron Starts and Pulsars, p. 997. Springer, Berlin (2009) [Sects. 5.4, 7.3, 12.2.2]Google Scholar
  38. Bednarek, W., Protheroe, R.J.: Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. Royal Astron. Soc. 302, 373–380 (1999) [Sect. 13.2.4]Google Scholar
  39. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984) [Sects. 7.3, 13.3.1, 13.3.3, 20.1.3]Google Scholar
  40. Beloborodov, A.M.: Plasma ejection from magnetic flares and the X-ray spectrum of Cygnus X-1. Astrophys. J. 510, L123–L126 (1999) [Sect. 13.2.4]Google Scholar
  41. Benz, A.: Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, 2nd edn., p. 299. Kluwer Academic, Dordrecht (2002) [Sects. 3.1.2, 7.1]Google Scholar
  42. Bernstein, I.B., Frieman, E.A., Kruskal, M.D., et al.: An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. 244(A1), 17–40 (1958) [Sect. 19.3.4]Google Scholar
  43. Bertin, G.: The Dynamics of Galaxies, p. 448. Cambridge University Press, Cambridge (1999). [Sects. 1.3, 9.8]Google Scholar
  44. Bethe, H.A.: Office of Scientific Research and Development, Rep. No. 445 (1942) [Sect. 17.1.1]Google Scholar
  45. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet. Astron. Lett. 33(2), 130–136 (2007) [Sect. 14.2.2(a)]Google Scholar
  46. Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Generalized analytical models of Syrovatskii’s current sheet. Astron. Lett. 37(2), 113–130 (2011) [Sect. 14.2.2(a)]Google Scholar
  47. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954) [Sect. 9.9]Google Scholar
  48. Bhattacharjee, A.: Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Ann. Rev. Astron. Astrophys. 42, 365–384 (2004) [Sect. 11.4.2]Google Scholar
  49. Bianchini, A., Della Valle, M., Orio, M. (eds.): Cataclysmic Variables, p. 540. Kluwer Academic, Dordrecht (1995) [Sect. 13.2.2]Google Scholar
  50. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, New Jersey (1987) [Sects. 3.3.1, 8.5]MATHGoogle Scholar
  51. Birkinshaw, M.: Instabilities in astrophysical jets. In: de Gouveia Dal Pino, E.M., et al. (eds.) Advanced Topics on Astrophysical and Space Plasmas, pp. 17–91. Kluwer Academic, Dordrecht (1997) [Sect. 13.3.1]Google Scholar
  52. Biskamp, D., Welter, H.: Magnetic arcade evolution and instability. Solar Phys. 120(1), 49–77 (1989) [Sect. 19.4.3]Google Scholar
  53. Blackman, E.G.: On particle energization in accretion flow. Mon. Not. Roy. Astron. Soc. 302(4), 723–730 (1999) [Sect. 8.3.5]Google Scholar
  54. Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534(2), 984–988 (2000) [Sect. 13.1.2]Google Scholar
  55. Blandford, R.D.: Particle acceleration mechanisms. Astrophys. J. Suppl. 90(2), 515–520 (1994) [Sects. 18.1, 18.2.1]Google Scholar
  56. Bliokh, P., Sinitsin, V., Yaroshenko, V.: Dusty and Self-Gravitational Plasmas in Space, p. 250. Kluwer Academic, Dordrecht (1995) [Sect. 1.2.4]Google Scholar
  57. Blokhintsev, D.I.: Moving receiver of sound. Doklady Akademii Nauk SSSR (Soviet Physics Doklady), 47(1), 22–25 (in Russian) (1945) [Sect. 15.2.1]Google Scholar
  58. Bobrova, N.A., Syrovatskii, S.I.: Singular lines of 1D force-free field. Solar Phys. 61(2), 379–387 (1979) [Sect. 19.2.1(a)]Google Scholar
  59. Bocquet, M., Bonazzola, S., Gourgoulhon, E., et al.: Rotating neutron star models with a magnetic field. Astron. Astrophys. 301(3), 757–775 (1995) [Sect. 19.1.3]Google Scholar
  60. Bodmer, R., Bochsler, P.: Influence of Coulomb collisions on isotopic and elemental fractionation in the solar wind. J. Geophys. Res. 105(A1), 47–60 (2000) [Sects. 8.4.1(b), 10.1]Google Scholar
  61. Bogachev, S.A., Somov, B.V.: Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35(1), 57–69 (2009) [Sect. 8.1.4]Google Scholar
  62. Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., et al.: Magnetic reconnection, generation of plasma fluxes and accelerated particles in laboratory experiments. Plasma Astrophys. ESA SP-251, 177–183 (1986) [Sect. 12.3.1]Google Scholar
  63. Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., et al.: Current sheets in magnetic configurations with singular X-lines. JETP Lett. 71(2), 78–84 (2000) [Sect. 12.3.1]Google Scholar
  64. Bogoliubov, N.N.: Problems of a Dynamical Theory in Statistical Physics. State Technical Press, Moscow (in Russian) (1946) [Sect. 2.4]Google Scholar
  65. Bolcato, R., Etay, J., Fautrelle, Y., et al.: Electromagnetic billiards. Phys. Fluids 5(A7), 1852–1853 (1993) [Sect. 20.5]Google Scholar
  66. Boltzmann, L.: Sitzungsber. Kaiserl. Akad. Wiss. Wien. 66, 275–284 (1872) [Sects. 3.5, 9.6.1]Google Scholar
  67. Boltzmann, L.: Lectures on the Theory of Gases. Gostehizdat, Moscow (in Russian) (1956) [Sects. 3.5, 9.6.1]Google Scholar
  68. Bondi, H.: On spherical symmetrical accretion. Mon. Not. Roy. Astron. Soc. 112(1), 195–204 (1952) [Sect. 13.2.3]Google Scholar
  69. Bontemps, S., André, P., Terebey, S., et al.: Evolution of outflow activity around low-mass embedded young stellar objects. Astron. Astrophys. 311, 858–875 (1996) [Sect. 20.2]Google Scholar
  70. Born, M., Green, H.S.: A General Kinetic Theory of Liquids. Cambridge University Press, Cambridge (1949) [Sect. 2.4]MATHGoogle Scholar
  71. Bradt, H.: Astrophysics Processes, p. 504. Cambridge University Press, Cambridge (2008) [Sects. 3.1.1, 9.5.2, 13.2.3]Google Scholar
  72. Braginskii, S.I.: Transport processes in plasma. In: Leontovich, M. (ed.) Reviews of Plasma Physics, vol. 1, pp. 205–311. Consultants Bureau, New York (1965) [Sects. 8.3.2, 9.6, 10.5, 11.4.2]Google Scholar
  73. Bridgman, P.W.: Dimensional Analysis, p. 113. Yale University Press, New Haven (1931) [Sect. 20.4]Google Scholar
  74. Broderick, A., Prakash, M., Lattimer, J.M.: The equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 537(1), 351–367 (2000) [Sect. 19.1.3]Google Scholar
  75. Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18(2), 489–502 (1971) [Sects. 4.3.4, 8.1.5]Google Scholar
  76. Brown, J.C.: The directivity and polarization of thick target X-ray bremsstrahlung from flares. Solar Phys. 26(2), 441–459 (1972) [Sects. 4.4.1, 4.4.2]Google Scholar
  77. Brown, J.C., McArthur, G.K., Barrett, R.K., et al.: Inversion of the thick-target bremsstrahlung spectra from non-uniformly ionized plasmas. Solar Phys. 179(2), 379–404 (1998a) [Sect. 4.5.7]Google Scholar
  78. Brown, J.C., Conway, A.J., Aschwanden, M.J.: The electron injection function and energy-dependent delays in thick-target hard X-rays. Astrophys. J. 509(2), 911–917 (1998b) [Sect. 4.5.7]Google Scholar
  79. Brown, J.C., Emslie, A.G., Kontar, E.P.: The determination and use of mean electron flux spectra in solar flares. Astrophys. J. 595(2), L115–L117 (2003) [Sect. 4.5.7]Google Scholar
  80. Bykov, A.M., Chevalier, R.A., Ellison, D.C., et al.: Non-thermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538(1), 203–216 (2000) [Sect. 8.4.1(b)]Google Scholar
  81. Cadjan, M.G., Ivanov, M.F.: Langevin approach to plasma kinetics with collisions. J. Plasma Phys. 61(1), 89–106 (1999) [Sect. 3.4]Google Scholar
  82. Cai, H.J., Lee, L.C.: The generalized Ohm’s law in collisionless reconnection. Phys. Plasmas 4(3), 509–520 (1997) [Sect. 1.2.4]Google Scholar
  83. Camenzind, M.: Magnetic fields and the physics of active galactic nuclei. Rev. Mod. Astron. 8, 201–233 (1995) [Sect. 13.3.3]Google Scholar
  84. Campbell, C.G.: Magnetohydrodynamics of Binary Stars, p. 306. Kluwer Academic, Dordrecht (1997) [Sect. 13.2.1]Google Scholar
  85. Cassak, P.A., Drake, J.F., Shay, M.A., et al.: Onset of fast magnetic reconnection. Phys. Rev. Lett. 98(21), id. 215001 (2007) [Sect. 11.4.2]Google Scholar
  86. Cercignani, C.: Mathematical Methods in Kinetic Theory. MacMillan, London (1969) [Sect. 3.5]MATHGoogle Scholar
  87. Chakrabarti, S.K. (ed.): Observational Evidence for Black Holes in the Universe, p. 399. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]Google Scholar
  88. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943a) [Sects. 3.1.4, 8.1.5, 8.3.1]Google Scholar
  89. Chandrasekhar, S.: Dynamical friction. 1. General considerations. Astrophys. J. 97(1), 255–262 (1943b) [Sects. 3.1.4, 8.3.1, 8.5]Google Scholar
  90. Chandrasekhar, S.: Dynamical friction. 2. The rate of escape of stars from clusters and the evidence for the operation of dynamic friction. Astrophys. J. 97(1), 263–273 (1943c) [Sects. 8.3.1, 8.5]Google Scholar
  91. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, p. 654. Dover, New York (1981) [Sects. 19.1.2, 19.3.4]Google Scholar
  92. Chandrasekhar, S., Fermi, E.: Problems of gravitational stability in the presence of a magnetic field. Astrophys. J. 118(1), 116–141 (1953) [Sect. 19.1.1]Google Scholar
