Skip to main content

Discontinuous Flows in a MHD Medium

  • Chapter
  • First Online:
Book cover Plasma Astrophysics, Part I

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 391))

  • 1991 Accesses

Abstract

The phenomena related to shock waves and other discontinuous flows in astrophysical plasma are so numerous that the study of MHD discontinuities on their own is of independent great interest for space sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton, L.: Coronal structures, local and global. In: Uchida, Y., Kosugi, T., Hudson, H. (eds.) Magnetohydrodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity, pp. 3–11. Kluwer Academic, Dordrecht (1996) [Sect. 19.3.4]

    Google Scholar 

  • Akhiezer, A.I., Lyubarskii, G.Ya., Polovin, R.V.: On the stability of shock waves in MHD. Sov. Phys. JETP 8(3), 507–512 (1959) [Sect. 17.2.1]

    Google Scholar 

  • Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., et al.: Plasma Electrodynamics. Oxford, Pergamon (1975) [Sects. 15.4.5, 17.2.2]

    Google Scholar 

  • Alekseyev, I.I., Kropotkin, A.P.: Passage of energetic particles through a MHD discontinuity. Geomagn. Aeron. 10(6), 755–758 (1970) [Sect. 18.3.1]

    Google Scholar 

  • Alexander, D., Daou, A.G.: Saturation of nonthermal hard X-ray emission in solar flares. Astrophys. J. 666(2), 1268–1276 (2007) [Sects. 4.5.6, 4.6]

    Google Scholar 

  • Alfaro, E.J., Pérez, E., Franco, J. (eds.): How does the Galaxy work? A galactic tertulia with Don Cox and Ron Reynolds. Kluwer Academic, Dordrecht (2004) [Sect. 9.8]

    Google Scholar 

  • Alfvén, H.: On the solar origin of cosmic radiation. Phys. Rev. 75(11), 1732–1735 (1949) [Sect. 7.2]

    Google Scholar 

  • Alfvén, H.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1950) [Intr., Sects. 12.2.2, 13.4, 15.2.2, 20.1.4]

    Google Scholar 

  • Alfvén, H.: Cosmic Plasma, p. 164. D. Reidel Publishers, Dordrecht (1981) [Sect. 20.1.4]

    Google Scholar 

  • Alfvén, H., Fälthammar, C.-G.: Cosmic Electrodynamics, p. 228. Clarendon Press, Oxford (1963) [Sects. 8.1.4, 8.2.3, 11.1, 15.4.5]

    Google Scholar 

  • Allred, J.C; Hawley, S.L., Abbett, W.P., Carlsson, M.: Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. Astrophys. J. 630(1), 573–586 (2005) [Sect. 8.3.2]

    Google Scholar 

  • Alperovich, L.S., Fedorov, E.N.: Hydromagnetic Waves in the Magnetosphere and Ionosphere, p. 426. Springer, Berlin (2007) [Sects. 11.1, 11.4.1]

    Google Scholar 

  • Altyntsev, A.T., Krasov, V.I., Tomozov V.M.: Magnetic field dissipation in neutral current sheets. Solar Phys. 55(1), 69–81 (1977) [Sect. 12.3.1]

    Google Scholar 

  • Anderson, J.E.: Magnetohydrodynamic Shock Waves, p. 226. MIT, Cambridge (1963) [Sects. 16.2.4(c), 17.4.2]

    Google Scholar 

  • Andres, U.T., Polak, L.S., Syrovatskii, S.I.: Electromagnetic expulsion of spherical bodies from a conductive fluid. Soviet Phys. Tech. Phys. 8(3), 193–196 (1963) [Sects. 19.4.2, 20.4]

    Google Scholar 

  • Anile, A.M.: Relativistic Fluids and Magneto-Fluids, p. 336. Cambridge University Press, Cambridge (1989) [Sect. 12.2]

    Google Scholar 

  • Antonucci, E., Somov, B.V.: A diagnostic method for reconnecting magnetic fields in the solar corona. In: Coronal Streamers, Coronal Loops, and Coronal and Solar Wind Composition, Proceedings of First SOHO Workshop, ESA SP-348, pp. 293–294 (1992) [Sects. 8.3.3, 20.4]

    Google Scholar 

  • Antonucci, E., Benna, C., Somov, B.V.: Interpretation of the observed plasma ‘turbulent’ velocities as a result of reconnection in solar flares. Astrophys. J. 456(2), 833–839 (1996) [Sects. 8.3.3, 20.4]

    Google Scholar 

  • Arons, J.: Pulsar emission: Where to go? In: Becker, W. (ed.) Neutron Stars and Pulsars, pp. 373–420. Springer-Verlag, Berlin, Heidelberg (2009) [Sect. 12.2.5]

    Google Scholar 

  • Aschwanden, M.J.: Particle Acceleration and Kinematics in Solar Flares: A Synthesis of Recent Observations and Theoretical Concepts, p. 227. Kluwer Academic, Dordrecht (2002) [Sect. 4.5.7]

    Google Scholar 

  • Aschwanden, M.J.: Physics of the Solar Corona: An Introduction, p. 227. Springer, Berlin (2004) [Sect. 15.5]

    Google Scholar 

  • Aschwanden, M.J., Kliem, B., Schwarz, U., et al.: Wavelet analysis of solar flare hard X-rays. Astrophys. J. 505(2), 941–956 (1998) [Sect. 4.5.7]

    Google Scholar 

  • Aschwanden, M.J., Nightingale, R.W., Andries, J., et al.: Observational tests of damping by resonant absorption in coronal loop oscillations. Astrophys. J. 598, 1375–1386 (2003) [Sect. 15.5]

    Google Scholar 

  • Asmussen, S., Glynn, P.W.: Stochastic Simulations: Algorithms and Analysis, p. 476. Springer, New York (2007) [Sect. 3.4]

    Google Scholar 

  • Atkinson, G., Unti, T.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The interior field. J. Geophys. Res. Space Phys. 74(14), 3713–3716 (1969) [Sect. 14.2.2(a)]

    Google Scholar 

  • Atoyan, A.M., Aharonian, F.A.: Modeling of the non-thermal flares in the Galactic microquasar GRS 1915+105. Mon. Not. Roy. Astron. Soc. 302(1), 253–276 (1999) [Sect. 20.1.3]

    Google Scholar 

  • Axford, W.I., Leer, E., Skadron, G.: The acceleration of cosmic rays by shock waves. In: Proc. 15th Int. Cosmic Ray Conf. (Plovdiv, August 13–26, 1977), Bulgarian Acad. Sci., Sofia, vol. 11, pp. 132–137 (1977) [Sect. 18.2.1]

    Google Scholar 

  • Bachiller, R.: Bipolar molecular outflows from young stars and protostars. Ann. Rev. Astron. Astrophys. 34, 111–154 (1996) [Sect. 20.2]

    Google Scholar 

  • Bai, T., Hudson, H.S., Pelling, R.M., et al.: First-order Fermi acceleration in solar flares as a mechanism for the second-step acceleration of protons and electrons. Astrophys. J. 267(1), 433–441 (1983) [Sect. 6.2.4]

    Google Scholar 

  • Balbus, S.A., Papaloizou, J.C.B.: On the dynamical foundations of α disks. Astrophys. J. 521(2), 650–658 (1999) [Sect. 13.2.1]

    Google Scholar 

  • Balescu, R.: Statistical Mechanics of Charged Particles, p. 477. Wiley, London (1963) [Sect. 4.1.2]

    Google Scholar 

  • Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, London (1975) [Sect. 3.1.4]

    MATH  Google Scholar 

  • Balescu, R.: Transport Processes in Plasmas. North-Holland, Amsterdam (1988) [Sect. 9.5]

    Google Scholar 

  • Balikhin, M., Gedalin, M., Petrukovich, A.: New mechanism for electron heating in shocks. Phys. Rev. Lett. 70, 1259–1262 (1993) [Sect. 18.3.2(a)]

    Google Scholar 

  • Balogh, A., Erdös, G.: Fast acceleration of ions at quasi-perpendicular shocks. J. Geophys. Res. 96(A9), 15853–15862 (1991) [Sect. 18.3.2(b)]

    Google Scholar 

  • Barenblatt, G.I.: Similarity, Self-Similarity, and Intermediate Asymptotics. Plenum, New York (1979) [Sect. 20.4]

    Book  MATH  Google Scholar 

  • Becker, W. (ed.): Neutron Starts and Pulsars, p. 997. Springer, Berlin (2009) [Sects. 5.4, 7.3, 12.2.2]

    Google Scholar 

  • Bednarek, W., Protheroe, R.J.: Gamma-ray and neutrino flares produced by protons accelerated on an accretion disc surface in active galactic nuclei. Mon. Not. Royal Astron. Soc. 302, 373–380 (1999) [Sect. 13.2.4]

    Google Scholar 

  • Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56(2), 255–351 (1984) [Sects. 7.3, 13.3.1, 13.3.3, 20.1.3]

    Google Scholar 

  • Beloborodov, A.M.: Plasma ejection from magnetic flares and the X-ray spectrum of Cygnus X-1. Astrophys. J. 510, L123–L126 (1999) [Sect. 13.2.4]

    Google Scholar 

  • Benz, A.: Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, 2nd edn., p. 299. Kluwer Academic, Dordrecht (2002) [Sects. 3.1.2, 7.1]

    Google Scholar 

  • Bernstein, I.B., Frieman, E.A., Kruskal, M.D., et al.: An energy principle for hydromagnetic stability problems. Proc. Roy. Soc. 244(A1), 17–40 (1958) [Sect. 19.3.4]

    Google Scholar 

  • Bertin, G.: The Dynamics of Galaxies, p. 448. Cambridge University Press, Cambridge (1999). [Sects. 1.3, 9.8]

    Google Scholar 

  • Bethe, H.A.: Office of Scientific Research and Development, Rep. No. 445 (1942) [Sect. 17.1.1]

    Google Scholar 

  • Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Analytical model of magnetic reconnection in the presence of shock waves attached to a current sheet. Astron. Lett. 33(2), 130–136 (2007) [Sect. 14.2.2(a)]

    Google Scholar 

  • Bezrodnykh, S.I., Vlasov, V.I., Somov, B.V.: Generalized analytical models of Syrovatskii’s current sheet. Astron. Lett. 37(2), 113–130 (2011) [Sect. 14.2.2(a)]

    Google Scholar 

  • Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954) [Sect. 9.9]

    Google Scholar 

  • Bhattacharjee, A.: Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Ann. Rev. Astron. Astrophys. 42, 365–384 (2004) [Sect. 11.4.2]

    Google Scholar 

  • Bianchini, A., Della Valle, M., Orio, M. (eds.): Cataclysmic Variables, p. 540. Kluwer Academic, Dordrecht (1995) [Sect. 13.2.2]

    Google Scholar 

  • Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, New Jersey (1987) [Sects. 3.3.1, 8.5]

    MATH  Google Scholar 

  • Birkinshaw, M.: Instabilities in astrophysical jets. In: de Gouveia Dal Pino, E.M., et al. (eds.) Advanced Topics on Astrophysical and Space Plasmas, pp. 17–91. Kluwer Academic, Dordrecht (1997) [Sect. 13.3.1]

    Google Scholar 

  • Biskamp, D., Welter, H.: Magnetic arcade evolution and instability. Solar Phys. 120(1), 49–77 (1989) [Sect. 19.4.3]

    Google Scholar 

  • Blackman, E.G.: On particle energization in accretion flow. Mon. Not. Roy. Astron. Soc. 302(4), 723–730 (1999) [Sect. 8.3.5]

    Google Scholar 

  • Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534(2), 984–988 (2000) [Sect. 13.1.2]

    Google Scholar 

  • Blandford, R.D.: Particle acceleration mechanisms. Astrophys. J. Suppl. 90(2), 515–520 (1994) [Sects. 18.1, 18.2.1]

    Google Scholar 

  • Bliokh, P., Sinitsin, V., Yaroshenko, V.: Dusty and Self-Gravitational Plasmas in Space, p. 250. Kluwer Academic, Dordrecht (1995) [Sect. 1.2.4]

