Skip to main content

Chemical Explosives

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

The average citizen in today’s world gives little thought to the important role that commercial explosives play in their lives and how their use is linked to our standard of living and our way of life. Explosives provide the energy required to give us access to the vast resources of the earth for the advancement of civilization. In 2010, the Mineral Information Institute estimated that the average baby born in America will need the following quantities of minerals, metals, and fuels in their lifetime: copper—932 lb; salt—31,779 lb; clays—12,121 lb; zinc—544 lb; stone, sand, and gravel—1,100,000 lb; petroleum—72,499 gal; lead—777 lb; other minerals and metals—43,822 lb: natural gas—5.93 million ft3; cement—41,181 lb; iron ore—14,530 lb; bauxite (aluminum)—4,040 lb; coal—542,968 lb; phosphate rock—15,152 lb; and gold—1.383 troy oz [1]. Availability of all of these materials, which total 2.9 million lb/individual, depends on the use of explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 419.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mineral Information Institute. Soc Metallurg Explor Foundation. http://www.mii.org/MiiBabyMain

  2. United States Geological Survey. Minerals Yearbook, Explosive Statistics and Information. Compiled Information from years 2000–2009

    Google Scholar 

  3. Apodaca LE (2009) United States Geological Survey. Minerals Yearbook, Explosive Statistics and Information (advance release)

    Google Scholar 

  4. Ornellas J (1968) Phys Chem 72:2390

    Article  CAS  Google Scholar 

  5. Kaye SM (1978) Encyclopedia of explosives and related items, PATR 2700, vol 8. U.S. Army Armament Research and Development Command, Dover, pp 99–100

    Google Scholar 

  6. Engineering design handbook: explosives series. Army Material Command Pamphlet 706–177, AD 764, 340, p 12, distributed by NTIS, Jan 1971

    Google Scholar 

  7. Fedoroff BT, Sheffield OE (1962) Encyclopedia of explosives and related items, PATR 2700, vol 2. Picatinny Arsenal, Dover, p B165

    Google Scholar 

  8. Butler AR (1990) ChemTech:202

    Google Scholar 

  9. Van Gelder AP, Schlatter H (1972) History of the explosives industry in America. Arno Press, New York (reprint of 1927 edition)

    Google Scholar 

  10. Marshall A (1917) Explosives, vol I, History and manufacture. P. Blakiston’s Son, Philadelphia

    Google Scholar 

  11. Gregory CE (1973) Explosives for North American engineers. Trans Tech Publications, Cleveland

    Google Scholar 

  12. “Black Powder” (1983) Explos and Pyrotech 16(7)

    Google Scholar 

  13. Atlas Powder (1987) Explosives and rock blasting. Atlas Powder, Dallas

    Google Scholar 

  14. Johansson CH, Persson PA (1970) Detonics of high explosives. Academic, Reinhold Book Corporation, New York

    Google Scholar 

  15. Du Pont (1980) Blasters handbook, 16th edn. pp 14, 109

    Google Scholar 

  16. Kintz GM et al (1948) Report of investigations 4245. U.S. Department of Interior, Bureau of Mines, Feb 1948

    Google Scholar 

  17. Chem Mark Rep:6 (1983)

    Google Scholar 

  18. Cook MA (1974) The science of industrial explosives. IRECO Chemicals, Salt Lake City, p 2

    Google Scholar 

  19. Egly RS, Neckar AE (1964) US Patent 3,161,551, 15 Dec 1964

    Google Scholar 

  20. Bluhm HE (1969) US Patent 3,447,978, 3 June 1969

    Google Scholar 

  21. Bower JK et al (1980) 1&EC Prod Res Dev:326

    Google Scholar 

  22. Mohan VK, Field JE (1984) Combust Flame 56:269

    Article  CAS  Google Scholar 

  23. Spear RJ, Wilson WS (1984) J Energy Mater 2:61

    Article  CAS  Google Scholar 

  24. Coburn MD et al (1986) Ind Eng Chem Prod Res Dev 25:68

    Article  CAS  Google Scholar 

  25. Dobratz BM (1983) LA-9732-H, VC-45. Los Alamos National Laboratory, Los Alamos, May 1983

    Google Scholar 

  26. Cranney DH, Hales RH (1990) Proceedings of the fourteenth symposium on explosives and pyrotechnics, Franklin Research Center, Feb 1990

    Google Scholar 

  27. Code of Federal Regulations, Title 49 Transportation, Part 173.114a, p 272, 1 Oct 1979 Revision

    Google Scholar 

  28. Fed Regist 55(9):1306 (1990)

    Google Scholar 

  29. Tarver CM et al (1977) Structure/property correlations in primary explosives (Final report, 76-2). Stanford Research Institute, Menlo Park, 4 Feb 1977

    Google Scholar 

  30. Brunswig H (1909) Explosivstoffe. Barth, Braunschweig, p 17

    Google Scholar 

  31. Plets V (1953) Zh Obshch Khim 5:173

    Google Scholar 

  32. Shipp KG (1964) J Org Chem 29:2620

    Article  CAS  Google Scholar 

  33. US Patent 3,505,413, 7 Apr 1970

    Google Scholar 

  34. Kayser EG (1983) J Energy Mater 1:325

    Article  CAS  Google Scholar 

  35. Gallo AE, Tench N (1984) J Hazard Mater 9:5

    Article  CAS  Google Scholar 

  36. Delistraty I, Brandt H (1982) Propell Explos Pyrotech 7:113

    Article  CAS  Google Scholar 

  37. Rizzo HE et al (1981) Propell Explos 6:27

    Article  CAS  Google Scholar 

  38. Kolb IR, Rizzo HE (1979) Propell Explos 4:10

    Article  CAS  Google Scholar 

  39. Ott DG, Benziger TM (1987) J Energy Mater 5:343

    Article  CAS  Google Scholar 

  40. Urbanski T (1965) Chemistry and technology of explosives, vol II. Pergamon, New York, p 181

    Google Scholar 

  41. Military explosives, Department of the Army technical manual TM 9-1300-214, chapter 7, p 32, Washington, DC, 1967

    Google Scholar 

  42. Cook MA (1958) The science of high explosives. American Chemical Society monograph series no. 139, Reinhold Book Corporation, pp 178–183

    Google Scholar 

  43. Ibid., Appendix II

    Google Scholar 

  44. Cole RH (1948) Underwater explosions. Princeton University Press, Princeton

    Google Scholar 

  45. Hanto K (1998) Internal report on fumes from emulsion and ANFO. Dyno Nobel, Europe

    Google Scholar 

  46. History of explosives and blasting. Intern Soc Explos Eng. http://www.explosives.org/HistoryofExplosives

  47. Cook MA (1974) The science of industrial explosives. IRECO Chemicals, Salt Lake City, pp 5–7

    Google Scholar 

  48. Watson J (2002) Electronic Blast Initiation, A Practical Users Guide, J Explos Eng 19(3):6

    Google Scholar 

  49. Lusk BT, Hoffman J, Wedding WC (2011) Electronic Detonator and Modern Non-Electric Shocktube Detonator Accuracy, Proceedings thirty-seventh annual conference on explosives and blasting technique, International Society of Explosives Engineers, p 563, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don H. Cranney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cranney, D.H., Sudweeks, W.B. (2012). Chemical Explosives. In: Kent, J. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4259-2_37

Download citation

Publish with us

Policies and ethics