  93. Cherenkov, P.A.: C. R. Acad. Sci. U.S.S.R. 8, 451 (in Russian) (1934) [Sect. 7.4]Google Scholar
  94. Cherenkov, P.A.: Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937) [Sect. 7.4]Google Scholar
  95. Chernov, A.A., Yan’kov, V.V.: Electron flow in low-density pinches. Soviet J. Plasma Phys. 8(5), 522–528 (1982) [Sect. 20.4]Google Scholar
  96. Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc. Lond. A236(1), 112–118 (1956) [Sects. 5.2.1, 11.5.1, 16.4]Google Scholar
  97. Choudhuri, A.R.: The Physics of Fluids and Plasmas: An Introduction for Astrophysicists, p. 427. Cambridge University Press, Cambridge (1998) [Intr., Sect. 19.1.2]Google Scholar
  98. Ciufolini, I., Matzner, R.A. (eds.): General Relativity and John Archibald Wheeler, p. 545. Springer Science+Business Media B.V., Dordrecht (2010) [Sect. 13.3.2]Google Scholar
  99. Clarke, C., Carswell, P.: Principles of Astrophysical Fluid Dynamics, p. 226. Cambridge University Press, Cambridge (2007) [Sect. 9.5.2]Google Scholar
  100. Clausius, R.: On a mechanical theorem applicable to heat. Phil. Mag. (Series 4) 40(1), 122–127 (1870) [Sect. 19.1.1]Google Scholar
  101. Cole, J.D., Huth, J.H.: Some interior problems of hydromagnetics. Phys. Fluids 2(6), 624–626 (1959) [Sect. 14.5]Google Scholar
  102. Collins, G.W.: The Virial Theorem in Stellar Astrophysics. Pachart, Tucson (1978) [Sect. 19.1.1]Google Scholar
  103. Colpi, M., Casella, P., Gorini, V., et al. (eds.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Springer, Dordrecht (2009) [Sect. 12.2.2]Google Scholar
  104. Coppi, B., Laval, G., Pellat, R.: Dynamics of the geomagnetic tail. Phys. Rev. Lett. 6(26), 1207–1210 (1966) [Sect. 3.1.2]Google Scholar
  105. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, p. 464. Springer, New York (1985) [Sect. 17.1.1]Google Scholar
  106. Cowling, T.G.: Magnetohydrodynamics, p. 135. Adam Hilger, Bristol (1976) [Sect. 11.6]Google Scholar
  107. Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157(3), 1157–1167 (1969) [Sects. 12.1.3, 15.4.1]Google Scholar
  108. Cromwell, D., McQuillan, P., Brown, J.C.: Beam-driven return current instability and anomalous plasma heating in solar flares. Solar Phys. 115(2), 289–312 (1988) [Sect. 4.5.6]Google Scholar
  109. Crooker, N., Joselyn, J.A., Feynman, J. (eds.): Coronal Mass Ejections, p. 299. American Geophysical Union, Washington (1997) [Intr.]Google Scholar
  110. Cumming, A., Arras, P., Zweibel, E.: Magnetic field evolution in neutron star crusts due to the Hall effect and ohmic decay. Astrophys. J. 609, 999–1017 (2004) [Sect. 11.4.2]Google Scholar
  111. Cuperman, S., Dryer, M.: On the heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas. Astrophys. J. 298, 414–420 (1985) [Sect. 9.6.2]Google Scholar
  112. Dadhich, N., Kembhavi, A. (eds): The Universe: Visions and Perspectives, p. 346. Kluwer Academic, Dordrecht (2000) [Sect. 1.3]Google Scholar
  113. Darwin, C.: Source of the cosmic rays. Nature 164, 1112–1114 (1949) [Sect. 18.1]Google Scholar
  114. Davidson, R.C.: Theory of Nonneutral Plasmas. W.A. Benjamin, London (1974) [Sect. 11.5.2]Google Scholar
  115. Davis, L.Jr.: Modified Fermi mechanism for the acceleration of cosmic rays. Phys. Rev. 101, 351–358 (1956) [Sect. 6.2.4]Google Scholar
  116. de Hoffmann, F., Teller, E.: Magnetohydrodynamic shocks. Phys. Rev. 80(4), 692–703 (1950) [Sects. 16.2.1, 16.2.4(a), 16.5]Google Scholar
  117. de Martino, D., Silvotti, R., Solheim, J.-E., et al. (eds.): White Dwarfs, p. 429. Kluwer Academic, Dordrecht (2003) [Sects. 1.4, 3.5]Google Scholar
  118. Debye, P., Hückel, E.: Phys. Z 24, 185 (1923) [Sect. 8.2.1]Google Scholar
  119. Decker, R.B.: Formation of shock-spike events in quasi-perpendicular shocks. J. Geophys. Res. 88(A12), 9959–9973 (1983) [Sect. 18.3.2(a) (a)]Google Scholar
  120. Decker, R.B.: The role of magnetic loops in particle acceleration at nearly perpendicular shocks. J. Geophys. Res. 98(A1), 33–46 (1993) [Sect. 18.3.2(b) (b)]Google Scholar
  121. Decker, R.B., Vlahos, L.: Numerical studies of particle acceleration at turbulent, oblique shocks with an application to prompt ion acceleration during solar flares. Astrophys. J. 306(2), 710–729 (1986) [Sect. 18.3.3]Google Scholar
  122. Diakonov, S.V., Somov, B.V.: Thermal electrons runaway from a hot plasma during a flare in the reverse-current model and their X-ray bremsstrahlung. Solar Phys. 116(1), 119–139 (1988) [Sects. 4.5.2, 4.5.3, 4.5.5, 8.4.3, 9.7.3]Google Scholar
  123. Diakonov, S.V., Somov, B.V.: A thermal model with return current for source of hard X-ray radiation and microwave radiation of solar flare. Kinematics Phys. Celes. Bodies (Allerton Press, Inc.) 6(1), 47–53 (1990) [Sect. 4.5.5]Google Scholar
  124. Diamond, P.H., Itoh, S.I., Itoh, K.: Modern Plasma Physics. Vol. 1: Physical Kinetics of Turbulent Plasmas, p. 417. Cambridge University Press, Cambridge (2010) [Intr., Sect. 3.1.2]Google Scholar
  125. Di Matteo, T., Celotti, A., Fabian, A.C.: Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: The case of GX339-4. Mon. Not. Roy. Astron. Soc. 304, 809–820 (1999) [Sect. 13.2.4]Google Scholar
  126. Di Matteo, T., Quataert, E., Allen, S.W., et al.: Low-radiative-efficiency accretion in the nuclei of elliptic galaxies. Mon. Not. Roy. Astron. Soc. 311(3), 507–521 (2000) [Sect. 13.2.3]Google Scholar
  127. Di Matteo, T., Johnstone, R.M., Allen, S.W., et al.: Accretion onto nearby supermassive black holes: Chandra constraints on the dominant cluster galaxy NGC 6166. Astrophys. J. 550(1), L19–L23 (2001) [Sect. 13.2.3]Google Scholar
  128. Dokuchaev, V.P.: Emission of magnetoacoustic waves in the motion of stars in cosmic space. Sov. Astron. AJ 8(1), 23–31 (1964) [Sect. 15.6]Google Scholar
  129. Dorman, L.: Cosmic Rays in Magnetospheres of the Earth and other Planets, p. 770. Springer Science+Business Media B.V., Dordrecht (2009) [Sect. 5.1.3]Google Scholar
  130. Drake, J.F., Kleva R.G.: Collisionless reconnection and the sawtooth crash. Phys. Rev. Lett. 66(11), 1458–1461 (1991) [Sect. 11.2]Google Scholar
  131. Dreicer, H.: Electron and ion runaway in a fully ionized gas Phys. Rev. 115(2), 238–249 (1959) [Sects. 8.4.2, 10.1]Google Scholar
  132. Duijveman, A., Somov, B.V., Spektor, A.R.: Evolution of a flaring loop after injection of fast electrons. Solar Phys. 88(1), 257–273 (1983) [Sect. 8.3.2]Google Scholar
  133. Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 392(1), L9–L13 (1992) [Sect. 13.1.2]Google Scholar
  134. D’yakov, S.P.: Zhurnal Exper. Teor. Fiz. 27, 288–297 (in Russian) (1954) [Sect. 17.5]Google Scholar
  135. Dyer, K.K., Reynolds, S.R., Borkowski, K.J., et al.: Separating thermal and non-thermal X-rays in supernova remnants. I. Total fits to SN 1006 AD. Astrophys. J. 551(1), 439–453 (2001) [Sect. 18.2.1]Google Scholar
  136. Eichler, D.: Particle acceleration in solar flares by cyclotron damping of cascading turbulence. Astrophys. J. 229(1), 413–418 (1979) [Sect. 6.2.4]Google Scholar
  137. Elperin, T., Golubev, I., Kleeorin, N., et al.: Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures. Phys. Rev. E 76(6), id. 066310 (2007) [Sect. 13.1.2]Google Scholar
  138. Elsasser, W.M.: Hydromagnetic dynamo theory. Rev. Mod. Phys. 28(2), 135–163 (1956) [Sects. 13.1.2, 20.1.5]Google Scholar
  139. Erdös, G., Balogh, A.: Drift acceleration at interplanetary shocks. Astrophys. J. Suppl. 90(2), 553–559 (1994) [Sect. 18.3.2(b)]Google Scholar
  140. Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., et al.: Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101–221105 (2011) [Sect. 13.3.2]Google Scholar
  141. Falle, S.A., Komissarov, S.S.: On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65(1), 29–58 (2001) [Sect. 16.3]Google Scholar
  142. Fedoryuk, V.M.: Ordinary Differential Equations. Nauka, Moscow (in Russian) (1985) [Sect. 17.4.1]MATHGoogle Scholar
  143. Feldman, W.C., Bame, S.J., Gary, S.P., et al.: Electron heating within the Earth’s bow shock. Phys. Rev. Lett. 49, 199–202 (1982) [Sect. 18.3.2(a)]Google Scholar
  144. Ferencz, C., Ferencz, O.E., Hamar, D., et al.: Whistler Phenomena, p. 260. Kluwer Academic, Dordrecht (2001) [Sect. 7.1.3]Google Scholar
  145. Fermi, E.: On the origin of cosmic radiation. Phys. Rev. 75, 1169–1174 (1949) [Sect. 6.2.4]Google Scholar
  146. Fermi, E.: Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119(1), 1–6 (1954) [Sect. 6.2.4]Google Scholar
  147. Fernández, J.A.: Comets: Nature, Dynamics, Origin, and their Cosmogonical Relevance, p. 383. Springer, Dordrecht (2005) [Sect. 1.2.4]Google Scholar