    Google Scholar 

  • Blokhintsev, D.I.: Moving receiver of sound. Doklady Akademii Nauk SSSR (Soviet Physics Doklady), 47(1), 22–25 (in Russian) (1945) [Sect. 15.2.1]

    Google Scholar 

  • Bobrova, N.A., Syrovatskii, S.I.: Singular lines of 1D force-free field. Solar Phys. 61(2), 379–387 (1979) [Sect. 19.2.1(a)]

    Google Scholar 

  • Bocquet, M., Bonazzola, S., Gourgoulhon, E., et al.: Rotating neutron star models with a magnetic field. Astron. Astrophys. 301(3), 757–775 (1995) [Sect. 19.1.3]

    Google Scholar 

  • Bodmer, R., Bochsler, P.: Influence of Coulomb collisions on isotopic and elemental fractionation in the solar wind. J. Geophys. Res. 105(A1), 47–60 (2000) [Sects. 8.4.1(b), 10.1]

    Google Scholar 

  • Bogachev, S.A., Somov, B.V.: Effect of Coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett. 35(1), 57–69 (2009) [Sect. 8.1.4]

    Google Scholar 

  • Bogdanov, S.Yu., Frank, A.G., Kyrei, N.P., et al.: Magnetic reconnection, generation of plasma fluxes and accelerated particles in laboratory experiments. Plasma Astrophys. ESA SP-251, 177–183 (1986) [Sect. 12.3.1]

    Google Scholar 

  • Bogdanov, S.Yu., Kyrei, N.P., Markov, V.S., et al.: Current sheets in magnetic configurations with singular X-lines. JETP Lett. 71(2), 78–84 (2000) [Sect. 12.3.1]

    Google Scholar 

  • Bogoliubov, N.N.: Problems of a Dynamical Theory in Statistical Physics. State Technical Press, Moscow (in Russian) (1946) [Sect. 2.4]

    Google Scholar 

  • Bolcato, R., Etay, J., Fautrelle, Y., et al.: Electromagnetic billiards. Phys. Fluids 5(A7), 1852–1853 (1993) [Sect. 20.5]

    Google Scholar 

  • Boltzmann, L.: Sitzungsber. Kaiserl. Akad. Wiss. Wien. 66, 275–284 (1872) [Sects. 3.5, 9.6.1]

    Google Scholar 

  • Boltzmann, L.: Lectures on the Theory of Gases. Gostehizdat, Moscow (in Russian) (1956) [Sects. 3.5, 9.6.1]

    Google Scholar 

  • Bondi, H.: On spherical symmetrical accretion. Mon. Not. Roy. Astron. Soc. 112(1), 195–204 (1952) [Sect. 13.2.3]

    Google Scholar 

  • Bontemps, S., André, P., Terebey, S., et al.: Evolution of outflow activity around low-mass embedded young stellar objects. Astron. Astrophys. 311, 858–875 (1996) [Sect. 20.2]

    Google Scholar 

  • Born, M., Green, H.S.: A General Kinetic Theory of Liquids. Cambridge University Press, Cambridge (1949) [Sect. 2.4]

    MATH  Google Scholar 

  • Bradt, H.: Astrophysics Processes, p. 504. Cambridge University Press, Cambridge (2008) [Sects. 3.1.1, 9.5.2, 13.2.3]

    Google Scholar 

  • Braginskii, S.I.: Transport processes in plasma. In: Leontovich, M. (ed.) Reviews of Plasma Physics, vol. 1, pp. 205–311. Consultants Bureau, New York (1965) [Sects. 8.3.2, 9.6, 10.5, 11.4.2]

    Google Scholar 

  • Bridgman, P.W.: Dimensional Analysis, p. 113. Yale University Press, New Haven (1931) [Sect. 20.4]

    Google Scholar 

  • Broderick, A., Prakash, M., Lattimer, J.M.: The equation of state of neutron star matter in strong magnetic fields. Astrophys. J. 537(1), 351–367 (2000) [Sect. 19.1.3]

    Google Scholar 

  • Brown, J.C.: The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18(2), 489–502 (1971) [Sects. 4.3.4, 8.1.5]

    Google Scholar 

  • Brown, J.C.: The directivity and polarization of thick target X-ray bremsstrahlung from flares. Solar Phys. 26(2), 441–459 (1972) [Sects. 4.4.1, 4.4.2]

    Google Scholar 

  • Brown, J.C., McArthur, G.K., Barrett, R.K., et al.: Inversion of the thick-target bremsstrahlung spectra from non-uniformly ionized plasmas. Solar Phys. 179(2), 379–404 (1998a) [Sect. 4.5.7]

    Google Scholar 

  • Brown, J.C., Conway, A.J., Aschwanden, M.J.: The electron injection function and energy-dependent delays in thick-target hard X-rays. Astrophys. J. 509(2), 911–917 (1998b) [Sect. 4.5.7]

    Google Scholar 

  • Brown, J.C., Emslie, A.G., Kontar, E.P.: The determination and use of mean electron flux spectra in solar flares. Astrophys. J. 595(2), L115–L117 (2003) [Sect. 4.5.7]

    Google Scholar 

  • Bykov, A.M., Chevalier, R.A., Ellison, D.C., et al.: Non-thermal emission from a supernova remnant in a molecular cloud. Astrophys. J. 538(1), 203–216 (2000) [Sect. 8.4.1(b)]

    Google Scholar 

  • Cadjan, M.G., Ivanov, M.F.: Langevin approach to plasma kinetics with collisions. J. Plasma Phys. 61(1), 89–106 (1999) [Sect. 3.4]

    Google Scholar 

  • Cai, H.J., Lee, L.C.: The generalized Ohm’s law in collisionless reconnection. Phys. Plasmas 4(3), 509–520 (1997) [Sect. 1.2.4]

    Google Scholar 

  • Camenzind, M.: Magnetic fields and the physics of active galactic nuclei. Rev. Mod. Astron. 8, 201–233 (1995) [Sect. 13.3.3]

    Google Scholar 

  • Campbell, C.G.: Magnetohydrodynamics of Binary Stars, p. 306. Kluwer Academic, Dordrecht (1997) [Sect. 13.2.1]

    Google Scholar 

  • Cassak, P.A., Drake, J.F., Shay, M.A., et al.: Onset of fast magnetic reconnection. Phys. Rev. Lett. 98(21), id. 215001 (2007) [Sect. 11.4.2]

    Google Scholar 

  • Cercignani, C.: Mathematical Methods in Kinetic Theory. MacMillan, London (1969) [Sect. 3.5]

    MATH  Google Scholar 

  • Chakrabarti, S.K. (ed.): Observational Evidence for Black Holes in the Universe, p. 399. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]

    Google Scholar 

  • Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943a) [Sects. 3.1.4, 8.1.5, 8.3.1]

    Google Scholar 

  • Chandrasekhar, S.: Dynamical friction. 1. General considerations. Astrophys. J. 97(1), 255–262 (1943b) [Sects. 3.1.4, 8.3.1, 8.5]

    Google Scholar 

  • Chandrasekhar, S.: Dynamical friction. 2. The rate of escape of stars from clusters and the evidence for the operation of dynamic friction. Astrophys. J. 97(1), 263–273 (1943c) [Sects. 8.3.1, 8.5]

    Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, p. 654. Dover, New York (1981) [Sects. 19.1.2, 19.3.4]

    Google Scholar 

  • Chandrasekhar, S., Fermi, E.: Problems of gravitational stability in the presence of a magnetic field. Astrophys. J. 118(1), 116–141 (1953) [Sect. 19.1.1]

    Google Scholar 

  • Cherenkov, P.A.: C. R. Acad. Sci. U.S.S.R. 8, 451 (in Russian) (1934) [Sect. 7.4]

    Google Scholar 

  • Cherenkov, P.A.: Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937) [Sect. 7.4]

    Google Scholar 

  • Chernov, A.A., Yan’kov, V.V.: Electron flow in low-density pinches. Soviet J. Plasma Phys. 8(5), 522–528 (1982) [Sect. 20.4]

    Google Scholar 

  • Chew, G.F., Goldberger, M.L., Low, F.E.: The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. Roy. Soc. Lond. A236(1), 112–118 (1956) [Sects. 5.2.1, 11.5.1, 16.4]

    Google Scholar 

  • Choudhuri, A.R.: The Physics of Fluids and Plasmas: An Introduction for Astrophysicists, p. 427. Cambridge University Press, Cambridge (1998) [Intr., Sect. 19.1.2]

    Google Scholar 

  • Ciufolini, I., Matzner, R.A. (eds.): General Relativity and John Archibald Wheeler, p. 545. Springer Science+Business Media B.V., Dordrecht (2010) [Sect. 13.3.2]

    Google Scholar 

  • Clarke, C., Carswell, P.: Principles of Astrophysical Fluid Dynamics, p. 226. Cambridge University Press, Cambridge (2007) [Sect. 9.5.2]

    Google Scholar 

  • Clausius, R.: On a mechanical theorem applicable to heat. Phil. Mag. (Series 4) 40(1), 122–127 (1870) [Sect. 19.1.1]

    Google Scholar 

  • Cole, J.D., Huth, J.H.: Some interior problems of hydromagnetics. Phys. Fluids 2(6), 624–626 (1959) [Sect. 14.5]

    Google Scholar 

  • Collins, G.W.: The Virial Theorem in Stellar Astrophysics. Pachart, Tucson (1978) [Sect. 19.1.1]

    Google Scholar 

  • Colpi, M., Casella, P., Gorini, V., et al. (eds.): Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Springer, Dordrecht (2009) [Sect. 12.2.2]

    Google Scholar 

  • Coppi, B., Laval, G., Pellat, R.: Dynamics of the geomagnetic tail. Phys. Rev. Lett. 6(26), 1207–1210 (1966) [Sect. 3.1.2]

    Google Scholar 

  • Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, p. 464. Springer, New York (1985) [Sect. 17.1.1]

    Google Scholar 

  • Cowling, T.G.: Magnetohydrodynamics, p. 135. Adam Hilger, Bristol (1976) [Sect. 11.6]

    Google Scholar 

  • Cox, D.P., Tucker, W.H.: Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157(3), 1157–1167 (1969) [Sects. 12.1.3, 15.4.1]

    Google Scholar 

  • Cromwell, D., McQuillan, P., Brown, J.C.: Beam-driven return current instability and anomalous plasma heating in solar flares. Solar Phys. 115(2), 289–312 (1988) [Sect. 4.5.6]

    Google Scholar 

  • Crooker, N., Joselyn, J.A., Feynman, J. (eds.): Coronal Mass Ejections, p. 299. American Geophysical Union, Washington (1997) [Intr.]