  148. Feroci, M., Hurley, K., Duncan, R.C., et al.: The giant flare of 1998 August 27 from SGR 1900+14. 1. An interpretive study of Bepposax and Ulysses observations. Astrophys. J. 549, 1021–1038 (2001) [Sect. 19.1.3]Google Scholar
  149. Field, G.B.: Thermal instability. Astrophys. J. 142(2), 531–567 (1965) [Sects. 8.3.4, 9.4.3, 12.1.3, 15.4.5]Google Scholar
  150. Fokker, A.D.: Die mittlere Energie rotieren der elektrischer Dipole im Strahlungsfeld. Ann. der Physik 43(5), 810–820 (1914) [Sect. 3.1.4]Google Scholar
  151. Fortov, V.E., Iakubov, I.T., Khrapak, A.G.: Physics of Strongly Coupled Plasma, p.376. Clarendon Press, Oxford (2006) [Sect. 3.1.1]Google Scholar
  152. Fox, D.C., Loeb, A.: Do the electrons and ions in X-ray clusters share the same temperature? Astrophys. J. 491(2), 459–466 (1997) [Sect. 8.3.4]Google Scholar
  153. Freidberg, J.P.: Plasma Physics and Fusion Energy, p. 671. Cambridge University Press, Cambridge (2007) [Intr.]Google Scholar
  154. Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion discs. Astrophys. J. 229(1), 318–326 (1979) [Sect. 13.2.4]Google Scholar
  155. Gedalin, M., Griv, E.: Collisionless electrons in a thin high Much number shocks: Dependence on angle and β. Ann. Geophysicae 17(10), 1251–1259 (1999) [Sects. 16.4, 18.3.2(a)]Google Scholar
  156. Gel’fand, I.M.: Some problems of the theory of quasilinear equations. Usp. Mat. Nauk 14(2), 87–158 (in Russian) (1959) [Sect. 17.1.1]Google Scholar
  157. Gerbeth, G., Thess, A., Marty, P.: Theoretical study of the MHD flow around a cylinder in crossed electric and magnetic fields. Eur. J. Mech. B/Fluids 9(3), 239–257 (1990) [Sects. 19.4.2, 20.3]Google Scholar
  158. Germain, P.: Shock waves and shock-wave structure in magneto-fluid dynamics. Rev. Mod. Phys. 32(4), 951–958 (1960) [Sect. 17.4.2]Google Scholar
  159. Giacalone, J., Ellison, D.C.: Three-dimensional numerical simulations of particle injection and acceleration at quasi-perpendicular shocks. J. Geophys. Res. 105(A6), 12541–12556 (2000) [Sects. 18.1, 18.3.2(b)]Google Scholar
  160. Gieseler, U.D.J., Kirk, J.G., Gallant, Y.A., et al.: Particle acceleration at oblique shocks and discontinuities of the density profile. Astron. Astrophys. 435(1), 298–306 (1999) [Sect. 18.2.1]Google Scholar
  161. Gilman, P.A.: Fluid dynamics and MHD of the solar convection zone and tachocline. Solar Phys. 192(1), 27–48 (2000) [Sect. 20.1.5]Google Scholar
  162. Ginzburg, V.L., Syrovatskii, S.I.: The Origin of Cosmic Rays. Pergamon Press, Oxford (1964) [Sect. 5.1.3]Google Scholar
  163. Ginzburg, V.L., Syrovatskii, S.I.: Cosmic magneto-bremsstrahlung (synchrotron) radiation. Annu. Rev. Astron. Astrophys. 3, 297–350 (1965) [Sect. 5.4]Google Scholar
  164. Ginzburg, V.L., Zheleznyakov, V.V.: On the possible mechanisms of sporadic solar radio emission. Sov. Astron. AJ 2(5), 653–668 (1958) [Sect. 7.1]Google Scholar
  165. Ginzburg, V., Landau, L., Leontovich, M., et al.: On the insolvency of the A.A. Vlasov works on general theory of plasma and solid-state matter. Zhur. Eksp. Teor. Fiz. 16(3), 246–252 (in Russian) (1946) [Sect. 3.1.2]Google Scholar
  166. Giovanelli, R.G.: A theory of chromospheric flares. Nature 158(4003), 81–82 (1946) [Sect. 12.4.1]Google Scholar
  167. Giovanelli, R.G.: Magnetic and electric phenomena in the Sun’s atmosphere associated with sunspots. Mon. Not. Roy. Astron. Soc. 107(4), 338–355 (1947) [Sect. 12.4.1]Google Scholar
  168. Giovanelli, R.G.: Electron energies resulting from an electric field in a highly ionized gas. Phil. Mag. Seventh Series 40(301), 206–214 (1949) [Sect. 8.4.2]Google Scholar
  169. Gisler, G., Lemons, D.: Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models. J. Geophys. Res. 95(A9), 14925–14938 (1990) [Sect. 18.3.2(b)]Google Scholar
  170. Glasstone, S., Loveberg, R.H.: Controlled Thermonuclear Reactions, p. 523. Van Nostrand, Princeton (1960) [Intr.]Google Scholar
  171. Gnedenko, B.V.: A Course of Probability Theory, 4th edn. Nauka, Moscow (in Russian) (1965) [Sect. 2.2.2]Google Scholar
  172. Golant, V.E., Zhilinskii, A.P., Sakharov, I.E.: The Basis of Plasma Physics. Atomizdat, Moscow (in Russian) (1977) [Sects. 9.3.2, 9.7.1, 9.7.2]Google Scholar
  173. Goldreich, P., Reisenegger, A.: Magnetic field decay in isolated neutron stars. Astrophys. J. 395(1), 250–258 (1992) [Sect. 11.4.2]Google Scholar
  174. Goldreich, P., Sridhar, S.: Magnetohydrodynamic turbulence revisited. Astrophys. J. 485(2), 680–688 (1997) [Sect. 7.2]Google Scholar
  175. Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics, p. 492. Institute of Physics Publishing, Bristol (1995) [Intr.]Google Scholar
  176. Gombosi, T.I.: Physics of the Space Environment, p. 339. Cambridge University Press, Cambridge (1999) [Sect. 18.2.1]Google Scholar
  177. Gorbachev, V.S., Kel’ner, S.R.: Formation of plasma condensations in fluctuating strong magnetic field. Sov. Phys. JETP 67(9), 1785–1790 (1988) [Sect. 14.4.1]Google Scholar
  178. Gosling, J.T.: Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671(1), L73–L76 (2007) [Sect. 12.4.2]Google Scholar
  179. Gosling, J.T., Eriksson, S., McComas, D.J., et al.: Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. Geophys. Res. 112(A8), CiteID A08106 (2007a) [Sect. 11.5.1]Google Scholar
  180. Gosling, J.T., Eriksson, S., Phan, T.D., et al.: Direct evidence for prolonged magnetic reconnection at a continuous X-line within the heliospheric current sheet. Geophys. Res. Lett. 34(6), CiteID L06102 (2007b) [Sect. 12.4.2]Google Scholar
  181. Grad, H.: Note on N-dimensional Hermite polynomials. Commun. Pure Appl. Math. 2(4), 325–330 (1949)[Sect. 9.7.1]Google Scholar
  182. Grad, H.: Reducible problems in magneto-fluid dynamic steady flows. Rev. Mod. Phys. 32(4), 830–847 (1960) [Sect. 19.5]Google Scholar
  183. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. Proc. Second Int. Conf. on Peaceful Uses of Atomic Energy 31, 190–197 (1958) [Sect. 19.5]Google Scholar
  184. Grant, H.L., Stewart, R.W., Moilliet, A.: Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–248 (1962) [Sect. 7.2]Google Scholar
  185. Gritsyk, P.A., Somov, B.V.: The kinetic description of the accelerated-electron flux in solar flares. Moscow Univ. Phys. Bull. 66(5), 466–472 (2011) [Sect. 4.5.5]Google Scholar
  186. Gurevich, A.V.: On the theory of runaway electrons. Sov. Phys. JETP 12(5), 904–912 (1961) [Sect. 8.4.2]Google Scholar
  187. Gurevich, A.V., Istomin, Y.N.: Thermal runaway and convective heat transport by fast electrons in a plasma. Sov. Phys. JETP 50(3), 470–475 (1979) [Sect. 8.4.3]Google Scholar
  188. Gurevich, A.V., Zhivlyuk, Y.N.: Runaway electrons in a non-equilibrium plasma. Sov. Phys. JETP 22(1), 153–159 (1966) [Sect. 4.5.2]Google Scholar
  189. Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23(1), 115–121 (1962) [Sect. 3.1.2]Google Scholar
  190. Hattori, M., Umetsu, K.: A possible route to spontaneous reduction of the heat conductivity by a temperature gradient-driven instability in electron-ion plasmas. Astrophys. J. 533(1), 84–94 (2000) [Sect. 8.3.4]Google Scholar
  191. Hawley, J.F., Balbus, S.A.: Instability and turbulence in accretion discs. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 187–194. Kluwer Academic, Dordrecht (1999) [Sect. 13.2.1]Google Scholar
  192. Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440(2), 742–763 (1995) [Sect. 13.2.1]Google Scholar
  193. Heinemann, T., McWilliams, J.C., Schekochihin, A.A.: Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett., 107(25), 255004 (2011) [Sect. 13.1.2]Google Scholar
  194. Hénoux, J.-C., Somov, B.V.: Generation and structure of the electric currents in a flaring activity complex. Astron. Astrophys. 185(1), 306–314 (1987) [Sect. 20.2]Google Scholar
  195. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 1. Magnetic flux-tube generation. Astron. Astrophys. 241(2), 613–617 (1991) [Sects. 11.1, 20.2]Google Scholar
  196. Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 2. Physics of thin magnetic flux tubes. Astron. Astrophys. 318(3), 947–956 (1997) [Sect. 11.1]Google Scholar
  197. Hirotani, K., Okamoto, I.: Pair plasma production in a force-free magnetosphere around a supermassive black hole. Astrophys. J. 497(2), 563–572 (1998) [Sects. 7.3, 11.5.2]Google Scholar
  198. Hollweg, J.V.: Viscosity and the Chew-Goldberger-Low equations in the solar corona. Astrophys. J. 306(2), 730–739 (1986) [Sects. 9.6, 10.5]Google Scholar
  199. Holman, G.D.: DC electric field acceleration of ions in solar flares. Astrophys. J. 452(2), 451–456 (1995) [Sect. 8.4.1(b)]Google Scholar