    Google Scholar 

  • Cumming, A., Arras, P., Zweibel, E.: Magnetic field evolution in neutron star crusts due to the Hall effect and ohmic decay. Astrophys. J. 609, 999–1017 (2004) [Sect. 11.4.2]

    Google Scholar 

  • Cuperman, S., Dryer, M.: On the heat conduction in multicomponent, non-Maxwellian spherically symmetric solar wind plasmas. Astrophys. J. 298, 414–420 (1985) [Sect. 9.6.2]

    Google Scholar 

  • Dadhich, N., Kembhavi, A. (eds): The Universe: Visions and Perspectives, p. 346. Kluwer Academic, Dordrecht (2000) [Sect. 1.3]

    Google Scholar 

  • Darwin, C.: Source of the cosmic rays. Nature 164, 1112–1114 (1949) [Sect. 18.1]

    Google Scholar 

  • Davidson, R.C.: Theory of Nonneutral Plasmas. W.A. Benjamin, London (1974) [Sect. 11.5.2]

    Google Scholar 

  • Davis, L.Jr.: Modified Fermi mechanism for the acceleration of cosmic rays. Phys. Rev. 101, 351–358 (1956) [Sect. 6.2.4]

    Google Scholar 

  • de Hoffmann, F., Teller, E.: Magnetohydrodynamic shocks. Phys. Rev. 80(4), 692–703 (1950) [Sects. 16.2.1, 16.2.4(a), 16.5]

    Google Scholar 

  • de Martino, D., Silvotti, R., Solheim, J.-E., et al. (eds.): White Dwarfs, p. 429. Kluwer Academic, Dordrecht (2003) [Sects. 1.4, 3.5]

    Google Scholar 

  • Debye, P., Hückel, E.: Phys. Z 24, 185 (1923) [Sect. 8.2.1]

    Google Scholar 

  • Decker, R.B.: Formation of shock-spike events in quasi-perpendicular shocks. J. Geophys. Res. 88(A12), 9959–9973 (1983) [Sect. 18.3.2(a) (a)]

    Google Scholar 

  • Decker, R.B.: The role of magnetic loops in particle acceleration at nearly perpendicular shocks. J. Geophys. Res. 98(A1), 33–46 (1993) [Sect. 18.3.2(b) (b)]

    Google Scholar 

  • Decker, R.B., Vlahos, L.: Numerical studies of particle acceleration at turbulent, oblique shocks with an application to prompt ion acceleration during solar flares. Astrophys. J. 306(2), 710–729 (1986) [Sect. 18.3.3]

    Google Scholar 

  • Diakonov, S.V., Somov, B.V.: Thermal electrons runaway from a hot plasma during a flare in the reverse-current model and their X-ray bremsstrahlung. Solar Phys. 116(1), 119–139 (1988) [Sects. 4.5.2, 4.5.3, 4.5.5, 8.4.3, 9.7.3]

    Google Scholar 

  • Diakonov, S.V., Somov, B.V.: A thermal model with return current for source of hard X-ray radiation and microwave radiation of solar flare. Kinematics Phys. Celes. Bodies (Allerton Press, Inc.) 6(1), 47–53 (1990) [Sect. 4.5.5]

    Google Scholar 

  • Diamond, P.H., Itoh, S.I., Itoh, K.: Modern Plasma Physics. Vol. 1: Physical Kinetics of Turbulent Plasmas, p. 417. Cambridge University Press, Cambridge (2010) [Intr., Sect. 3.1.2]

    Google Scholar 

  • Di Matteo, T., Celotti, A., Fabian, A.C.: Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: The case of GX339-4. Mon. Not. Roy. Astron. Soc. 304, 809–820 (1999) [Sect. 13.2.4]

    Google Scholar 

  • Di Matteo, T., Quataert, E., Allen, S.W., et al.: Low-radiative-efficiency accretion in the nuclei of elliptic galaxies. Mon. Not. Roy. Astron. Soc. 311(3), 507–521 (2000) [Sect. 13.2.3]

    Google Scholar 

  • Di Matteo, T., Johnstone, R.M., Allen, S.W., et al.: Accretion onto nearby supermassive black holes: Chandra constraints on the dominant cluster galaxy NGC 6166. Astrophys. J. 550(1), L19–L23 (2001) [Sect. 13.2.3]

    Google Scholar 

  • Dokuchaev, V.P.: Emission of magnetoacoustic waves in the motion of stars in cosmic space. Sov. Astron. AJ 8(1), 23–31 (1964) [Sect. 15.6]

    Google Scholar 

  • Dorman, L.: Cosmic Rays in Magnetospheres of the Earth and other Planets, p. 770. Springer Science+Business Media B.V., Dordrecht (2009) [Sect. 5.1.3]

    Google Scholar 

  • Drake, J.F., Kleva R.G.: Collisionless reconnection and the sawtooth crash. Phys. Rev. Lett. 66(11), 1458–1461 (1991) [Sect. 11.2]

    Google Scholar 

  • Dreicer, H.: Electron and ion runaway in a fully ionized gas Phys. Rev. 115(2), 238–249 (1959) [Sects. 8.4.2, 10.1]

    Google Scholar 

  • Duijveman, A., Somov, B.V., Spektor, A.R.: Evolution of a flaring loop after injection of fast electrons. Solar Phys. 88(1), 257–273 (1983) [Sect. 8.3.2]

    Google Scholar 

  • Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 392(1), L9–L13 (1992) [Sect. 13.1.2]

    Google Scholar 

  • D’yakov, S.P.: Zhurnal Exper. Teor. Fiz. 27, 288–297 (in Russian) (1954) [Sect. 17.5]

    Google Scholar 

  • Dyer, K.K., Reynolds, S.R., Borkowski, K.J., et al.: Separating thermal and non-thermal X-rays in supernova remnants. I. Total fits to SN 1006 AD. Astrophys. J. 551(1), 439–453 (2001) [Sect. 18.2.1]

    Google Scholar 

  • Eichler, D.: Particle acceleration in solar flares by cyclotron damping of cascading turbulence. Astrophys. J. 229(1), 413–418 (1979) [Sect. 6.2.4]

    Google Scholar 

  • Elperin, T., Golubev, I., Kleeorin, N., et al.: Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures. Phys. Rev. E 76(6), id. 066310 (2007) [Sect. 13.1.2]

    Google Scholar 

  • Elsasser, W.M.: Hydromagnetic dynamo theory. Rev. Mod. Phys. 28(2), 135–163 (1956) [Sects. 13.1.2, 20.1.5]

    Google Scholar 

  • Erdös, G., Balogh, A.: Drift acceleration at interplanetary shocks. Astrophys. J. Suppl. 90(2), 553–559 (1994) [Sect. 18.3.2(b)]

    Google Scholar 

  • Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., et al.: Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101–221105 (2011) [Sect. 13.3.2]

    Google Scholar 

  • Falle, S.A., Komissarov, S.S.: On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65(1), 29–58 (2001) [Sect. 16.3]

    Google Scholar 

  • Fedoryuk, V.M.: Ordinary Differential Equations. Nauka, Moscow (in Russian) (1985) [Sect. 17.4.1]

    MATH  Google Scholar 

  • Feldman, W.C., Bame, S.J., Gary, S.P., et al.: Electron heating within the Earth’s bow shock. Phys. Rev. Lett. 49, 199–202 (1982) [Sect. 18.3.2(a)]

    Google Scholar 

  • Ferencz, C., Ferencz, O.E., Hamar, D., et al.: Whistler Phenomena, p. 260. Kluwer Academic, Dordrecht (2001) [Sect. 7.1.3]

    Google Scholar 

  • Fermi, E.: On the origin of cosmic radiation. Phys. Rev. 75, 1169–1174 (1949) [Sect. 6.2.4]

    Google Scholar 

  • Fermi, E.: Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119(1), 1–6 (1954) [Sect. 6.2.4]

    Google Scholar 

  • Fernández, J.A.: Comets: Nature, Dynamics, Origin, and their Cosmogonical Relevance, p. 383. Springer, Dordrecht (2005) [Sect. 1.2.4]

    Google Scholar 

  • Feroci, M., Hurley, K., Duncan, R.C., et al.: The giant flare of 1998 August 27 from SGR 1900+14. 1. An interpretive study of Bepposax and Ulysses observations. Astrophys. J. 549, 1021–1038 (2001) [Sect. 19.1.3]

    Google Scholar 

  • Field, G.B.: Thermal instability. Astrophys. J. 142(2), 531–567 (1965) [Sects. 8.3.4, 9.4.3, 12.1.3, 15.4.5]

    Google Scholar 

  • Fokker, A.D.: Die mittlere Energie rotieren der elektrischer Dipole im Strahlungsfeld. Ann. der Physik 43(5), 810–820 (1914) [Sect. 3.1.4]

    Google Scholar 

  • Fortov, V.E., Iakubov, I.T., Khrapak, A.G.: Physics of Strongly Coupled Plasma, p.376. Clarendon Press, Oxford (2006) [Sect. 3.1.1]

    Google Scholar 

  • Fox, D.C., Loeb, A.: Do the electrons and ions in X-ray clusters share the same temperature? Astrophys. J. 491(2), 459–466 (1997) [Sect. 8.3.4]

    Google Scholar 

  • Freidberg, J.P.: Plasma Physics and Fusion Energy, p. 671. Cambridge University Press, Cambridge (2007) [Intr.]

    Google Scholar 

  • Galeev, A.A., Rosner, R., Vaiana, G.S.: Structured coronae of accretion discs. Astrophys. J. 229(1), 318–326 (1979) [Sect. 13.2.4]

    Google Scholar 

  • Gedalin, M., Griv, E.: Collisionless electrons in a thin high Much number shocks: Dependence on angle and β. Ann. Geophysicae 17(10), 1251–1259 (1999) [Sects. 16.4, 18.3.2(a)]

    Google Scholar 

  • Gel’fand, I.M.: Some problems of the theory of quasilinear equations. Usp. Mat. Nauk 14(2), 87–158 (in Russian) (1959) [Sect. 17.1.1]

    Google Scholar 

  • Gerbeth, G., Thess, A., Marty, P.: Theoretical study of the MHD flow around a cylinder in crossed electric and magnetic fields. Eur. J. Mech. B/Fluids 9(3), 239–257 (1990) [Sects. 19.4.2, 20.3]

    Google Scholar 

  • Germain, P.: Shock waves and shock-wave structure in magneto-fluid dynamics. Rev. Mod. Phys. 32(4), 951–958 (1960) [Sect. 17.4.2]

    Google Scholar 

  • Giacalone, J., Ellison, D.C.: Three-dimensional numerical simulations of particle injection and acceleration at quasi-perpendicular shocks. J. Geophys. Res. 105(A6), 12541–12556 (2000) [Sects. 18.1, 18.3.2(b)]

    Google Scholar 

  • Gieseler, U.D.J., Kirk, J.G., Gallant, Y.A., et al.: Particle acceleration at oblique shocks and discontinuities of the density profile. Astron. Astrophys. 435(1), 298–306 (1999) [Sect. 18.2.1]

    Google Scholar 

  • Gilman, P.A.: Fluid dynamics and MHD of the solar convection zone and tachocline. Solar Phys. 192(1), 27–48 (2000) [Sect. 20.1.5]

    Google Scholar 

  • Ginzburg, V.L., Syrovatskii, S.I.: The Origin of Cosmic Rays. Pergamon Press, Oxford (1964) [Sect. 5.1.3]

    Google Scholar 

  • Ginzburg, V.L., Syrovatskii, S.I.: Cosmic magneto-bremsstrahlung (synchrotron) radiation. Annu. Rev. Astron. Astrophys. 3, 297–350 (1965) [Sect. 5.4]

    Google Scholar 

  • Ginzburg, V.L., Zheleznyakov, V.V.: On the possible mechanisms of sporadic solar radio emission. Sov. Astron. AJ 2(5), 653–668 (1958) [Sect. 7.1]

    Google Scholar 

  • Ginzburg, V., Landau, L., Leontovich, M., et al.: On the insolvency of the A.A. Vlasov works on general theory of plasma and solid-state matter. Zhur. Eksp. Teor. Fiz. 16(3), 246–252 (in Russian) (1946) [Sect. 3.1.2]

    Google Scholar 

  • Giovanelli, R.G.: A theory of chromospheric flares. Nature 158(4003), 81–82 (1946) [Sect. 12.4.1]

    Google Scholar 

  • Giovanelli, R.G.: Magnetic and electric phenomena in the Sun’s atmosphere associated with sunspots. Mon. Not. Roy. Astron. Soc. 107(4), 338–355 (1947) [Sect. 12.4.1]

    Google Scholar 

  • Giovanelli, R.G.: Electron energies resulting from an electric field in a highly ionized gas. Phil. Mag. Seventh Series 40(301), 206–214 (1949) [Sect. 8.4.2]

    Google Scholar 

  • Gisler, G., Lemons, D.: Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models. J. Geophys. Res. 95(A9), 14925–14938 (1990) [Sect. 18.3.2(b)]

    Google Scholar 

  • Glasstone, S., Loveberg, R.H.: Controlled Thermonuclear Reactions, p. 523. Van Nostrand, Princeton (1960) [Intr.]