  200. Horiuchi, R., Sato, T.: Particle simulation study of driven reconnection in a collisionless plasma. Phys. Plasmas 1(11), 3587–3597 (1994) [Sects. 1.2.4, 11.2]Google Scholar
  201. Hoshino, M., Stenzel, R.L., Shibata, K. (eds.): Magnetic Reconnection in Space and Laboratory Plasmas, p. 693. Terra Scientific Publ. Co., Tokyo (2001) [Sect. 13.1.3]Google Scholar
  202. Hoyng, P., Brown, J.C., van Beek, H.F.: High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys. 48(2), 197–254 (1976) [Sect. 4.5.1]Google Scholar
  203. Hubrig, S., North, P., Mathys, G.: Magnetic Ap stars in the Hertzsprung-Russell diagram. Astrophys. J. 539(1), 352–363 (2000) [Sect. 19.1.3]Google Scholar
  204. Hudson, P.D.: Reflection of charged particles by plasma shocks. Mon. Not. Roy. Astron. Soc. 131(1), 23–50 (1965) [Sects. 18.3, 18.3.1, 18.3.2(a)]Google Scholar
  205. Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations, p. 284. Springer Science+Business Media, LLC, New York (2008) [Sect. 3.4]Google Scholar
  206. Imshennik, V.S., Bobrova, N.A.: Dynamics of Collisional Plasma. Energoatomizdat, Moscow (in Russian) (1997) [Sect. 15.4.4]Google Scholar
  207. Innes, D.E., Inhester, B., Axford, W.I., et al.: Bi-directional jets produced by reconnection on the Sun. Nature 386, 811–813 (1997) [Sect. 8.3.3]Google Scholar
  208. Iordanskii, S.V.: On compression waves in magnetohydrodynamics. Sov. Phys. Doklady 3(4), 736–738 (1958) [Sect. 16.2.4(c)]Google Scholar
  209. Iroshnikov, P.S.: Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. AJ. 7(4), 566–571 (1964) [Sect. 7.2.3]Google Scholar
  210. Jaroschek, C.H., Treumann, R.A., Lesch, H., et al.: Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasm. 11(3), 1151–1163 (2004) [Sect. 7.3]Google Scholar
  211. Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929) [Sect. 8.1.5]MATHGoogle Scholar
  212. Jones, F.C., Ellison D.C.: The plasma physics of shock acceleration. Space Sci. Rev. 58(3), 259–346 (1991) [Sects. 18.1, 18.2.1, 18.3.1]Google Scholar
  213. Jones, M.E., Lemons, D.S., Mason, R.J., et al.: A grid-based Coulomb collision model for PIC codes. J. Comput. Phys.123(1), 169–181 (1996) [Sect. 3.4]Google Scholar
  214. Kadomtsev, B.B.: Convective instability of a plasma. In: Leontovich, M.A. (ed.) Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 4, pp. 450–453. Pergamon Press, Oxford (1960) [Sect. 19.3.4]Google Scholar
  215. Kadomtsev, B.B.: Hydrodynamic stability of a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 153–198. Consultants Bureau, New York (1966) [Sects. 15.4.1, 19.3.2, 19.3.4]Google Scholar
  216. Kadomtsev, B.B.: Collective Phenomena in Plasma, p. 238. Nauka, Moscow (in Russian) (1976) [Sect. 7.1]Google Scholar
  217. Kandrup, H.E.: Collisionless relaxation in galactic dynamics and the evolution of long-range order. Ann. New York Acad. Sci. 848, 28–47 (1998) [Sect. 3.3.2]Google Scholar
  218. Kikuchi, H.: Electrohydrodynamics in Dusty and Dirty Plasmas, p. 207. Kluwer Academic, Dordrecht (2001) [Sect. 1.2.4]Google Scholar
  219. Kirkwood, J.G.: The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180–201 (1946) [Sect. 2.4]Google Scholar
  220. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1995) [Sects. 1.4, 3.5]Google Scholar
  221. Kivelson, M.G., Russell, C.T. (eds.): Introduction to Space Physics, p. 568. Cambridge University Press, Cambridge (1995) [Sects. 4.1.1, 6.2.4]Google Scholar
  222. Kleeorin, N., Rogachevskii, I., Sokoloff, D., et al.: Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows. Phys. Rev. E 79(4), 046302 (2009) [Sect. 13.1.2]Google Scholar
  223. Klimontovich, Yu.L.: Kinetic Theory of Non-ideal Gas and Non-ideal Plasma, p. 352. Nauka, Moscow (in Russian) (1975) [Sect. 2.4]Google Scholar
  224. Klimontovich, Yu.L.: Statistical Physics. Harwood Academic, New York (1986) [Intr., Sects. 2.4, 3.1.3, 3.1.4]Google Scholar
  225. Klimontovich, Yu.L.: Two alternative approaches in the kinetic theory of a fully ionized plasma. J. Plasma Phys. 59(4), 647–656 (1998) [Sect. 3.1.3]Google Scholar
  226. Klimontovich, Yu.L., Silin, V.P.: On magnetic hydrodynamics for a non-isothermal plasma without collisions. Sov. Phys. JETP 40, 1213–1223 (1961) [Sects. 11.5.1, 16.4]Google Scholar
  227. Kogan, M.N.: Dynamics of a Dilute Gas. Nauka, Moscow (in Russian) (1967) [Sect. 3.5]Google Scholar
  228. Koide, S., Shibata, K., Kudoh, T.: Relativistic jet formation from black hole magnetized accretion discs. Astrophys. J. 522, 727–752 (1999) [Sects. 12.2, 13.3.1]Google Scholar
  229. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. USSR, 30, 201–206 (1941) [Sect. 7.2]Google Scholar
  230. Korchak, A.A.: On the origin of solar flare X-rays. Solar Phys. 18(2), 284–304 (1971) [Sect. 8.1.5]Google Scholar
  231. Korchak, A.A.: Coulomb losses and the nuclear composition of the solar flare accelerated particles. Solar Phys. 66(1), 149–158 (1980) [Sect. 8.4.1(b)]Google Scholar
  232. Kosugi, T., Matsuzaki, K., Sakao, T., et al.: The Hinode (Solar-B) mission: An overview. Solar Phys. 243(1), 3–17 (2007) [Sect. 8.3.2]Google Scholar
  233. Kotchine, N.E.: Rendiconti del Circolo Matematico di Palermo 50, 305–314 (1926) [Sect. 17.1.1]Google Scholar
  234. Kovalev, V.A., Somov, B.V.: On the acceleration of solar-flare charged particles in a collapsing magnetic trap with an electric potential. Astron. Lett. 28(7), 488–493 (2002) [Sect. 8.1.4]Google Scholar
  235. Kraichnan, R.H.: Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8(7), 1385–1389 (1965) [Sect. 7.2]Google Scholar
  236. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill Book Co., New York (1973) [Sect. 9.6.2]Google Scholar
  237. Krucker, S., Hudson, H.S., Jeffrey, N.L.S., et al.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739(2), 96 (7pp) (2011) [Sect. 8.3.2]Google Scholar
  238. Krymskii, G.F.: A regular mechanism for the acceleration of charged particles on the front of a shock wave. Sov. Phys. Dokl. 22(6), 327–328 (1977) [Sect. 18.2.1]Google Scholar
  239. Kubbinga, H.: A tribute to Boltzmann. Europhysicsnews 37(6), 28–29 (2006) [Sect. 9.6.1]Google Scholar
  240. Kudriavtsev, V.S.: Energetic diffusion of fast ions in equilibrium plasma. Sov. Phys. JETP 7(6), 1075–1079 (1958) [Sect. 4.1.2]Google Scholar
  241. Kulikovskii, A.G., Liubimov, G.A.: On the structure of an inclined MHD shock wave. Appl. Math. Mech. 25(1), 171–179 (1961) [Sect. 17.4.2]Google Scholar
  242. Kumar, N., Kumar, P., Singh, S.: Coronal heating by MHD waves. Astron. Astrophys. 453(2), 1067–1078 (2006) [Sect. 15.2.1]Google Scholar
  243. Kunkel, W.B.: Generalized Ohm’s law for plasma including neutral particles. Phys. Fluids 27(9), 2369–2371 (1984) [Sect. 11.1]Google Scholar
  244. Lahav, O., Terlevich, E., Terlevich, R.J. (eds.): Gravitational Dynamics, p. 270. Cambridge University Press, Cambridge (1996) [Sect. 1.3]Google Scholar
  245. Lancellotti, C., Kiessling, M.: Self-similar gravitational collapse in stellar dynamics. Astrophys. J.549, L93–L96 (2001) [Sect. 3.3.2]Google Scholar
  246. Landau, L.D.: Kinetic equation in the case of Coulomb interaction. Zhur. Exper. Teor. Fiz. 7(1), 203–212 (in Russian) (1937) [Sect. 3.1.3]Google Scholar
  247. Landau, L.D.: On the vibrations of the electron plasma. J. Phys. USSR 10(1), 25–30 (1946) [Sects. 3.1.3, 7.1]Google Scholar
  248. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, p. 536. Oxford, London (1959a) [Sects. 12.2.2, 12.2.3, 15.6, 16.1.2, 16.2.2, 20.2]Google Scholar
  249. Landau, L.D., Lifshitz, E.M.: Statistical Physics, p. 478. Pergamon Press, London (1959b) [Sects. 1.1.5, 1.4, 3.5, 16.5]Google Scholar
  250. Landau, L.D., Lifshitz, E.M.: Classical Theory of Field, 4th edn., p. 374. Oxford, New York (1975) [Sects. 1.2.1, 2.2.1, 5.1.1, 5.1.3, 5.4, 6.2.1, 7.4, 13.4, 18.4, 19.1.1]Google Scholar
  251. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn., p. 165. Oxford, London (1976) [Sects. 1.1.5, 1.4, 6.1, 8.1.1, 19.1.1]Google Scholar
  252. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, p. 460. Pergamon Press, Oxford (1984) [Sects. 11.4.2, 16.2.4(c), 17.3.2]Google Scholar
  253. Langmuir, I.: Proc. Nat. Acad. Sci. U.S.A. 14, 627 (1928) [Sect. 3.2.2]Google Scholar
  254. Larrabee, D.A., Lovelace, R.V.E., Romanova, M.M.: Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586(1), 72–78 (2003) [Sect. 7.3]Google Scholar
  255. Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, p. 736. Nauka, Moscow (in Russian) (1973) [Sects. 3.1.3, 9.7.1, 14.2.2(a)]Google Scholar
  256. Lax, P.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10(4), 537–566 (1957) [Sect. 17.1.1]Google Scholar