    Google Scholar 

  • Gnedenko, B.V.: A Course of Probability Theory, 4th edn. Nauka, Moscow (in Russian) (1965) [Sect. 2.2.2]

    Google Scholar 

  • Golant, V.E., Zhilinskii, A.P., Sakharov, I.E.: The Basis of Plasma Physics. Atomizdat, Moscow (in Russian) (1977) [Sects. 9.3.2, 9.7.1, 9.7.2]

    Google Scholar 

  • Goldreich, P., Reisenegger, A.: Magnetic field decay in isolated neutron stars. Astrophys. J. 395(1), 250–258 (1992) [Sect. 11.4.2]

    Google Scholar 

  • Goldreich, P., Sridhar, S.: Magnetohydrodynamic turbulence revisited. Astrophys. J. 485(2), 680–688 (1997) [Sect. 7.2]

    Google Scholar 

  • Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics, p. 492. Institute of Physics Publishing, Bristol (1995) [Intr.]

    Google Scholar 

  • Gombosi, T.I.: Physics of the Space Environment, p. 339. Cambridge University Press, Cambridge (1999) [Sect. 18.2.1]

    Google Scholar 

  • Gorbachev, V.S., Kel’ner, S.R.: Formation of plasma condensations in fluctuating strong magnetic field. Sov. Phys. JETP 67(9), 1785–1790 (1988) [Sect. 14.4.1]

    Google Scholar 

  • Gosling, J.T.: Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671(1), L73–L76 (2007) [Sect. 12.4.2]

    Google Scholar 

  • Gosling, J.T., Eriksson, S., McComas, D.J., et al.: Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. Geophys. Res. 112(A8), CiteID A08106 (2007a) [Sect. 11.5.1]

    Google Scholar 

  • Gosling, J.T., Eriksson, S., Phan, T.D., et al.: Direct evidence for prolonged magnetic reconnection at a continuous X-line within the heliospheric current sheet. Geophys. Res. Lett. 34(6), CiteID L06102 (2007b) [Sect. 12.4.2]

    Google Scholar 

  • Grad, H.: Note on N-dimensional Hermite polynomials. Commun. Pure Appl. Math. 2(4), 325–330 (1949)[Sect. 9.7.1]

    Google Scholar 

  • Grad, H.: Reducible problems in magneto-fluid dynamic steady flows. Rev. Mod. Phys. 32(4), 830–847 (1960) [Sect. 19.5]

    Google Scholar 

  • Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. Proc. Second Int. Conf. on Peaceful Uses of Atomic Energy 31, 190–197 (1958) [Sect. 19.5]

    Google Scholar 

  • Grant, H.L., Stewart, R.W., Moilliet, A.: Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–248 (1962) [Sect. 7.2]

    Google Scholar 

  • Gritsyk, P.A., Somov, B.V.: The kinetic description of the accelerated-electron flux in solar flares. Moscow Univ. Phys. Bull. 66(5), 466–472 (2011) [Sect. 4.5.5]

    Google Scholar 

  • Gurevich, A.V.: On the theory of runaway electrons. Sov. Phys. JETP 12(5), 904–912 (1961) [Sect. 8.4.2]

    Google Scholar 

  • Gurevich, A.V., Istomin, Y.N.: Thermal runaway and convective heat transport by fast electrons in a plasma. Sov. Phys. JETP 50(3), 470–475 (1979) [Sect. 8.4.3]

    Google Scholar 

  • Gurevich, A.V., Zhivlyuk, Y.N.: Runaway electrons in a non-equilibrium plasma. Sov. Phys. JETP 22(1), 153–159 (1966) [Sect. 4.5.2]

    Google Scholar 

  • Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23(1), 115–121 (1962) [Sect. 3.1.2]

    Google Scholar 

  • Hattori, M., Umetsu, K.: A possible route to spontaneous reduction of the heat conductivity by a temperature gradient-driven instability in electron-ion plasmas. Astrophys. J. 533(1), 84–94 (2000) [Sect. 8.3.4]

    Google Scholar 

  • Hawley, J.F., Balbus, S.A.: Instability and turbulence in accretion discs. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 187–194. Kluwer Academic, Dordrecht (1999) [Sect. 13.2.1]

    Google Scholar 

  • Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys. J. 440(2), 742–763 (1995) [Sect. 13.2.1]

    Google Scholar 

  • Heinemann, T., McWilliams, J.C., Schekochihin, A.A.: Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett., 107(25), 255004 (2011) [Sect. 13.1.2]

    Google Scholar 

  • Hénoux, J.-C., Somov, B.V.: Generation and structure of the electric currents in a flaring activity complex. Astron. Astrophys. 185(1), 306–314 (1987) [Sect. 20.2]

    Google Scholar 

  • Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 1. Magnetic flux-tube generation. Astron. Astrophys. 241(2), 613–617 (1991) [Sects. 11.1, 20.2]

    Google Scholar 

  • Hénoux, J.-C., Somov, B.V.: The photospheric dynamo. 2. Physics of thin magnetic flux tubes. Astron. Astrophys. 318(3), 947–956 (1997) [Sect. 11.1]

    Google Scholar 

  • Hirotani, K., Okamoto, I.: Pair plasma production in a force-free magnetosphere around a supermassive black hole. Astrophys. J. 497(2), 563–572 (1998) [Sects. 7.3, 11.5.2]

    Google Scholar 

  • Hollweg, J.V.: Viscosity and the Chew-Goldberger-Low equations in the solar corona. Astrophys. J. 306(2), 730–739 (1986) [Sects. 9.6, 10.5]

    Google Scholar 

  • Holman, G.D.: DC electric field acceleration of ions in solar flares. Astrophys. J. 452(2), 451–456 (1995) [Sect. 8.4.1(b)]

    Google Scholar 

  • Horiuchi, R., Sato, T.: Particle simulation study of driven reconnection in a collisionless plasma. Phys. Plasmas 1(11), 3587–3597 (1994) [Sects. 1.2.4, 11.2]

    Google Scholar 

  • Hoshino, M., Stenzel, R.L., Shibata, K. (eds.): Magnetic Reconnection in Space and Laboratory Plasmas, p. 693. Terra Scientific Publ. Co., Tokyo (2001) [Sect. 13.1.3]

    Google Scholar 

  • Hoyng, P., Brown, J.C., van Beek, H.F.: High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys. 48(2), 197–254 (1976) [Sect. 4.5.1]

    Google Scholar 

  • Hubrig, S., North, P., Mathys, G.: Magnetic Ap stars in the Hertzsprung-Russell diagram. Astrophys. J. 539(1), 352–363 (2000) [Sect. 19.1.3]

    Google Scholar 

  • Hudson, P.D.: Reflection of charged particles by plasma shocks. Mon. Not. Roy. Astron. Soc. 131(1), 23–50 (1965) [Sects. 18.3, 18.3.1, 18.3.2(a)]

    Google Scholar 

  • Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations, p. 284. Springer Science+Business Media, LLC, New York (2008) [Sect. 3.4]

    Google Scholar 

  • Imshennik, V.S., Bobrova, N.A.: Dynamics of Collisional Plasma. Energoatomizdat, Moscow (in Russian) (1997) [Sect. 15.4.4]

    Google Scholar 

  • Innes, D.E., Inhester, B., Axford, W.I., et al.: Bi-directional jets produced by reconnection on the Sun. Nature 386, 811–813 (1997) [Sect. 8.3.3]

    Google Scholar 

  • Iordanskii, S.V.: On compression waves in magnetohydrodynamics. Sov. Phys. Doklady 3(4), 736–738 (1958) [Sect. 16.2.4(c)]

    Google Scholar 

  • Iroshnikov, P.S.: Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. AJ. 7(4), 566–571 (1964) [Sect. 7.2.3]

    Google Scholar 

  • Jaroschek, C.H., Treumann, R.A., Lesch, H., et al.: Fast reconnection in relativistic pair plasmas: Analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasm. 11(3), 1151–1163 (2004) [Sect. 7.3]

    Google Scholar 

  • Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929) [Sect. 8.1.5]

    MATH  Google Scholar 

  • Jones, F.C., Ellison D.C.: The plasma physics of shock acceleration. Space Sci. Rev. 58(3), 259–346 (1991) [Sects. 18.1, 18.2.1, 18.3.1]

    Google Scholar 

  • Jones, M.E., Lemons, D.S., Mason, R.J., et al.: A grid-based Coulomb collision model for PIC codes. J. Comput. Phys.123(1), 169–181 (1996) [Sect. 3.4]

    Google Scholar 

  • Kadomtsev, B.B.: Convective instability of a plasma. In: Leontovich, M.A. (ed.) Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 4, pp. 450–453. Pergamon Press, Oxford (1960) [Sect. 19.3.4]

    Google Scholar 

  • Kadomtsev, B.B.: Hydrodynamic stability of a plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 153–198. Consultants Bureau, New York (1966) [Sects. 15.4.1, 19.3.2, 19.3.4]

    Google Scholar 

  • Kadomtsev, B.B.: Collective Phenomena in Plasma, p. 238. Nauka, Moscow (in Russian) (1976) [Sect. 7.1]

    Google Scholar 

  • Kandrup, H.E.: Collisionless relaxation in galactic dynamics and the evolution of long-range order. Ann. New York Acad. Sci. 848, 28–47 (1998) [Sect. 3.3.2]

    Google Scholar 

  • Kikuchi, H.: Electrohydrodynamics in Dusty and Dirty Plasmas, p. 207. Kluwer Academic, Dordrecht (2001) [Sect. 1.2.4]

    Google Scholar 

  • Kirkwood, J.G.: The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180–201 (1946) [Sect. 2.4]

    Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1995) [Sects. 1.4, 3.5]

    Google Scholar 

  • Kivelson, M.G., Russell, C.T. (eds.): Introduction to Space Physics, p. 568. Cambridge University Press, Cambridge (1995) [Sects. 4.1.1, 6.2.4]

    Google Scholar 

  • Kleeorin, N., Rogachevskii, I., Sokoloff, D., et al.: Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows. Phys. Rev. E 79(4), 046302 (2009) [Sect. 13.1.2]

    Google Scholar 

  • Klimontovich, Yu.L.: Kinetic Theory of Non-ideal Gas and Non-ideal Plasma, p. 352. Nauka, Moscow (in Russian) (1975) [Sect. 2.4]

    Google Scholar 

  • Klimontovich, Yu.L.: Statistical Physics. Harwood Academic, New York (1986) [Intr., Sects. 2.4, 3.1.3, 3.1.4]

    Google Scholar 

  • Klimontovich, Yu.L.: Two alternative approaches in the kinetic theory of a fully ionized plasma. J. Plasma Phys. 59(4), 647–656 (1998) [Sect. 3.1.3]

    Google Scholar 

  • Klimontovich, Yu.L., Silin, V.P.: On magnetic hydrodynamics for a non-isothermal plasma without collisions. Sov. Phys. JETP 40, 1213–1223 (1961) [Sects. 11.5.1, 16.4]

    Google Scholar 

  • Kogan, M.N.: Dynamics of a Dilute Gas. Nauka, Moscow (in Russian) (1967) [Sect. 3.5]

    Google Scholar 

  • Koide, S., Shibata, K., Kudoh, T.: Relativistic jet formation from black hole magnetized accretion discs. Astrophys. J. 522, 727–752 (1999) [Sects. 12.2, 13.3.1]

    Google Scholar 

  • Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. USSR, 30, 201–206 (1941) [Sect. 7.2]

    Google Scholar 

  • Korchak, A.A.: On the origin of solar flare X-rays. Solar Phys. 18(2), 284–304 (1971) [Sect. 8.1.5]

    Google Scholar 

  • Korchak, A.A.: Coulomb losses and the nuclear composition of the solar flare accelerated particles. Solar Phys. 66(1), 149–158 (1980) [Sect. 8.4.1(b)]

    Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., et al.: The Hinode (Solar-B) mission: An overview. Solar Phys. 243(1), 3–17 (2007) [Sect. 8.3.2]

    Google Scholar 

  • Kotchine, N.E.: Rendiconti del Circolo Matematico di Palermo 50, 305–314 (1926) [Sect. 17.1.1]

    Google Scholar 

  • Kovalev, V.A., Somov, B.V.: On the acceleration of solar-flare charged particles in a collapsing magnetic trap with an electric potential. Astron. Lett. 28(7), 488–493 (2002) [Sect. 8.1.4]

    Google Scholar 

  • Kraichnan, R.H.: Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8(7), 1385–1389 (1965) [Sect. 7.2]