  257. Lax, P.: Hyperbolic Partial Differential Equations, AMS, Courant Inst. of Math. Sci. (2006) [Sect. 17.1.1]Google Scholar
  258. Leenov, D., Kolin, A.: Theory of electromagnetophoresis. 1. MHD forces experienced by spherical and cylindrical particles. J. Chem. Phys. 22(4), 683–688 (1954) [Sect. 20.4]Google Scholar
  259. Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10(7), 1409–1416 (1967) [Sect. 7.2]Google Scholar
  260. Leontovich, M.A. (ed.): Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vols. 1–4. Pergamon Press, London (1960) [Intr.]Google Scholar
  261. Lesch, H., Pohl, M.: A possible explanation for intraday variability in active galactic nuclei. Astron. Astrophys. 254(1), 29–38 (1992) [Sect. 13.2.4]Google Scholar
  262. Letessier, J., Rafelski, J.: Hadrons and Quark-gluon Plasma, p. 397. Cambridge University Press, Cambridge (2004) [Sect. 12.2.5]Google Scholar
  263. Liberman, M.A.: On actuating shock waves in a completely ionized plasma. Sov. Phys. JETP 48(5), 832–840 (1978) [Sects. 16.2.6, 17.4.2]Google Scholar
  264. Liboff, R.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, p. 571. Springer, Heidelberg (2003) [Intr.]Google Scholar
  265. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics, p. 196. Benjamin, New York (1967) [Sect. 12.2]Google Scholar
  266. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics, p. 452. Pergamon Press, Oxford (1981) [Sects. 3.5, 7.3, 8.3.1, 9.6]Google Scholar
  267. Lin, R.P., Hudson, H.S.: 10–100 keV electron acceleration and emission from solar flares. Solar Phys. 17(2), 412–435 (1971) [Sects. 4.3.4, 8.3.2]Google Scholar
  268. Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210(1), 3–32 (2002) [Sect. 4.5.7]Google Scholar
  269. Lin, R.P., Krucker, S., Hurford, G.J., et al.: RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. 595(2), L69–L76 (2003) [Sect. 4.5.7]Google Scholar
  270. Litvinenko, Y.E., Somov, B.V.: Solar flares and virial theorem. Sov. Astron. AJ 35(2), 183–188 (1991a) [Sects. 19.1.3, 19.2.2, 19.4.3]Google Scholar
  271. Litvinenko, Y.E., Somov, B.V.: Nonthermal electrons in the thick-target reverse-current model for hard X-ray bremsstrahlung. Solar Phys. 131(2), 319–336 (1991b) [Sects. 4.5.2, 4.5.5]Google Scholar
  272. Litvinenko, Y.E., Somov, B.V.: Electromagnetic expulsion force in cosmic plasma. Astron. Astrophys. 287(1), L37–L40 (1994) [Sect. 20.4]Google Scholar
  273. Litvinenko, Y.E., Somov, B.V.: Aspects of the global MHD equilibria and filament eruptions in the solar corona. Space Sci. Rev. 95(1), 67–77 (2001) [Sects. 19.1.3, 19.4.3]Google Scholar
  274. Liubarskii, G.Ya., Polovin, R.V.: Simple magnetoacoustic waves. Sov. Phys. JETP 8(2), 351 (1958) [Sect. 16.2.4(c)]Google Scholar
  275. Lovelace, R.V.E.: Dynamo model of double radio sources. Nature 262, 649–652 (1976) [Sect. 20.1.3]Google Scholar
  276. Luna, M., Karpen, J.T., DeVore, C.R.: Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746(1), article id. 30 (2012) [Sect. 12.1.3]Google Scholar
  277. Lundquist, S.: Magneto-hydrostatic fields. Ark. Fys. 2(35), 361–365 (1951) [Sect. 19.2.1(b)]Google Scholar
  278. Macdonald, D.A., Thorne, K.S., Price, R.H., et al.: Astrophysical applications of black-hole electrodynamics. In: Thorne, K.S., Price, R.H., Macdonald, D.A. (eds.) Black Holes: The Membrane Paradigm, pp. 121–137. Yale University Press, New Haven (1986) [Sect. 13.3.1]Google Scholar
  279. MacDonald, W.M., Rothenbluth, M.N., Chuck, W.: Relaxation of a system of particles with Coulomb interactions. Phys. Rev. 107(2), 350–353 (1957) [Sect. 4.1.2]Google Scholar
  280. Mach, E.: Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Calve, Prag (1872) [Sect. 13.3.2]Google Scholar
  281. Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch Dargestellt. Brockhaus, Leipzig (1883) [Sect. 13.3.2]Google Scholar
  282. MacNeice, P., McWhirter, R.W.P., Spicer, D.S., et al.: A numerical model of a solar flare based on electron beam heating of the chromosphere. Solar Phys. 90(2), 357–353 (1984) [Sect. 8.3.2]Google Scholar
  283. Manmoto, T.: Advection-dominated accretion flow around a Kerr black hole. Astrophys. J. 534(2), 734–746 (2000) [Sects. 8.3.5, 13.2.3]Google Scholar
  284. Markovskii, S.A.: Nonevolutionarity of trans-Alfvénic shocks in a magnetized plasma. J. Geophys. Res. 104(A3), 4427–4436 (1999) [Sects. 17.3.2, 17.4.2]Google Scholar
  285. Markovskii, S.A., Skorokhodov, S.L.: Disintegration of trans-Alfvénic shocks due to variable viscosity and resistivity. J. Geophys. Res. 105(A6), 12702–12711 (2000) [Sect. 17.4.2]Google Scholar
  286. Markovskii, S.A., Somov, B.V.: A model of magnetic reconnection in a current sheet with shock waves. Fizika Solnechnoi Plasmy (Physics of Solar Plasma), pp. 456–472. Nauka, Moscow (in Russian) (1989) [Sect. 14.2.2(a)]Google Scholar
  287. Markovskii, S.A., Somov, B.V.: MHD discontinuities in space plasmas: Interrelation between stability and structure. Space Sci. Rev. 78(3–4), 443–506 (1996) [Sect. 17.5]Google Scholar
  288. Marty, P., Alemany, A.: Écoulement dû à des champs magnétique et électrique croisés autour d’un cylindre de conductivité quelconque. Journal de Mécanique Théorique et Appliquée 2(2), 227–243 (1983) [Sects. 19.4.2, 20.3]Google Scholar
  289. Maxwell, J.C.: Illustrations of the dynamical theory of gases. Phil. Mag. Ser. 4(19), 19–24 (1860) [Sect. 9.6.1]Google Scholar
  290. McClymont, A.N., Canfield, R.C.: Flare loop radiative hydrodynamics. I – Basic methods. Astrophys. J. 265, 483–506 (1983) [Sect. 8.3.2]Google Scholar
  291. McDonald, L., Harra-Murnion, L.K., Culhane, J.L.: Non-thermal electron energy deposition in the chromosphere and the accompanying soft X-ray flare emission. Solar Phys. 185(2), 323–350 (1999) [Sect. 8.3.2]Google Scholar
  292. Michel, F.C.: Theory of Neutron Star Magnetospheres, p. 456. Chicago University Press, Chicago (1991) [Sects. 7.3, 11.5.2, 12.2.2]Google Scholar
  293. Mikhailovskii, A.B.: Nonlinear excitation of electromagnetic waves in a relativistic electron-positron plasma. Sov. J. Plasma Phys. 6(3), 336–340 (1979) [Sect. 7.3]Google Scholar
  294. Mikhailovskii, A.B., Onishchenko, O.G., Tatarinov, E.G.: Alfvén solitons in a relativistic electron-positron plasma. Plasma Phys. Contr. Fusion 27(5), 539–556 (1985) [Sect. 7.3]Google Scholar
  295. Mirabel, I.F., Rodriguez, L.F.: Microquasars in our Galaxy. Nature 392, 673–676 (1998) [Sect. 20.1.3]Google Scholar
  296. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press, London (1978) [Sect. 13.1.2]Google Scholar
  297. Moreau, R.: Magnetohydrodynamics, p. 328. Kluwer Academic, Dordrecht (1990) [Sect. 20.1.5]Google Scholar
  298. Morozov, A.I., Solov’ev, L.S.: The structure of magnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 1–101. Consultans Bureau, New York (1966a) [Sect. 19.3.4]Google Scholar
  299. Morozov, A.I., Solov’ev, L.S.: Motion of particles in electromagnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 201–297. Consultans Bureau, New York (1966b) [Sect. 5.3.4]Google Scholar
  300. Moses, G.A., Duderstadt, J.J.: Improved treatment of electron thermal conduction in plasma hydrodynamics calculations. Phys. Fluids 20(5), 762–770 (1977) [Sect. 9.7.1]Google Scholar
  301. Nakano, T.: Star formation in magnetic clouds. Astrophys. J. 494(2), 587–604 (1998) [Sect. 19.1.3]Google Scholar
  302. Narayan, R., Garcia, M.R., McClintock, J.E.: Advection-dominated accretion and black hole horizons. Astrophys. J.478(2), L79–L82 (1997) [Sect. 8.3.5]Google Scholar
  303. Negoro, H., Kitamoto, S., Takeuchi, M., et al.: Statistics of X-ray fluctuations from Cygnus X-1: Reservoirs in the disk? Astrophys. J. 452(1), L49–L52 (1995) [Sect. 13.2.4]Google Scholar
  304. Nishida, A.: Can random reconnection on the magnetopause produce the low latitude boundary layer? Geophys. Res. Lett. 16, 227–230 (1989) [Sect. 12.4.2]Google Scholar
  305. Nishikawa, K.I., Frank, J., Christodoulou, D.M., et al.: 3D relativistic MHD simulations of extragalactic jets. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 217–218. Kluwer Academic, Dordrecht (1999) [Sect. 13.3.1]Google Scholar
  306. Northrop, T.G.: The Adiabatic Motion of Charged Particles. Wiley, New York (1963) [Sect. 6.4]MATHGoogle Scholar
  307. Novikov, I.D., Frolov, V.P.: Physics of Black Holes, p. 341. Kluwer Academic, Dordrecht (1989) [Sects. 11.5.2, 12.2.2, 13.3.1]Google Scholar
  308. Novikov, I.D., Thorne, K.S.: In: Dewitt, C.D., Dewitt, B. (eds.) Black Holes, pp. 345–354. Gordon and Breach, New York (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]Google Scholar
  309. Obertz, P.: Two-dimensional problem of the shape of the magnetosphere. Geomagn. Aeron. 13(5), 758–766 (1973) [Sect. 14.2.2(a)]Google Scholar
  310. Ogawara, Y., Takano, T., Kato, T., et al.: The Solar-A mission: An overview. Solar Phys. 136(1), 1–16 (1991) [Sect. 8.3.2]Google Scholar
  311. Oreshina, A.V., Somov, B.V.: Analytical description of charged particle motion in a reconnecting current layer Astron. Lett. 35(3), 195–206 (2009) [Sect. 5.2.3]Google Scholar
  312. Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Classical and anomalous heat conduction. Moscow Univ. Phys. Bull. 66(3), 286–291 (2011a) [Sects. 9.6.2, 9.7.3]Google Scholar
  313. Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Account of heat-flux relaxation. Moscow Univ. Phys. Bull. 66(3), 292–297 (2011b) [Sects. 9.6.2, 9.7.3]Google Scholar
  314. Oreshina, I.V., Somov, B.V.: Conformal mapping for solving problems of space electrodynamics. Bull. Russ. Acad. Sci. Phys. 63(8), 1209–1212 (1999) [Sect. 14.5]Google Scholar
  315. Ostriker, E.C.: Dynamical friction in a gaseous medium. Astrophys. J. 513(1), 252–258 (1999) [Sect. 8.5]Google Scholar
  316. Padmanabhan, T.: An Invitation to Astrophysics. World Scientific Publ. Co., New Jersey (2006) [Sect. 14.4.2]MATHGoogle Scholar
  317. Palmer, P.L.: Stability of Collisionless Stellar Systems, p. 349. Kluwer Academic, Dordrecht (1994) [Sect. 9.8]Google Scholar
  318. Parker, E.N.: Cosmic Magnetic Fields. Their Origin and Their Activity, p. 841. Clarendon Press, Oxford (1979) [Sects. 13.1.2, 19.3.4, 19.4.2, 20.1.5]Google Scholar
  319. Parks, G.K.: Physics of Space Plasmas, An Introduction, 2nd edn., p. 597. Westview Press, Oxford (2004) [Intr., Sects. 14.5, 18.1, 18.2.3]Google Scholar
  320. Peacock, J.A.: Cosmological Physics, p. 682. Cambridge University Press, Cambridge (1999) [Sects. 7.3, 9.8]Google Scholar
  321. Persson, H.: Electric field along a magnetic line of force in a low-density plasma. Phys. Fluids 6(12), 1756–1759 (1963) [Sect. 8.1.4]Google Scholar
  322. Peterson, L.E., Winckler, J.B.: Gamma-ray burst from a solar flare. J. Geophys. Res. 64(7), 697–707 (1959) [Sect. 4.3.4]Google Scholar
  323. Pfaffelmoser, K.: Global classic solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Equat. 95, 281–303 (1992) [Sect. 16.5]Google Scholar
  324. Phan, T.D., Gosling, J.T., Davis, M.S., et al.: A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439(04393), 175–178 (2006) [Sect. 12.4.2]Google Scholar
  325. Planck, M.: Über einen Satz der Statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzber Preuss. Akad. Wiss., Phys-Math. Klasse 324 (1917) [Sect. 3.1.4]Google Scholar
  326. Polovin, R.V.: Shock waves in MHD. Soviet Phys. Usp. 3(5), 677–688 (1961) [Sects. 16.2.4(c), 17.2.2]Google Scholar
  327. Polovin, R.V., Demutskii, V.P.: Fundamentals of Magnetohydrodynamics. Consultants Bureau, New York (1990) [Sect. 17.4.1]Google Scholar
  328. Polovin, R.V., Liubarskii, G.Ya.: Impossibility of rarefaction shock waves in MHD. Sov. Phys. JETP 8(2), 351–352 (1958) [Sect. 16.2.4(c)]Google Scholar
  329. Priest, E.R.: Solar Magnetohydrodynamics, p. 472. D. Reidel Publ. Co., Dordrecht (1982) [Sects. 16.2.4(c), 19.3.4]Google Scholar
  330. Punsly, B.: Black Hole Gravitohydromagnetics, p. 400. Springer, New York (2001) [Sect. 12.2.5]Google Scholar
  331. Quarati, P., Scarfone, A.M.: Modified Debye-Hückel electron shielding and penetration factor. Astrophys. J. 666(2), 1303–1310 (2007) [Sect. 8.2.2]Google Scholar
  332. Ramos, J.I., Winowich, N.S.: Magnetohydrodynamic channel flow study. Phys. Fluids 29(4), 992–997 (1986) [Sect. 20.2]Google Scholar
  333. Reid, I.N., Liebert, J., Schmidt, G.D.: Discovery of a magnetic DZ white dwarf with Zeeman-split lines of heavy elements. Astrophys. J. 550(1), L61–L63 (2001) [Sect. 13.2.2]Google Scholar
  334. Rodrigues-Pacheco, J., Sequeiros, J., del Peral, L., et al.: Diffusive-shock-accelerated interplanetary ions at several energies during the solar cycle 21 maximum. Solar Phys. 181(1), 185–200 (1998) [Sect. 18.2.1]Google Scholar
  335. Rogachevskii, I., Kleeorin, N.: Shear-current effect in a turbulent convection with a large-scale shear. Phys. Rev. E 75(4), 046305 (2007) [Sect. 13.1.2]Google Scholar
  336. Roikhvarger, Z.B., Syrovatskii, S.I.: Evolutionarity of MHD discontinuities with allowance for dissipative waves. Sov. Phys. JETP 39(4), 654–656 (1974) [Sects. 17.1.4, 17.3.1, 17.3.2]Google Scholar
  337. Rose, W.K.: Advanced Stellar Astrophysics, p. 494. Cambridge University Press, Cambridge (1998) [Sects. 1.3, 5.4, 7.3, 12.2.2, 13.2.1, 14.4.2]Google Scholar
  338. Rosenbluth, M., Longmire, C.: Stability of plasmas confined by magnetic fields. Ann. Phys. 1(1), 120–140 (1957) [Sects. 19.3.2, 19.3.3]Google Scholar
  339. Ruderman, M.: Matter in superstrong magnetic fields: The surface of a neutron star. Phys. Rev. Lett. 27(19), 1306–1308 (1971) [Sect. 5.4]Google Scholar
  340. Ruderman, M.A., Sutherland, P.G.: Theory of pulsars: Polar gaps, sparks, and coherent radiation. Astrophys. J. 196(1), 51–72 (1975) [Sect. 7.3]Google Scholar
  341. Rüdiger, G., von Rekowski, B.: Differential rotation and meridional flow for fast-rotating solar-type stars. Astrophys. J. 494(2), 691–699 (1998) [Sects. 13.1.2, 20.1.5]Google Scholar
  342. Ruffolo, D.: Transport and acceleration of energetic particles near an oblique shock. Astrophys. J. 515(2), 787–800 (1999) [Sect. 18.2.1]Google Scholar
  343. Salat, A.: Non-linear plasma transport equations for high flow velocity. Plasma Phys. J. 17, 589–607 (1975) [Sect. 9.7.2]Google Scholar
  344. Sarazin, C.L., Kempner, J.C.: Nonthermal bremsstrahlung and hard X-ray emission from clusters of galaxies. Astrophys. J. 533(1), 73–83 (2000) [Sect. 8.3.4]Google Scholar
  345. Sarris, E.T., Van Allen, J.A.: Effects of interplanetary shocks on energetic particles. J. Geophys. Res. 79(28), 4157–4173 (1974) [Sect. 18.3.2(a)]Google Scholar
  346. Schabansky, V.P.: Some processes in the magnetosphere. Space Sci. Rev. 12(3), 299–418 (1971) [Sect. 11.1]Google Scholar
  347. Schiff, L.I.: Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4(5), 215–217 (1960) [Sect. 13.4]Google Scholar
  348. Schlickeiser, R.: Cosmic Ray Astrophysics, p. 519. Springer, New York (2002) [Sect. 5.1.3]Google Scholar
  349. Schlüter, A.: Dynamic des Plasmas. Zeitschrift für Naturforschung 6A(2), 73–78 (1951) [Sect. 11.1]Google Scholar
  350. Schmidt, G.: Physics of High Temperature Plasmas, p. 408. Academic, New York (1979) [Sect. 3.1.2]Google Scholar
  351. Schou, J., Antia, H.M., Basu, S., et al.: Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505(1), 390–417 (1998) [Sect. 20.1.5]Google Scholar
  352. Schram, P.P.J.: Kinetic Theory of Gases and Plasmas, p. 426. Kluwer Academic, Dordrecht (1991) [Intr., Sect. 6.2.2]Google Scholar
  353. Schrijver, C.J., Zwaan, C.: Solar and Stellar Magnetic Activity, p. 400. Cambridge University Press, Cambridge (1999) [Sect. 20.1.5]Google Scholar
  354. Sedov, L.I.: Mechanics of Continuous Medium, vol. 1, p. 536, vol. 2, p. 584. Nauka, Moscow (in Russian) (1973) [Sect. 13.1.1]Google Scholar
  355. Sermulyn’sh, B.A., Somov, B.V.: The problem of reverse current under heating of the solar atmosphere by accelerated electrons. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 90–95. LIYaF, Leningrad (in Russian) (1982) [Sect. 4.5.6]Google Scholar
  356. Sermulyn’sh, B.A., Somov, B.V.: On the influence of reverse current on the chromospheric heating by accelerated electrons. Investig. Sun Red Stars 18, 86–92 (in Russian) (1983) [Sect. 4.5.6]Google Scholar
  357. Shafranov, V.D.: On MHD equilibrium configurations. Sov. Phys. JETP 6, 545–551 (1958) [Sect. 19.5]Google Scholar
  358. Shafranov, V.D.: Plasma equilibrium in a magnetic field. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 103–151. Consultants Bureau, New York (1966) [Sects. 19.2.2, 19.3.2]Google Scholar
  359. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems, Observational appearance. Astron. Astrophys. 24(2), 337–355 (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]Google Scholar
  360. Sheeley, N.R., Jr., Warren, H.P., Wang, Y.-M.: A streamer ejection with reconnection close to the Sun. Astrophys. J. 671(1), 926–935 (2007) [Sect. 11.5.1]Google Scholar
  361. Shercliff, A.J.: A Textbook of Magnetohydrodynamics, p. 265. Pergamon Press, Oxford (1965) [Sects. 13.1.1, 16.2.4(c), 17.4.2, 20.2.2]Google Scholar
  362. Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasma, p. 518. Addison-Wesley, Reading (1966) [Sects. 1.1.4, 9.4.1, 9.6.2, 11.5.1, 12.2.3]Google Scholar