    Google Scholar 

  • Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill Book Co., New York (1973) [Sect. 9.6.2]

    Google Scholar 

  • Krucker, S., Hudson, H.S., Jeffrey, N.L.S., et al.: High-resolution imaging of solar flare ribbons and its implication on the thick-target beam model. Astrophys. J. 739(2), 96 (7pp) (2011) [Sect. 8.3.2]

    Google Scholar 

  • Krymskii, G.F.: A regular mechanism for the acceleration of charged particles on the front of a shock wave. Sov. Phys. Dokl. 22(6), 327–328 (1977) [Sect. 18.2.1]

    Google Scholar 

  • Kubbinga, H.: A tribute to Boltzmann. Europhysicsnews 37(6), 28–29 (2006) [Sect. 9.6.1]

    Google Scholar 

  • Kudriavtsev, V.S.: Energetic diffusion of fast ions in equilibrium plasma. Sov. Phys. JETP 7(6), 1075–1079 (1958) [Sect. 4.1.2]

    Google Scholar 

  • Kulikovskii, A.G., Liubimov, G.A.: On the structure of an inclined MHD shock wave. Appl. Math. Mech. 25(1), 171–179 (1961) [Sect. 17.4.2]

    Google Scholar 

  • Kumar, N., Kumar, P., Singh, S.: Coronal heating by MHD waves. Astron. Astrophys. 453(2), 1067–1078 (2006) [Sect. 15.2.1]

    Google Scholar 

  • Kunkel, W.B.: Generalized Ohm’s law for plasma including neutral particles. Phys. Fluids 27(9), 2369–2371 (1984) [Sect. 11.1]

    Google Scholar 

  • Lahav, O., Terlevich, E., Terlevich, R.J. (eds.): Gravitational Dynamics, p. 270. Cambridge University Press, Cambridge (1996) [Sect. 1.3]

    Google Scholar 

  • Lancellotti, C., Kiessling, M.: Self-similar gravitational collapse in stellar dynamics. Astrophys. J.549, L93–L96 (2001) [Sect. 3.3.2]

    Google Scholar 

  • Landau, L.D.: Kinetic equation in the case of Coulomb interaction. Zhur. Exper. Teor. Fiz. 7(1), 203–212 (in Russian) (1937) [Sect. 3.1.3]

    Google Scholar 

  • Landau, L.D.: On the vibrations of the electron plasma. J. Phys. USSR 10(1), 25–30 (1946) [Sects. 3.1.3, 7.1]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, p. 536. Oxford, London (1959a) [Sects. 12.2.2, 12.2.3, 15.6, 16.1.2, 16.2.2, 20.2]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Statistical Physics, p. 478. Pergamon Press, London (1959b) [Sects. 1.1.5, 1.4, 3.5, 16.5]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Classical Theory of Field, 4th edn., p. 374. Oxford, New York (1975) [Sects. 1.2.1, 2.2.1, 5.1.1, 5.1.3, 5.4, 6.2.1, 7.4, 13.4, 18.4, 19.1.1]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn., p. 165. Oxford, London (1976) [Sects. 1.1.5, 1.4, 6.1, 8.1.1, 19.1.1]

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, p. 460. Pergamon Press, Oxford (1984) [Sects. 11.4.2, 16.2.4(c), 17.3.2]

    Google Scholar 

  • Langmuir, I.: Proc. Nat. Acad. Sci. U.S.A. 14, 627 (1928) [Sect. 3.2.2]

    Google Scholar 

  • Larrabee, D.A., Lovelace, R.V.E., Romanova, M.M.: Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586(1), 72–78 (2003) [Sect. 7.3]

    Google Scholar 

  • Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, p. 736. Nauka, Moscow (in Russian) (1973) [Sects. 3.1.3, 9.7.1, 14.2.2(a)]

    Google Scholar 

  • Lax, P.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10(4), 537–566 (1957) [Sect. 17.1.1]

    Google Scholar 

  • Lax, P.: Hyperbolic Partial Differential Equations, AMS, Courant Inst. of Math. Sci. (2006) [Sect. 17.1.1]

    Google Scholar 

  • Leenov, D., Kolin, A.: Theory of electromagnetophoresis. 1. MHD forces experienced by spherical and cylindrical particles. J. Chem. Phys. 22(4), 683–688 (1954) [Sect. 20.4]

    Google Scholar 

  • Leith, C.E.: Diffusion approximation to inertial energy transfer in isotropic turbulence. Phys. Fluids 10(7), 1409–1416 (1967) [Sect. 7.2]

    Google Scholar 

  • Leontovich, M.A. (ed.): Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vols. 1–4. Pergamon Press, London (1960) [Intr.]

    Google Scholar 

  • Lesch, H., Pohl, M.: A possible explanation for intraday variability in active galactic nuclei. Astron. Astrophys. 254(1), 29–38 (1992) [Sect. 13.2.4]

    Google Scholar 

  • Letessier, J., Rafelski, J.: Hadrons and Quark-gluon Plasma, p. 397. Cambridge University Press, Cambridge (2004) [Sect. 12.2.5]

    Google Scholar 

  • Liberman, M.A.: On actuating shock waves in a completely ionized plasma. Sov. Phys. JETP 48(5), 832–840 (1978) [Sects. 16.2.6, 17.4.2]

    Google Scholar 

  • Liboff, R.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, p. 571. Springer, Heidelberg (2003) [Intr.]

    Google Scholar 

  • Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics, p. 196. Benjamin, New York (1967) [Sect. 12.2]

    Google Scholar 

  • Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics, p. 452. Pergamon Press, Oxford (1981) [Sects. 3.5, 7.3, 8.3.1, 9.6]

    Google Scholar 

  • Lin, R.P., Hudson, H.S.: 10–100 keV electron acceleration and emission from solar flares. Solar Phys. 17(2), 412–435 (1971) [Sects. 4.3.4, 8.3.2]

    Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., et al.: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210(1), 3–32 (2002) [Sect. 4.5.7]

    Google Scholar 

  • Lin, R.P., Krucker, S., Hurford, G.J., et al.: RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. 595(2), L69–L76 (2003) [Sect. 4.5.7]

    Google Scholar 

  • Litvinenko, Y.E., Somov, B.V.: Solar flares and virial theorem. Sov. Astron. AJ 35(2), 183–188 (1991a) [Sects. 19.1.3, 19.2.2, 19.4.3]

    Google Scholar 

  • Litvinenko, Y.E., Somov, B.V.: Nonthermal electrons in the thick-target reverse-current model for hard X-ray bremsstrahlung. Solar Phys. 131(2), 319–336 (1991b) [Sects. 4.5.2, 4.5.5]

    Google Scholar 

  • Litvinenko, Y.E., Somov, B.V.: Electromagnetic expulsion force in cosmic plasma. Astron. Astrophys. 287(1), L37–L40 (1994) [Sect. 20.4]

    Google Scholar 

  • Litvinenko, Y.E., Somov, B.V.: Aspects of the global MHD equilibria and filament eruptions in the solar corona. Space Sci. Rev. 95(1), 67–77 (2001) [Sects. 19.1.3, 19.4.3]

    Google Scholar 

  • Liubarskii, G.Ya., Polovin, R.V.: Simple magnetoacoustic waves. Sov. Phys. JETP 8(2), 351 (1958) [Sect. 16.2.4(c)]

    Google Scholar 

  • Lovelace, R.V.E.: Dynamo model of double radio sources. Nature 262, 649–652 (1976) [Sect. 20.1.3]

    Google Scholar 

  • Luna, M., Karpen, J.T., DeVore, C.R.: Formation and evolution of a multi-threaded solar prominence. Astrophys. J. 746(1), article id. 30 (2012) [Sect. 12.1.3]

    Google Scholar 

  • Lundquist, S.: Magneto-hydrostatic fields. Ark. Fys. 2(35), 361–365 (1951) [Sect. 19.2.1(b)]

    Google Scholar 

  • Macdonald, D.A., Thorne, K.S., Price, R.H., et al.: Astrophysical applications of black-hole electrodynamics. In: Thorne, K.S., Price, R.H., Macdonald, D.A. (eds.) Black Holes: The Membrane Paradigm, pp. 121–137. Yale University Press, New Haven (1986) [Sect. 13.3.1]

    Google Scholar 

  • MacDonald, W.M., Rothenbluth, M.N., Chuck, W.: Relaxation of a system of particles with Coulomb interactions. Phys. Rev. 107(2), 350–353 (1957) [Sect. 4.1.2]

    Google Scholar 

  • Mach, E.: Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Calve, Prag (1872) [Sect. 13.3.2]

    Google Scholar 

  • Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch Dargestellt. Brockhaus, Leipzig (1883) [Sect. 13.3.2]

    Google Scholar 

  • MacNeice, P., McWhirter, R.W.P., Spicer, D.S., et al.: A numerical model of a solar flare based on electron beam heating of the chromosphere. Solar Phys. 90(2), 357–353 (1984) [Sect. 8.3.2]

    Google Scholar 

  • Manmoto, T.: Advection-dominated accretion flow around a Kerr black hole. Astrophys. J. 534(2), 734–746 (2000) [Sects. 8.3.5, 13.2.3]

    Google Scholar 

  • Markovskii, S.A.: Nonevolutionarity of trans-Alfvénic shocks in a magnetized plasma. J. Geophys. Res. 104(A3), 4427–4436 (1999) [Sects. 17.3.2, 17.4.2]

    Google Scholar 

  • Markovskii, S.A., Skorokhodov, S.L.: Disintegration of trans-Alfvénic shocks due to variable viscosity and resistivity. J. Geophys. Res. 105(A6), 12702–12711 (2000) [Sect. 17.4.2]

    Google Scholar 

  • Markovskii, S.A., Somov, B.V.: A model of magnetic reconnection in a current sheet with shock waves. Fizika Solnechnoi Plasmy (Physics of Solar Plasma), pp. 456–472. Nauka, Moscow (in Russian) (1989) [Sect. 14.2.2(a)]

    Google Scholar 

  • Markovskii, S.A., Somov, B.V.: MHD discontinuities in space plasmas: Interrelation between stability and structure. Space Sci. Rev. 78(3–4), 443–506 (1996) [Sect. 17.5]

    Google Scholar 

  • Marty, P., Alemany, A.: Écoulement dû à des champs magnétique et électrique croisés autour d’un cylindre de conductivité quelconque. Journal de Mécanique Théorique et Appliquée 2(2), 227–243 (1983) [Sects. 19.4.2, 20.3]

    Google Scholar 

  • Maxwell, J.C.: Illustrations of the dynamical theory of gases. Phil. Mag. Ser. 4(19), 19–24 (1860) [Sect. 9.6.1]

    Google Scholar 

  • McClymont, A.N., Canfield, R.C.: Flare loop radiative hydrodynamics. I – Basic methods. Astrophys. J. 265, 483–506 (1983) [Sect. 8.3.2]

    Google Scholar 

  • McDonald, L., Harra-Murnion, L.K., Culhane, J.L.: Non-thermal electron energy deposition in the chromosphere and the accompanying soft X-ray flare emission. Solar Phys. 185(2), 323–350 (1999) [Sect. 8.3.2]

    Google Scholar 

  • Michel, F.C.: Theory of Neutron Star Magnetospheres, p. 456. Chicago University Press, Chicago (1991) [Sects. 7.3, 11.5.2, 12.2.2]

    Google Scholar 

  • Mikhailovskii, A.B.: Nonlinear excitation of electromagnetic waves in a relativistic electron-positron plasma. Sov. J. Plasma Phys. 6(3), 336–340 (1979) [Sect. 7.3]

    Google Scholar 

  • Mikhailovskii, A.B., Onishchenko, O.G., Tatarinov, E.G.: Alfvén solitons in a relativistic electron-positron plasma. Plasma Phys. Contr. Fusion 27(5), 539–556 (1985) [Sect. 7.3]

    Google Scholar 

  • Mirabel, I.F., Rodriguez, L.F.: Microquasars in our Galaxy. Nature 392, 673–676 (1998) [Sect. 20.1.3]

    Google Scholar 

  • Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids, p. 343. Cambridge University Press, London (1978) [Sect. 13.1.2]