  363. Shmeleva, O.P., Syrovatskii, S.I.: Distribution of temperature and emission measure in a steadily heated solar atmosphere. Solar Phys. 33(2), 341–362 (1973) [Sect. 8.5]Google Scholar
  364. Shoub, E.C.: Invalidity of local thermodynamic equilibrium for electrons in solar transition region. Astrophys. J. 266(1), 339–369 (1983) [Sect. 8.4.3]Google Scholar
  365. Shoub, E.C.: Failure of the Fokker-Planck approximation to the Boltzmann integral for (1/r) potentials. Phys. Fluids 30(5), 1340–1352 (1987) [Sects. 3.1.4, 3.5]Google Scholar
  366. Shu, F.H.: The Physics of Astrophysics, vol. 2. Gas Dynamics, p. 476. California Univ. Science Books, Mill Valley (1992) [Sects. 6.2.2, 19.3.4]Google Scholar
  367. Silin, V.P.: Introduction to the Kinetic Theory of Gases, p. 332. Nauka, Moscow (in Russian) (1971) [Sects. 3.1.2, 3.5, 6.2.2]Google Scholar
  368. Simon, A.L.: An Introduction to Thermonuclear Research, p. 182. Pergamon Press, London (1959) [Intr.]Google Scholar
  369. Sirotina, E.P., Syrovatskii, S.I.: Structure of low intensity shock waves in MHD. Sov. Phys. JETP 12(3), 521–526 (1960) [Sects. 16.4, 17.3.1]Google Scholar
  370. Sivukhin, D.V.: Motion of charged particles in electromagnetic fields in the drift approximation. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 1–104. Consultants Bureau, New York (1965) [Sects. 5.2.3, 5.3.4]Google Scholar
  371. Sivukhin, D.V.: Coulomb collisions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 93–341. Consultants Bureau, New York (1966) [Sects. 8.3.1, 8.4.1(b), 8.4.3]Google Scholar
  372. Sivukhin, D.V.: A Course of General Physics. Vol. II, Thermodynamics and Molecular Physics, 3rd edn. Nauka, Moscow (in Russian) (1990) [Sect. 9.6.1]Google Scholar
  373. Sivukhin, D.V.: A Course of General Physics. Vol. III, Electricity, 3rd edn. Nauka, Moscow (in Russian) (1996) [Sects. 11.4.2, 19.2.2]Google Scholar
  374. Smirnov, B.M.: Physics of Weakly Ionized Gases: Problems and Solutions, p. 432. Mir Publ., Moscow (1981) [Sect. 3.5]Google Scholar
  375. Smirnov, V.I.: A Course of Higher Mathematics, vol. 2. Pergamon Press, Oxford (1965) [Sects. 1.1.1, 12.3.1, 19.1.2, 19.6]Google Scholar
  376. Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16 ∘ : Pioneer 11. J. Geophys. Res. 83, 717–724 (1978) [Sect. 12.4.2]Google Scholar
  377. Somov, B.V.: Fast reconnection and transient phenomena with particle acceleration in the solar corona. Bull. Acad. Sci. USSR, Phys. Ser. 45(4), 114–116 (1981) [Sects. 8.3.3, 9.7.2]Google Scholar
  378. Somov, B.V.: Accumulation and release of flare energy. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 6–49. LIYaF, Leningrad (in Russian) (1982) [Sects. 3.1.4, 4.1.2, 4.4]Google Scholar
  379. Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163(1), 210–218 (1986) [Sect. 8.3.3]Google Scholar
  380. Somov, B.V.: Physical Processes in Solar Flares, p. 248. Kluwer Academic, Dordrecht (1992) [Sects. 4.5.6, 8.3.2, 8.4.3, 9.7.3, 19.4.3]Google Scholar
  381. Somov, B.V.: Cosmic Electrodynamics and Solar Physics, p. 288. Moscow State Univ. Publ., Moscow (in Russian) (1993) [Sect. 16.3]Google Scholar
  382. Somov, B.V.: Fundamentals of Cosmic Electrodynamics, p. 364. Kluwer Academic, Dordrecht (1994a) [Sects. 14.2, 16.3]Google Scholar
  383. Somov, B.V.: Features of mass supply and flows related with reconnection in the solar corona. Space Sci. Rev. 70(1), 161–166 (1994b) [Sects. 19.4.1, 20.4]Google Scholar
  384. Somov, B.V.: Plasma Astrophysics, Part II, Reconnection and Flares, p. 504. Springer Science + Business Media, New York (2012) [Intr.]Google Scholar
  385. Somov, B.V., Gritsyk, P.A.: Bremsstrahlung radiation of accelerated electrons in solar flares. Moscow Univ. Phys. Bull. 67(1), 110–116 (2012) [Sect. 4.5.5]Google Scholar
  386. Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485(2), 859–868 (1997) [Sect. 6.2.4]Google Scholar
  387. Somov, B.V., Syrovatskii, S.I.: Plasma motion in an increasing strong dipolar field. Sov. Phys. JETP 34(2), 332–335 (1972a) [Sects. 14.4.1, 14.4.2]Google Scholar
  388. Somov, B.V., Syrovatskii, S.I.: Appearance of a current sheet in a plasma moving in the field of a two-dimensional magnetic dipole. Sov. Phys. JETP 34(5), 992–997 (1972b) [Sect. 14.2.2(a)]Google Scholar
  389. Somov, B.V., Syrovatskii, S.I.: Physical processes in the solar atmosphere associated with flares. Sov. Phys. Usp. 19(10), 813–835 (1976a) [Sects. 8.3.3, 8.3.4, 12.1.3]Google Scholar
  390. Somov, B.V., Syrovatskii, S.I.: Hydrodynamic plasma flows in a strong magnetic field. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasma, Proc. P.N. Lebedev Phys. Inst., vol. 74, pp. 13–71. Consultants Bureau, New York (1976b) [Sects. 12.1.3, 13.1.1, 14.1, 14.2.2(b), 14.4.2]Google Scholar
  391. Somov, B.V., Tindo, I.P.: Polarization of hard X-rays from solar flares. Cosmic Res. 16(5), 555–564 (1978) [Sect. 4.5.5]Google Scholar
  392. Somov, B.V., Titov, V.S.: Magnetic reconnection as a mechanism for heating the coronal loops. Sov. Astron. Lett. 9(1), 26–28 (1983) [Sect. 8.3.3]Google Scholar
  393. Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Gas dynamics of a flare plasma. Bull. Acad. Sci. USSR Phys. Ser. 41(2), 32–43 (1977) [Sect. 8.3.2]Google Scholar
  394. Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Hydrodynamics of an optically transparent plasma with a distributed heating source. In: Basov, N.G. (ed.) Flare Processes in Plasmas, Proc. P.N. Lebedev Phys. Inst., vol. 110, pp. 73–94. Nauka, Moscow (in Russian) (1979) [Sect. 8.3.2]Google Scholar
  395. Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Heating by accelerated electrons. Solar Phys. 73(1), 145–155 (1981) [Sect. 8.3.2]Google Scholar
  396. Somov, B.V., Sermulina, B.J., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Thermal model. Solar Phys. 81(1), 281–292 (1982) [Sect. 8.3.3]Google Scholar
  397. Somov, B.V., Oreshina, A.V., Oreshina, I.V., et al.: Flares in accretion disk coronae. Adv. Space Res. 32(6), 1087–1096 (2003) [Sects. 14.2.2(a), 14.5]Google Scholar
  398. Somov, B.V., Dzhalilov, N.S., Staude, J.: Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33(5), 309–318 (2007) [Sects. 12.1.3, 15.2.1, 15.4.4]Google Scholar
  399. Spicer, D.S, Emslie, A.G.: A new quasi-thermal trap model for solar hard X-ray bursts: An electrostatic trap model. Astrophys. J. 330(2), 997–1007 (1988) [Sect. 8.1.4]Google Scholar
  400. Spitzer, L.: The stability of isolated clusters. Mon. Not. Roy. Astron. Soc. 100(5), 396–413 (1940) [Sect. 8.3.1]Google Scholar
  401. Spitzer, L.: Physics of Fully Ionized Gases, p. 170. Wiley Interscience, New York (1962) [Sects. 8.3.1, 8.4.1(a), 9.6.2, 15.4.1, 15.4.4]Google Scholar
  402. Steinolfson, R.S., Cable, S.: Venus bow shock at unusually large distances from the planet. Geophys. Res. Lett. 20, 755–758 (1993) [Sect. 16.2.5]Google Scholar
  403. Steinolfson, R.S., Hundhausen, A.J.: MHD intermediate shocks in coronal mass ejections. J. Geophys. Res. 95, 6389–6401 (1990) [Sect. 16.2.5]Google Scholar
  404. Stewart, R.W., Grant, H.L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. J. Geophys. Res. 67, 3177–3184 (1969) [Sect. 7.2.2]Google Scholar
  405. Stix, T.H.: Waves in Plasmas. American Institue of Physics, New York (1992) [Sect. 10.4]Google Scholar
  406. Störmer, C.: The Polar Aurora. Clarendon Press, Oxford (1955) [Sect. 6.4]MATHGoogle Scholar
  407. Strittmatter, P.A.: Gravitational collapse in the presence of a magnetic field. Monthly Not. Roy. Astron. Soc. 132(3), 359–378 (1966) [Sects. 19.1.2, 19.1.3]Google Scholar
  408. Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. (eds.): The Many Faces of the Sun, p. 610. Springer, New York (1999) [Sect. 4.3.4]Google Scholar
  409. Subramanian, P., Becker, P.A., Kazanas, D.: Formation of relativistic outflows in shearing black hole accretion coronae. Astrophys. J. 523(1), 203–222 (1999) [Sect. 13.3.4]Google Scholar
  410. Suh, I.S., Mathews, G.J.: Cold ideal equation of state for strongly magnetized neutron star matter: Effects on muon production and pion condensation. Astrophys. J. 546(3), 1126–1136 (2001) [Sect. 19.1.3]Google Scholar
  411. Sutton, G.W., Sherman, A.: Engineering Magnetohydrodynamics, p. 548. McGraw-Hill Book Co., New York (1965) [Sects. 13.1.1, 20.2]Google Scholar
  412. Syrovatskii, S.I.: On the stability of tangential discontinuities in MHD medium. Zhur. Exper. Teor. Fiz. 24(6), 622–630 (in Russian) (1953) [Sects. 16.2.1, 16.2.2]Google Scholar
  413. Syrovatskii, S.I.: Instability of tangential discontinuities in a compressive medium. Zhur. Exper. Teor. Fiz. 27(1), 121–123 (in Russian) (1954) [Sect. 16.2.2]Google Scholar
  414. Syrovatskii, S.I.: Some properties of discontinuity surfaces in MHD. Proc. P.N. Lebedev Phys. Inst. 8, 13–64 (in Russian) (1956) [Sects. 16.2.1, 16.3, 20.1.1]Google Scholar
  415. Syrovatskii, S.I.: Magnetohydrodynamics. Uspehi Fiz. Nauk 62(3), 247–303 (in Russian) (1957) [Sects. 12.2.2, 15.4.2, 16.2.4(c), 19.1.3, 20.1.1]Google Scholar
  416. Syrovatskii, S.I.: The stability of shock waves in MHD. Sov. Phys. JETP 8(6), 1024–1028 (1959) [Sects. 17.1.2, 17.1.4]Google Scholar
  417. Syrovatskii, S.I.: Formation of current sheets in a plasma with a frozen-in strong field. Sov. Phys. JETP 33(5), 933–940 (1971) [Sect. 14.2.2(a)]Google Scholar
  418. Syrovatskii, S.I., Chesalin, L.S.: Electromagnetic generation of conductive fluid flows near bodies and expulsive force. Questions of Magnetohydrodynamics, pp. 17–22. Zinatne, Riga (in Russian) (1963) [Sects. 19.4.2, 20.3]Google Scholar
  419. Syrovatskii, S.I., Shmeleva, O.P.: Heating of plasma by high-energy electrons, and the non-thermal X-ray emission in solar flares. Sov. Astron. AJ 16(2), 273–283 (1972) [Sects. 4.3.3, 4.3.4, 8.3.2]Google Scholar
  420. Syrovatskii, S.I., Somov, B.V.: Physical driving forces and models of coronal responses. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics, IAU Symp. vol. 91, pp. 425–441. Reidel, Dordrecht (1980) [Sect. 14.2.2(b)]Google Scholar
  421. Takahara, F., Kusunose, M.: Electron-positron pair production in a hot accretion plasma around a massive black hole. Progr. Theor. Phys. 73(6), 1390–1400 (1985) [Sect. 7.3]Google Scholar
  422. Takizawa, M.: A two-temperature model of the intracluster medium. Astrophys. J. 509(2), 579–584 (1998) [Sect. 8.3.4]Google Scholar
  423. Tamm, I.E.: Basic Theory of Electricity, 10th edn., p. 504. Nauka, Moscow (in Russian) (1989) [Sect. 19.3.1]Google Scholar
  424. Tandberg-Hanssen, E.: The Nature of Solar Prominences, p. 308. Kluwer Academic, Dordrecht (1995) [Sects. 19.3.4, 20.4]Google Scholar
  425. Thorne, K.: Gravitomagnetism, Jets in Quasars, and the Stanford Gyroscope Experiment. In: Fairbank, J.D., et al. (eds.) Near Zero: New Frontiers of Physics, pp. 573–586. W.H. Freeman and Co., New York (1988) [Sect. 13.3.2]Google Scholar
  426. Tidman, D.A., Krall, N.A.: Shock Waves in Collisionless Plasma, p. 175. Wiley-Interscience, New York (1971) [Sect. 16.4]Google Scholar
  427. Titov, V.S., Priest, E.R.: The collapse of an X-type neutral point to form a reconnecting current sheet. Geophys. Astrophys. Fluid Dyn. 72, 249–276 (1993) [Sect. 14.2.2(b)]Google Scholar
  428. Todd, L.: Evolution of the trans-Alfvénic normal shock in a gas of finite electrical conductivity. J. Fluid Mech. 18, 321–336 (1964) [Sect. 17.4.2]Google Scholar
  429. Toptyghin, I.N.: Acceleration of particles by shocks in a cosmic plasma. Space Sci. Rev. 26(1), 157–213 (1980) [Sect. 18.3.2(a)]Google Scholar
  430. Treumann, R.A., Baumjohann, W.: Advanced Space Plasma Physics, p. 381. Imperial College Press, London (1997) [Sect. 7.1]Google Scholar
  431. Trubnikov, B.A.: Particle interactions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 105–204. Consultants Bureau, New York (1965) [Sect. 8.4.1(b)]Google Scholar
  432. Tsiklauri, D., Haruki, T.: Magnetic reconnection during collisionless, stressed, X-point collapse using particle-in-cell simulation. Phys. Plasma 14(11), 112905–112905-10 (2007) [Sect. 11.2]Google Scholar
  433. Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249(2), 167–196 (2008) [Sect. 8.3.2]Google Scholar
  434. Tverskoy, B.A.: Contribution to the theory of Fermi statistical acceleration. Soviet Phys. JETP. 25(2), 317–325 (1967) [Sect. 7.2]Google Scholar
  435. Tverskoy, B.A.: Theory of turbulent acceleration of charged particles in a plasma. Soviet Phys. JETP.26(4), 821–828 (1968) [Sect. 7.2]Google Scholar
  436. Tverskoy, B.A.: Main mechanisms in the formation of the Earth’s radiation belts. Rev. Geophys. 7(1), 219–231 (1969) [Sect. 6.4]Google Scholar
  437. UeNo, S.: Comparison between statistical features of X-ray fluctuations from the solar corona and accretion disks. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 45–50. Kluwer Academic, Dordrecht (1998) [Sect. 13.2.4]Google Scholar
  438. Unti, T., Atkinson, G.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The boundary. J. Geophys. Res. Space Phys. 73(23), 7319–7327 (1968) [Sect. 14.2.2(a)]Google Scholar
  439. van de Hulst, H.C.: Interstellar polarization and MHD waves. In: Burgers, J.M., van de Hulst, H.C. (eds.) Problems of Cosmical Aerodynamics, pp. 45–57, Central Air Documents Office, Dayton, Ohio (1951) [Sects. 15.2.3, 15.3.2]Google Scholar
  440. van den Oord, G.H.J.: The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys. 234(2), 496–518 (1990) [Sects. 4.5.1, 4.5.2]Google Scholar
  441. Vink, J., Laming, J.M., Gu, M.F., et al.: The slow temperature equilibration behind the shock front of SN 1006. Astrophys. J. 587(1), L31–L34 (2003) [Sect. 16.4]Google Scholar
  442. Vladimirov, V.S.: Equations of Mathematical Physics, p. 418. M. Dekker, New York (1971) [Sects. 1.1.5, 1.2.2, 13.1.1]Google Scholar
  443. Vlasov, A.A.: On the oscillation properties of an electron gas. Zhur. Eksp. Teor. Fiz. 8(1), 29–33 (in Russian). English translation: 1968, The vibrational properties of an electron gas. Sov. Phys. Uspekhi 10(4), 721–733, see also Sov. Phys. Uspekhi 19(6), 545–546 (1938) [Sects. 3.1.2, 3.1.3, 10.2.2]Google Scholar
  444. Vlasov, A.A.: On the kinetic theory of an ensemble of particles with collective interactions. Soviet J. Phys. 9(1), 25–28 (1945) [Sect. 3.1.2]Google Scholar
  445. Volkov, T.F.: Hydrodynamic description of a collisionless plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 1–21. Consultant Bureau, New York (1966) [Sects. 11.5.1, 16.4]Google Scholar
  446. Walt, M.: Introduction to Geomagnetically Trapped Radiation, p. 188. Cambridge University Press, Cambridge (1994) [Sect. 6.4]Google Scholar
  447. Webb, G.M.: Similarity considerations and conservation laws for magnetostatic atmospheres. Solar Phys.106(2), 287–313 (1986) [Sect. 19.4.3]Google Scholar
  448. Webb, G.M., Zank, G.P., Ko, C.M., et al.: Multi-dimensional Green’s functions and the statistics of diffusive shock acceleration. Astrophys. J. 453(1), 178–189 (1995) [Sect. 18.2.2]Google Scholar
  449. Wentzel, D.G.: Fermi acceleration of charged particles. Astrophys. J. 137(1), 135–146 (1963) [Sect. 18.3.2(b)]Google Scholar
  450. Wentzel, D.G.: Motion across magnetic discontinuities and Fermi acceleration of charged particles. Astrophys. J. 140(3), 1013–1024 (1964) [Sects. 6.2.4, 18.3.2(b)]Google Scholar
  451. Wiita, P.J.: Accretion disks around black holes. In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe, pp. 249–263. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]Google Scholar
  452. Will, C.M.: Finally, results from Gravity Probe B. Physics 4, 43 (2011) [Sect. 13.4]Google Scholar
  453. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44(6), 489–491 (1958) [Sect. 19.6]Google Scholar
  454. Yvon, J.: La Theorie des Fluids et l’Equation d’Etat. Hermann et Cie, Paris (1935) [Sect. 2.4]Google Scholar
  455. Zank, G.P.: Weyl’s theorem for MHD. J. Plasma Phys. 46(1), 11–14 (1991) [Sect. 16.2.4(c)]Google Scholar
  456. Zel’dovich, Ya.B., Novikov, I.D.: Relativistic Astrophysics. Vol. 1, Stars and Relativity. University of Chicago Press, Chicago (1971) [Sects. 12.2, 19.3.4]Google Scholar
  457. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1, p. 464, vol. 2, p. 452. Academic, New York (1966) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]Google Scholar
  458. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]Google Scholar
  459. Zel’dovich, Ya.B., Ruzmaikin, A.A., Sokolov, D.D.: Magnetic Fields in Astrophysics. Gordon and Breach, New York (1983) [Sect. 13.1.2]Google Scholar
  460. Zenitani, S., Hoshino, M.: The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562(1), L63–L66 (2001) [Sect. 7.3]Google Scholar
  461. Zenitani, S., Hoshino, M.: Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670(1), 702–726 (2007) [Sect. 7.3]Google Scholar
  462. Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas, p. 462. Kluwer Academic, Dordrecht (1996) [Sects. 7.1, 7.4, 10.4]Google Scholar
  463. Zhou, Y., Matthaeus, W.H.: Models of inertial range spectra of MHD turbulence. J. Geophys. Res. 95(A9), 14881–14892 (1990) [Sect. 7.2]Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Boris V. Somov
    • 1
  1. 1.Astronomical Institute and Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoskvaRussia

Personalised recommendations