    Google Scholar 

  • Moreau, R.: Magnetohydrodynamics, p. 328. Kluwer Academic, Dordrecht (1990) [Sect. 20.1.5]

    Google Scholar 

  • Morozov, A.I., Solov’ev, L.S.: The structure of magnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 1–101. Consultans Bureau, New York (1966a) [Sect. 19.3.4]

    Google Scholar 

  • Morozov, A.I., Solov’ev, L.S.: Motion of particles in electromagnetic fields. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 201–297. Consultans Bureau, New York (1966b) [Sect. 5.3.4]

    Google Scholar 

  • Moses, G.A., Duderstadt, J.J.: Improved treatment of electron thermal conduction in plasma hydrodynamics calculations. Phys. Fluids 20(5), 762–770 (1977) [Sect. 9.7.1]

    Google Scholar 

  • Nakano, T.: Star formation in magnetic clouds. Astrophys. J. 494(2), 587–604 (1998) [Sect. 19.1.3]

    Google Scholar 

  • Narayan, R., Garcia, M.R., McClintock, J.E.: Advection-dominated accretion and black hole horizons. Astrophys. J.478(2), L79–L82 (1997) [Sect. 8.3.5]

    Google Scholar 

  • Negoro, H., Kitamoto, S., Takeuchi, M., et al.: Statistics of X-ray fluctuations from Cygnus X-1: Reservoirs in the disk? Astrophys. J. 452(1), L49–L52 (1995) [Sect. 13.2.4]

    Google Scholar 

  • Nishida, A.: Can random reconnection on the magnetopause produce the low latitude boundary layer? Geophys. Res. Lett. 16, 227–230 (1989) [Sect. 12.4.2]

    Google Scholar 

  • Nishikawa, K.I., Frank, J., Christodoulou, D.M., et al.: 3D relativistic MHD simulations of extragalactic jets. In: Miyama, S.M., et al. (eds.) Numerical Astrophysics, pp. 217–218. Kluwer Academic, Dordrecht (1999) [Sect. 13.3.1]

    Google Scholar 

  • Northrop, T.G.: The Adiabatic Motion of Charged Particles. Wiley, New York (1963) [Sect. 6.4]

    MATH  Google Scholar 

  • Novikov, I.D., Frolov, V.P.: Physics of Black Holes, p. 341. Kluwer Academic, Dordrecht (1989) [Sects. 11.5.2, 12.2.2, 13.3.1]

    Google Scholar 

  • Novikov, I.D., Thorne, K.S.: In: Dewitt, C.D., Dewitt, B. (eds.) Black Holes, pp. 345–354. Gordon and Breach, New York (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]

    Google Scholar 

  • Obertz, P.: Two-dimensional problem of the shape of the magnetosphere. Geomagn. Aeron. 13(5), 758–766 (1973) [Sect. 14.2.2(a)]

    Google Scholar 

  • Ogawara, Y., Takano, T., Kato, T., et al.: The Solar-A mission: An overview. Solar Phys. 136(1), 1–16 (1991) [Sect. 8.3.2]

    Google Scholar 

  • Oreshina, A.V., Somov, B.V.: Analytical description of charged particle motion in a reconnecting current layer Astron. Lett. 35(3), 195–206 (2009) [Sect. 5.2.3]

    Google Scholar 

  • Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Classical and anomalous heat conduction. Moscow Univ. Phys. Bull. 66(3), 286–291 (2011a) [Sects. 9.6.2, 9.7.3]

    Google Scholar 

  • Oreshina, A.V., Somov, B.V.: On the heat-transfer mechanisms in solar flares. 1. Account of heat-flux relaxation. Moscow Univ. Phys. Bull. 66(3), 292–297 (2011b) [Sects. 9.6.2, 9.7.3]

    Google Scholar 

  • Oreshina, I.V., Somov, B.V.: Conformal mapping for solving problems of space electrodynamics. Bull. Russ. Acad. Sci. Phys. 63(8), 1209–1212 (1999) [Sect. 14.5]

    Google Scholar 

  • Ostriker, E.C.: Dynamical friction in a gaseous medium. Astrophys. J. 513(1), 252–258 (1999) [Sect. 8.5]

    Google Scholar 

  • Padmanabhan, T.: An Invitation to Astrophysics. World Scientific Publ. Co., New Jersey (2006) [Sect. 14.4.2]

    MATH  Google Scholar 

  • Palmer, P.L.: Stability of Collisionless Stellar Systems, p. 349. Kluwer Academic, Dordrecht (1994) [Sect. 9.8]

    Google Scholar 

  • Parker, E.N.: Cosmic Magnetic Fields. Their Origin and Their Activity, p. 841. Clarendon Press, Oxford (1979) [Sects. 13.1.2, 19.3.4, 19.4.2, 20.1.5]

    Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas, An Introduction, 2nd edn., p. 597. Westview Press, Oxford (2004) [Intr., Sects. 14.5, 18.1, 18.2.3]

    Google Scholar 

  • Peacock, J.A.: Cosmological Physics, p. 682. Cambridge University Press, Cambridge (1999) [Sects. 7.3, 9.8]

    Google Scholar 

  • Persson, H.: Electric field along a magnetic line of force in a low-density plasma. Phys. Fluids 6(12), 1756–1759 (1963) [Sect. 8.1.4]

    Google Scholar 

  • Peterson, L.E., Winckler, J.B.: Gamma-ray burst from a solar flare. J. Geophys. Res. 64(7), 697–707 (1959) [Sect. 4.3.4]

    Google Scholar 

  • Pfaffelmoser, K.: Global classic solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Equat. 95, 281–303 (1992) [Sect. 16.5]

    Google Scholar 

  • Phan, T.D., Gosling, J.T., Davis, M.S., et al.: A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439(04393), 175–178 (2006) [Sect. 12.4.2]

    Google Scholar 

  • Planck, M.: Über einen Satz der Statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzber Preuss. Akad. Wiss., Phys-Math. Klasse 324 (1917) [Sect. 3.1.4]

    Google Scholar 

  • Polovin, R.V.: Shock waves in MHD. Soviet Phys. Usp. 3(5), 677–688 (1961) [Sects. 16.2.4(c), 17.2.2]

    Google Scholar 

  • Polovin, R.V., Demutskii, V.P.: Fundamentals of Magnetohydrodynamics. Consultants Bureau, New York (1990) [Sect. 17.4.1]

    Google Scholar 

  • Polovin, R.V., Liubarskii, G.Ya.: Impossibility of rarefaction shock waves in MHD. Sov. Phys. JETP 8(2), 351–352 (1958) [Sect. 16.2.4(c)]

    Google Scholar 

  • Priest, E.R.: Solar Magnetohydrodynamics, p. 472. D. Reidel Publ. Co., Dordrecht (1982) [Sects. 16.2.4(c), 19.3.4]

    Google Scholar 

  • Punsly, B.: Black Hole Gravitohydromagnetics, p. 400. Springer, New York (2001) [Sect. 12.2.5]

    Google Scholar 

  • Quarati, P., Scarfone, A.M.: Modified Debye-Hückel electron shielding and penetration factor. Astrophys. J. 666(2), 1303–1310 (2007) [Sect. 8.2.2]

    Google Scholar 

  • Ramos, J.I., Winowich, N.S.: Magnetohydrodynamic channel flow study. Phys. Fluids 29(4), 992–997 (1986) [Sect. 20.2]

    Google Scholar 

  • Reid, I.N., Liebert, J., Schmidt, G.D.: Discovery of a magnetic DZ white dwarf with Zeeman-split lines of heavy elements. Astrophys. J. 550(1), L61–L63 (2001) [Sect. 13.2.2]

    Google Scholar 

  • Rodrigues-Pacheco, J., Sequeiros, J., del Peral, L., et al.: Diffusive-shock-accelerated interplanetary ions at several energies during the solar cycle 21 maximum. Solar Phys. 181(1), 185–200 (1998) [Sect. 18.2.1]

    Google Scholar 

  • Rogachevskii, I., Kleeorin, N.: Shear-current effect in a turbulent convection with a large-scale shear. Phys. Rev. E 75(4), 046305 (2007) [Sect. 13.1.2]

    Google Scholar 

  • Roikhvarger, Z.B., Syrovatskii, S.I.: Evolutionarity of MHD discontinuities with allowance for dissipative waves. Sov. Phys. JETP 39(4), 654–656 (1974) [Sects. 17.1.4, 17.3.1, 17.3.2]

    Google Scholar 

  • Rose, W.K.: Advanced Stellar Astrophysics, p. 494. Cambridge University Press, Cambridge (1998) [Sects. 1.3, 5.4, 7.3, 12.2.2, 13.2.1, 14.4.2]

    Google Scholar 

  • Rosenbluth, M., Longmire, C.: Stability of plasmas confined by magnetic fields. Ann. Phys. 1(1), 120–140 (1957) [Sects. 19.3.2, 19.3.3]

    Google Scholar 

  • Ruderman, M.: Matter in superstrong magnetic fields: The surface of a neutron star. Phys. Rev. Lett. 27(19), 1306–1308 (1971) [Sect. 5.4]

    Google Scholar 

  • Ruderman, M.A., Sutherland, P.G.: Theory of pulsars: Polar gaps, sparks, and coherent radiation. Astrophys. J. 196(1), 51–72 (1975) [Sect. 7.3]

    Google Scholar 

  • Rüdiger, G., von Rekowski, B.: Differential rotation and meridional flow for fast-rotating solar-type stars. Astrophys. J. 494(2), 691–699 (1998) [Sects. 13.1.2, 20.1.5]

    Google Scholar 

  • Ruffolo, D.: Transport and acceleration of energetic particles near an oblique shock. Astrophys. J. 515(2), 787–800 (1999) [Sect. 18.2.1]

    Google Scholar 

  • Salat, A.: Non-linear plasma transport equations for high flow velocity. Plasma Phys. J. 17, 589–607 (1975) [Sect. 9.7.2]

    Google Scholar 

  • Sarazin, C.L., Kempner, J.C.: Nonthermal bremsstrahlung and hard X-ray emission from clusters of galaxies. Astrophys. J. 533(1), 73–83 (2000) [Sect. 8.3.4]

    Google Scholar 

  • Sarris, E.T., Van Allen, J.A.: Effects of interplanetary shocks on energetic particles. J. Geophys. Res. 79(28), 4157–4173 (1974) [Sect. 18.3.2(a)]

    Google Scholar 

  • Schabansky, V.P.: Some processes in the magnetosphere. Space Sci. Rev. 12(3), 299–418 (1971) [Sect. 11.1]

    Google Scholar 

  • Schiff, L.I.: Possible new experimental test of general relativity theory. Phys. Rev. Lett. 4(5), 215–217 (1960) [Sect. 13.4]

    Google Scholar 

  • Schlickeiser, R.: Cosmic Ray Astrophysics, p. 519. Springer, New York (2002) [Sect. 5.1.3]

    Google Scholar 

  • Schlüter, A.: Dynamic des Plasmas. Zeitschrift für Naturforschung 6A(2), 73–78 (1951) [Sect. 11.1]

    Google Scholar 

  • Schmidt, G.: Physics of High Temperature Plasmas, p. 408. Academic, New York (1979) [Sect. 3.1.2]

    Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., et al.: Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505(1), 390–417 (1998) [Sect. 20.1.5]

    Google Scholar 

  • Schram, P.P.J.: Kinetic Theory of Gases and Plasmas, p. 426. Kluwer Academic, Dordrecht (1991) [Intr., Sect. 6.2.2]

    Google Scholar 

  • Schrijver, C.J., Zwaan, C.: Solar and Stellar Magnetic Activity, p. 400. Cambridge University Press, Cambridge (1999) [Sect. 20.1.5]

    Google Scholar 

  • Sedov, L.I.: Mechanics of Continuous Medium, vol. 1, p. 536, vol. 2, p. 584. Nauka, Moscow (in Russian) (1973) [Sect. 13.1.1]

    Google Scholar 

  • Sermulyn’sh, B.A., Somov, B.V.: The problem of reverse current under heating of the solar atmosphere by accelerated electrons. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 90–95. LIYaF, Leningrad (in Russian) (1982) [Sect. 4.5.6]

    Google Scholar 

  • Sermulyn’sh, B.A., Somov, B.V.: On the influence of reverse current on the chromospheric heating by accelerated electrons. Investig. Sun Red Stars 18, 86–92 (in Russian) (1983) [Sect. 4.5.6]

    Google Scholar 

  • Shafranov, V.D.: On MHD equilibrium configurations. Sov. Phys. JETP 6, 545–551 (1958) [Sect. 19.5]

    Google Scholar 

  • Shafranov, V.D.: Plasma equilibrium in a magnetic field. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 2, pp. 103–151. Consultants Bureau, New York (1966) [Sects. 19.2.2, 19.3.2]

    Google Scholar 

  • Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems, Observational appearance. Astron. Astrophys. 24(2), 337–355 (1973) [Sects. 8.3.5, 13.2.1, 13.2.3]

    Google Scholar 

  • Sheeley, N.R., Jr., Warren, H.P., Wang, Y.-M.: A streamer ejection with reconnection close to the Sun. Astrophys. J. 671(1), 926–935 (2007) [Sect. 11.5.1]

    Google Scholar 

  • Shercliff, A.J.: A Textbook of Magnetohydrodynamics, p. 265. Pergamon Press, Oxford (1965) [Sects. 13.1.1, 16.2.4(c), 17.4.2, 20.2.2]

    Google Scholar 

  • Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasma, p. 518. Addison-Wesley, Reading (1966) [Sects. 1.1.4, 9.4.1, 9.6.2, 11.5.1, 12.2.3]

    Google Scholar 

  • Shmeleva, O.P., Syrovatskii, S.I.: Distribution of temperature and emission measure in a steadily heated solar atmosphere. Solar Phys. 33(2), 341–362 (1973) [Sect. 8.5]

    Google Scholar 

  • Shoub, E.C.: Invalidity of local thermodynamic equilibrium for electrons in solar transition region. Astrophys. J. 266(1), 339–369 (1983) [Sect. 8.4.3]

    Google Scholar 

  • Shoub, E.C.: Failure of the Fokker-Planck approximation to the Boltzmann integral for (1/r) potentials. Phys. Fluids 30(5), 1340–1352 (1987) [Sects. 3.1.4, 3.5]

    Google Scholar 

  • Shu, F.H.: The Physics of Astrophysics, vol. 2. Gas Dynamics, p. 476. California Univ. Science Books, Mill Valley (1992) [Sects. 6.2.2, 19.3.4]

    Google Scholar 

  • Silin, V.P.: Introduction to the Kinetic Theory of Gases, p. 332. Nauka, Moscow (in Russian) (1971) [Sects. 3.1.2, 3.5, 6.2.2]

    Google Scholar 

  • Simon, A.L.: An Introduction to Thermonuclear Research, p. 182. Pergamon Press, London (1959) [Intr.]

    Google Scholar 

  • Sirotina, E.P., Syrovatskii, S.I.: Structure of low intensity shock waves in MHD. Sov. Phys. JETP 12(3), 521–526 (1960) [Sects. 16.4, 17.3.1]

    Google Scholar 

  • Sivukhin, D.V.: Motion of charged particles in electromagnetic fields in the drift approximation. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 1–104. Consultants Bureau, New York (1965) [Sects. 5.2.3, 5.3.4]

    Google Scholar 

  • Sivukhin, D.V.: Coulomb collisions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 93–341. Consultants Bureau, New York (1966) [Sects. 8.3.1, 8.4.1(b), 8.4.3]

    Google Scholar 

  • Sivukhin, D.V.: A Course of General Physics. Vol. II, Thermodynamics and Molecular Physics, 3rd edn. Nauka, Moscow (in Russian) (1990) [Sect. 9.6.1]

    Google Scholar 

  • Sivukhin, D.V.: A Course of General Physics. Vol. III, Electricity, 3rd edn. Nauka, Moscow (in Russian) (1996) [Sects. 11.4.2, 19.2.2]

    Google Scholar 

  • Smirnov, B.M.: Physics of Weakly Ionized Gases: Problems and Solutions, p. 432. Mir Publ., Moscow (1981) [Sect. 3.5]

    Google Scholar 

  • Smirnov, V.I.: A Course of Higher Mathematics, vol. 2. Pergamon Press, Oxford (1965) [Sects. 1.1.1, 12.3.1, 19.1.2, 19.6]

    Google Scholar 

  • Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16 ∘ : Pioneer 11. J. Geophys. Res. 83, 717–724 (1978) [Sect. 12.4.2]

    Google Scholar 

  • Somov, B.V.: Fast reconnection and transient phenomena with particle acceleration in the solar corona. Bull. Acad. Sci. USSR, Phys. Ser. 45(4), 114–116 (1981) [Sects. 8.3.3, 9.7.2]

    Google Scholar 

  • Somov, B.V.: Accumulation and release of flare energy. In: Proc. 12th Leningrad Seminar on Space Physics: Complex Study of the Sun, pp. 6–49. LIYaF, Leningrad (in Russian) (1982) [Sects. 3.1.4, 4.1.2, 4.4]

    Google Scholar 

  • Somov, B.V.: Non-neutral current sheets and solar flare energetics. Astron. Astrophys. 163(1), 210–218 (1986) [Sect. 8.3.3]

    Google Scholar 

  • Somov, B.V.: Physical Processes in Solar Flares, p. 248. Kluwer Academic, Dordrecht (1992) [Sects. 4.5.6, 8.3.2, 8.4.3, 9.7.3, 19.4.3]

    Google Scholar 

  • Somov, B.V.: Cosmic Electrodynamics and Solar Physics, p. 288. Moscow State Univ. Publ., Moscow (in Russian) (1993) [Sect. 16.3]

    Google Scholar 

  • Somov, B.V.: Fundamentals of Cosmic Electrodynamics, p. 364. Kluwer Academic, Dordrecht (1994a) [Sects. 14.2, 16.3]

    Google Scholar 

  • Somov, B.V.: Features of mass supply and flows related with reconnection in the solar corona. Space Sci. Rev. 70(1), 161–166 (1994b) [Sects. 19.4.1, 20.4]

    Google Scholar 

  • Somov, B.V.: Plasma Astrophysics, Part II, Reconnection and Flares, p. 504. Springer Science + Business Media, New York (2012) [Intr.]

    Google Scholar 

  • Somov, B.V., Gritsyk, P.A.: Bremsstrahlung radiation of accelerated electrons in solar flares. Moscow Univ. Phys. Bull. 67(1), 110–116 (2012) [Sect. 4.5.5]

    Google Scholar 

  • Somov, B.V., Kosugi, T.: Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485(2), 859–868 (1997) [Sect. 6.2.4]

    Google Scholar 

  • Somov, B.V., Syrovatskii, S.I.: Plasma motion in an increasing strong dipolar field. Sov. Phys. JETP 34(2), 332–335 (1972a) [Sects. 14.4.1, 14.4.2]

    Google Scholar 

  • Somov, B.V., Syrovatskii, S.I.: Appearance of a current sheet in a plasma moving in the field of a two-dimensional magnetic dipole. Sov. Phys. JETP 34(5), 992–997 (1972b) [Sect. 14.2.2(a)]

    Google Scholar 

  • Somov, B.V., Syrovatskii, S.I.: Physical processes in the solar atmosphere associated with flares. Sov. Phys. Usp. 19(10), 813–835 (1976a) [Sects. 8.3.3, 8.3.4, 12.1.3]

    Google Scholar 

  • Somov, B.V., Syrovatskii, S.I.: Hydrodynamic plasma flows in a strong magnetic field. In: Basov, N.G. (ed.) Neutral Current Sheets in Plasma, Proc. P.N. Lebedev Phys. Inst., vol. 74, pp. 13–71. Consultants Bureau, New York (1976b) [Sects. 12.1.3, 13.1.1, 14.1, 14.2.2(b), 14.4.2]

    Google Scholar 

  • Somov, B.V., Tindo, I.P.: Polarization of hard X-rays from solar flares. Cosmic Res. 16(5), 555–564 (1978) [Sect. 4.5.5]

    Google Scholar 

  • Somov, B.V., Titov, V.S.: Magnetic reconnection as a mechanism for heating the coronal loops. Sov. Astron. Lett. 9(1), 26–28 (1983) [Sect. 8.3.3]

    Google Scholar 

  • Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Gas dynamics of a flare plasma. Bull. Acad. Sci. USSR Phys. Ser. 41(2), 32–43 (1977) [Sect. 8.3.2]

    Google Scholar 

  • Somov, B.V., Spektor, A.R., Syrovatskii, S.I.: Hydrodynamics of an optically transparent plasma with a distributed heating source. In: Basov, N.G. (ed.) Flare Processes in Plasmas, Proc. P.N. Lebedev Phys. Inst., vol. 110, pp. 73–94. Nauka, Moscow (in Russian) (1979) [Sect. 8.3.2]

    Google Scholar 

  • Somov, B.V., Syrovatskii, S.I., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Heating by accelerated electrons. Solar Phys. 73(1), 145–155 (1981) [Sect. 8.3.2]

    Google Scholar 

  • Somov, B.V., Sermulina, B.J., Spektor, A.R.: Hydrodynamic response of the solar chromosphere to elementary flare burst. 1. Thermal model. Solar Phys. 81(1), 281–292 (1982) [Sect. 8.3.3]

    Google Scholar 

  • Somov, B.V., Oreshina, A.V., Oreshina, I.V., et al.: Flares in accretion disk coronae. Adv. Space Res. 32(6), 1087–1096 (2003) [Sects. 14.2.2(a), 14.5]

    Google Scholar 

  • Somov, B.V., Dzhalilov, N.S., Staude, J.: Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33(5), 309–318 (2007) [Sects. 12.1.3, 15.2.1, 15.4.4]

    Google Scholar 

  • Spicer, D.S, Emslie, A.G.: A new quasi-thermal trap model for solar hard X-ray bursts: An electrostatic trap model. Astrophys. J. 330(2), 997–1007 (1988) [Sect. 8.1.4]

    Google Scholar 

  • Spitzer, L.: The stability of isolated clusters. Mon. Not. Roy. Astron. Soc. 100(5), 396–413 (1940) [Sect. 8.3.1]

    Google Scholar 

  • Spitzer, L.: Physics of Fully Ionized Gases, p. 170. Wiley Interscience, New York (1962) [Sects. 8.3.1, 8.4.1(a), 9.6.2, 15.4.1, 15.4.4]

    Google Scholar 

  • Steinolfson, R.S., Cable, S.: Venus bow shock at unusually large distances from the planet. Geophys. Res. Lett. 20, 755–758 (1993) [Sect. 16.2.5]

    Google Scholar 

  • Steinolfson, R.S., Hundhausen, A.J.: MHD intermediate shocks in coronal mass ejections. J. Geophys. Res. 95, 6389–6401 (1990) [Sect. 16.2.5]

    Google Scholar 

  • Stewart, R.W., Grant, H.L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. J. Geophys. Res. 67, 3177–3184 (1969) [Sect. 7.2.2]

    Google Scholar 

  • Stix, T.H.: Waves in Plasmas. American Institue of Physics, New York (1992) [Sect. 10.4]

    Google Scholar 

  • Störmer, C.: The Polar Aurora. Clarendon Press, Oxford (1955) [Sect. 6.4]

    MATH  Google Scholar 

  • Strittmatter, P.A.: Gravitational collapse in the presence of a magnetic field. Monthly Not. Roy. Astron. Soc. 132(3), 359–378 (1966) [Sects. 19.1.2, 19.1.3]

    Google Scholar 

  • Strong, K.T., Saba, J.L.R., Haisch, B.M., et al. (eds.): The Many Faces of the Sun, p. 610. Springer, New York (1999) [Sect. 4.3.4]

    Google Scholar 

  • Subramanian, P., Becker, P.A., Kazanas, D.: Formation of relativistic outflows in shearing black hole accretion coronae. Astrophys. J. 523(1), 203–222 (1999) [Sect. 13.3.4]

    Google Scholar 

  • Suh, I.S., Mathews, G.J.: Cold ideal equation of state for strongly magnetized neutron star matter: Effects on muon production and pion condensation. Astrophys. J. 546(3), 1126–1136 (2001) [Sect. 19.1.3]

    Google Scholar 

  • Sutton, G.W., Sherman, A.: Engineering Magnetohydrodynamics, p. 548. McGraw-Hill Book Co., New York (1965) [Sects. 13.1.1, 20.2]

    Google Scholar 

  • Syrovatskii, S.I.: On the stability of tangential discontinuities in MHD medium. Zhur. Exper. Teor. Fiz. 24(6), 622–630 (in Russian) (1953) [Sects. 16.2.1, 16.2.2]

    Google Scholar 

  • Syrovatskii, S.I.: Instability of tangential discontinuities in a compressive medium. Zhur. Exper. Teor. Fiz. 27(1), 121–123 (in Russian) (1954) [Sect. 16.2.2]

    Google Scholar 

  • Syrovatskii, S.I.: Some properties of discontinuity surfaces in MHD. Proc. P.N. Lebedev Phys. Inst. 8, 13–64 (in Russian) (1956) [Sects. 16.2.1, 16.3, 20.1.1]

    Google Scholar 

  • Syrovatskii, S.I.: Magnetohydrodynamics. Uspehi Fiz. Nauk 62(3), 247–303 (in Russian) (1957) [Sects. 12.2.2, 15.4.2, 16.2.4(c), 19.1.3, 20.1.1]

    Google Scholar 

  • Syrovatskii, S.I.: The stability of shock waves in MHD. Sov. Phys. JETP 8(6), 1024–1028 (1959) [Sects. 17.1.2, 17.1.4]

    Google Scholar 

  • Syrovatskii, S.I.: Formation of current sheets in a plasma with a frozen-in strong field. Sov. Phys. JETP 33(5), 933–940 (1971) [Sect. 14.2.2(a)]

    Google Scholar 

  • Syrovatskii, S.I., Chesalin, L.S.: Electromagnetic generation of conductive fluid flows near bodies and expulsive force. Questions of Magnetohydrodynamics, pp. 17–22. Zinatne, Riga (in Russian) (1963) [Sects. 19.4.2, 20.3]

    Google Scholar 

  • Syrovatskii, S.I., Shmeleva, O.P.: Heating of plasma by high-energy electrons, and the non-thermal X-ray emission in solar flares. Sov. Astron. AJ 16(2), 273–283 (1972) [Sects. 4.3.3, 4.3.4, 8.3.2]

    Google Scholar 

  • Syrovatskii, S.I., Somov, B.V.: Physical driving forces and models of coronal responses. In: Dryer, M., Tandberg-Hanssen, E. (eds.) Solar and Interplanetary Dynamics, IAU Symp. vol. 91, pp. 425–441. Reidel, Dordrecht (1980) [Sect. 14.2.2(b)]

    Google Scholar 

  • Takahara, F., Kusunose, M.: Electron-positron pair production in a hot accretion plasma around a massive black hole. Progr. Theor. Phys. 73(6), 1390–1400 (1985) [Sect. 7.3]

    Google Scholar 

  • Takizawa, M.: A two-temperature model of the intracluster medium. Astrophys. J. 509(2), 579–584 (1998) [Sect. 8.3.4]

    Google Scholar 

  • Tamm, I.E.: Basic Theory of Electricity, 10th edn., p. 504. Nauka, Moscow (in Russian) (1989) [Sect. 19.3.1]

    Google Scholar 

  • Tandberg-Hanssen, E.: The Nature of Solar Prominences, p. 308. Kluwer Academic, Dordrecht (1995) [Sects. 19.3.4, 20.4]

    Google Scholar 

  • Thorne, K.: Gravitomagnetism, Jets in Quasars, and the Stanford Gyroscope Experiment. In: Fairbank, J.D., et al. (eds.) Near Zero: New Frontiers of Physics, pp. 573–586. W.H. Freeman and Co., New York (1988) [Sect. 13.3.2]

    Google Scholar 

  • Tidman, D.A., Krall, N.A.: Shock Waves in Collisionless Plasma, p. 175. Wiley-Interscience, New York (1971) [Sect. 16.4]

    Google Scholar 

  • Titov, V.S., Priest, E.R.: The collapse of an X-type neutral point to form a reconnecting current sheet. Geophys. Astrophys. Fluid Dyn. 72, 249–276 (1993) [Sect. 14.2.2(b)]

    Google Scholar 

  • Todd, L.: Evolution of the trans-Alfvénic normal shock in a gas of finite electrical conductivity. J. Fluid Mech. 18, 321–336 (1964) [Sect. 17.4.2]

    Google Scholar 

  • Toptyghin, I.N.: Acceleration of particles by shocks in a cosmic plasma. Space Sci. Rev. 26(1), 157–213 (1980) [Sect. 18.3.2(a)]

    Google Scholar 

  • Treumann, R.A., Baumjohann, W.: Advanced Space Plasma Physics, p. 381. Imperial College Press, London (1997) [Sect. 7.1]

    Google Scholar 

  • Trubnikov, B.A.: Particle interactions in a fully ionized plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 1, pp. 105–204. Consultants Bureau, New York (1965) [Sect. 8.4.1(b)]

    Google Scholar 

  • Tsiklauri, D., Haruki, T.: Magnetic reconnection during collisionless, stressed, X-point collapse using particle-in-cell simulation. Phys. Plasma 14(11), 112905–112905-10 (2007) [Sect. 11.2]

    Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249(2), 167–196 (2008) [Sect. 8.3.2]

    Google Scholar 

  • Tverskoy, B.A.: Contribution to the theory of Fermi statistical acceleration. Soviet Phys. JETP. 25(2), 317–325 (1967) [Sect. 7.2]

    Google Scholar 

  • Tverskoy, B.A.: Theory of turbulent acceleration of charged particles in a plasma. Soviet Phys. JETP.26(4), 821–828 (1968) [Sect. 7.2]

    Google Scholar 

  • Tverskoy, B.A.: Main mechanisms in the formation of the Earth’s radiation belts. Rev. Geophys. 7(1), 219–231 (1969) [Sect. 6.4]

    Google Scholar 

  • UeNo, S.: Comparison between statistical features of X-ray fluctuations from the solar corona and accretion disks. In: Watanabe, T., Kosugi, T., Sterling, A.C. (eds.) Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond, pp. 45–50. Kluwer Academic, Dordrecht (1998) [Sect. 13.2.4]

    Google Scholar 

  • Unti, T., Atkinson, G.: Two-dimensional Chapman-Ferraro problem with neutral sheet. 1. The boundary. J. Geophys. Res. Space Phys. 73(23), 7319–7327 (1968) [Sect. 14.2.2(a)]

    Google Scholar 

  • van de Hulst, H.C.: Interstellar polarization and MHD waves. In: Burgers, J.M., van de Hulst, H.C. (eds.) Problems of Cosmical Aerodynamics, pp. 45–57, Central Air Documents Office, Dayton, Ohio (1951) [Sects. 15.2.3, 15.3.2]

    Google Scholar 

  • van den Oord, G.H.J.: The electrodynamics of beam/return current systems in the solar corona. Astron. Astrophys. 234(2), 496–518 (1990) [Sects. 4.5.1, 4.5.2]

    Google Scholar 

  • Vink, J., Laming, J.M., Gu, M.F., et al.: The slow temperature equilibration behind the shock front of SN 1006. Astrophys. J. 587(1), L31–L34 (2003) [Sect. 16.4]

    Google Scholar 

  • Vladimirov, V.S.: Equations of Mathematical Physics, p. 418. M. Dekker, New York (1971) [Sects. 1.1.5, 1.2.2, 13.1.1]

    Google Scholar 

  • Vlasov, A.A.: On the oscillation properties of an electron gas. Zhur. Eksp. Teor. Fiz. 8(1), 29–33 (in Russian). English translation: 1968, The vibrational properties of an electron gas. Sov. Phys. Uspekhi 10(4), 721–733, see also Sov. Phys. Uspekhi 19(6), 545–546 (1938) [Sects. 3.1.2, 3.1.3, 10.2.2]

    Google Scholar 

  • Vlasov, A.A.: On the kinetic theory of an ensemble of particles with collective interactions. Soviet J. Phys. 9(1), 25–28 (1945) [Sect. 3.1.2]

    Google Scholar 

  • Volkov, T.F.: Hydrodynamic description of a collisionless plasma. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. 4, pp. 1–21. Consultant Bureau, New York (1966) [Sects. 11.5.1, 16.4]

    Google Scholar 

  • Walt, M.: Introduction to Geomagnetically Trapped Radiation, p. 188. Cambridge University Press, Cambridge (1994) [Sect. 6.4]

    Google Scholar 

  • Webb, G.M.: Similarity considerations and conservation laws for magnetostatic atmospheres. Solar Phys.106(2), 287–313 (1986) [Sect. 19.4.3]

    Google Scholar 

  • Webb, G.M., Zank, G.P., Ko, C.M., et al.: Multi-dimensional Green’s functions and the statistics of diffusive shock acceleration. Astrophys. J. 453(1), 178–189 (1995) [Sect. 18.2.2]

    Google Scholar 

  • Wentzel, D.G.: Fermi acceleration of charged particles. Astrophys. J. 137(1), 135–146 (1963) [Sect. 18.3.2(b)]

    Google Scholar 

  • Wentzel, D.G.: Motion across magnetic discontinuities and Fermi acceleration of charged particles. Astrophys. J. 140(3), 1013–1024 (1964) [Sects. 6.2.4, 18.3.2(b)]

    Google Scholar 

  • Wiita, P.J.: Accretion disks around black holes. In: Iyer, B.R., Bhawal, B. (eds.) Black Holes, Gravitational Radiation and the Universe, pp. 249–263. Kluwer Academic, Dordrecht (1999) [Sect. 8.3.5]

    Google Scholar 

  • Will, C.M.: Finally, results from Gravity Probe B. Physics 4, 43 (2011) [Sect. 13.4]

    Google Scholar 

  • Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44(6), 489–491 (1958) [Sect. 19.6]

    Google Scholar 

  • Yvon, J.: La Theorie des Fluids et l’Equation d’Etat. Hermann et Cie, Paris (1935) [Sect. 2.4]

    Google Scholar 

  • Zank, G.P.: Weyl’s theorem for MHD. J. Plasma Phys. 46(1), 11–14 (1991) [Sect. 16.2.4(c)]

    Google Scholar 

  • Zel’dovich, Ya.B., Novikov, I.D.: Relativistic Astrophysics. Vol. 1, Stars and Relativity. University of Chicago Press, Chicago (1971) [Sects. 12.2, 19.3.4]

    Google Scholar 

  • Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1, p. 464, vol. 2, p. 452. Academic, New York (1966) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]

    Google Scholar 

  • Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola (2002) [Sects. 8.3.4, 9.7.3, 16.1.3, 16.4, 16.5]

    Google Scholar 

  • Zel’dovich, Ya.B., Ruzmaikin, A.A., Sokolov, D.D.: Magnetic Fields in Astrophysics. Gordon and Breach, New York (1983) [Sect. 13.1.2]

    Google Scholar 

  • Zenitani, S., Hoshino, M.: The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562(1), L63–L66 (2001) [Sect. 7.3]

    Google Scholar 

  • Zenitani, S., Hoshino, M.: Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670(1), 702–726 (2007) [Sect. 7.3]

    Google Scholar 

  • Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas, p. 462. Kluwer Academic, Dordrecht (1996) [Sects. 7.1, 7.4, 10.4]

    Google Scholar 

  • Zhou, Y., Matthaeus, W.H.: Models of inertial range spectra of MHD turbulence. J. Geophys. Res. 95(A9), 14881–14892 (1990) [Sect. 7.2]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Somov, B.V. (2013). Discontinuous Flows in a MHD Medium. In: Plasma Astrophysics, Part I. Astrophysics and Space Science Library, vol 391. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4283-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4283-7_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4282-0

  • Online ISBN: 978-1-4614-4283-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics