Industrial Enzymes and Biocatalysis

  • Joseph C. McAuliffe


All life processes, whether plant, animal, or microbial, depend upon a complex network of enzyme-catalyzed chemical reactions for cellular growth and maintenance [1, 2]. As catalysts, enzymes facilitate reactions by enabling alternate reaction mechanisms with lower activation energy, but in no way modify the thermodynamic equilibrium constant or the free energy change of a chemical transformation. They generate enormous kinetic rate accelerations, often exceeding factors of 1012-fold relative to the rate of the uncatalyzed reaction. Enzymes are capable of performing many different chemistries, can be produced on a large scale, and typically operate at ambient temperatures and near neutral pH [3–5]. These attributes have captured the attention of generations of scientists and engineers alike and enabled the dramatic growth of the enzyme industry over the past century.


Ionic Liquid Industrial Enzyme Glucose Isomerase Phytase Product Biocatalytic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goodsell DS (2009) The machinery of life. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Renneberg R (2008) Biotechnology for beginners. Academic, AmsterdamGoogle Scholar
  3. 3.
    Jencks WP (1987) Catalysis in chemistry and enzymology. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Garland Science, New YorkGoogle Scholar
  5. 5.
    Buchholz K, Kasche V, Bornscheuer UT (2005) Biocatalysts and enzyme technology. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Aehle W (ed) (2007) Enzymes in industry: production and applications, 3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Polaina J, MacCabe AP (eds) (2007) Industrial enzymes, structure, functions and applications. Springer, DordrechtGoogle Scholar
  8. 8.
    Whitehurst RJ, Van Oort M (eds) (2010) Enzymes in food technology, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  9. 9.
    Olempska-Beer ZS et al (2006) Food-processing enzymes from recombinant microorganisms—a review. Reg Toxicol Pharm 45:144–158CrossRefGoogle Scholar
  10. 10.
    Dewan SS, Enzymes in industrial applications: global markets (2011) Report BIO030F, BCC Research, Wellesley, MDGoogle Scholar
  11. 11.
    Sandhya C, Nampoothiri KM Pandey A (2005) Microbial proteases. In: Barredo JL (ed) Microbial enzymes and biotransformations, Methods in biotechnology, vol 17. Humana Press, Totawa, pp 165–179Google Scholar
  12. 12.
    Eggleston G (2007) Advances in the industrial application of enzymes on carbohydrate-based materials. In: Eggleston G, Vercellotti JR (eds) Industrial application of enzymes on carbohydrate-based materials, ACS symposium series, vol 972. American Chemical Society, New York, pp 1–16Google Scholar
  13. 13.
    Aehle W (ed) (2004) Nonindustrial enzyme usage. In: Enzymes in industry: production and applications (Ch. 6), 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
    World enzymes (2007) Study #2229, The Freedonia Group, Cleveland, OHGoogle Scholar
  15. 15.
    Lairson LL et al (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555CrossRefGoogle Scholar
  16. 16.
    Straathof AJJ, Aldercreutz P (eds) (2001) Applied biocatalysis, 2nd edn. Harwood, AmsterdamGoogle Scholar
  17. 17.
    Bommarius AS, Riebel BR (2004) Biocatalysis—fundamentals and applications. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Liese A (2000) Industrial biotransformations. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  19. 19.
    Kohler R (1972) The reception of Eduard Buchner’s discovery of cell-free fermentation. J Hist Biol 5:327–353CrossRefGoogle Scholar
  20. 20.
    Sumner JB (1946) The chemical nature of enzymes. Nobel Lecture, 12 Dec 1946Google Scholar
  21. 21.
    Phillips DC (1967) The hen egg-white lysozyme molecule. Proc Natl Acad Sci U S A 57:484–495CrossRefGoogle Scholar
  22. 22.
    Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521Google Scholar
  23. 23.
    Manz A, Pamme N, Lossifidis D (2004) Bioanalytical chemistry. World Scientific Publishing Company, SingaporeGoogle Scholar
  24. 24.
    Houg DW, Danson MJ (1999) Extremozymes. Curr Opin Mol Biol 3:39–46CrossRefGoogle Scholar
  25. 25.
    Reymond J-L, Fluxa VS, Maillard N (2009) Enzyme assays. Chem Commun 1:34–46CrossRefGoogle Scholar
  26. 26.
    Chen LH et al (1992) 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J Biol Chem 267:17716–17721Google Scholar
  27. 27.
    Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 42:289–317CrossRefGoogle Scholar
  28. 28.
    Dill KA, Ozkan SB, Shell MS, Weiki TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316CrossRefGoogle Scholar
  29. 29.
    Gevaert K, Vandekerkhove J (2000) Protein identification methods in proteomics. Electrophoresis 21:1145–1154CrossRefGoogle Scholar
  30. 30.
    Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228CrossRefGoogle Scholar
  31. 31.
    Masel RI (2001) Chemical kinetics and catalysis. Wiley-Interscience, OxfordGoogle Scholar
  32. 32.
    Bugg T (2004) Introduction to enzyme and coenzyme chemistry, 2nd edn. Wiley-Blackwell, Oxford, p 31CrossRefGoogle Scholar
  33. 33.
    Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free energy landscape of enzyme catalysis. Biochemistry 47:3317–3321CrossRefGoogle Scholar
  34. 34.
    Sauer J et al (2000) Glucoamylase: structure/function relationships and protein engineering. Biochim Biophys Acta 1543:275–293CrossRefGoogle Scholar
  35. 35.
    Messerschmidt A (ed) (2011) Handbook of metalloproteins. Wiley-Blackwell, OxfordGoogle Scholar
  36. 36.
    Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121CrossRefGoogle Scholar
  37. 37.
    Sutcliffe MJ, Scrutton NS (2002) A new conceptual framework for enzyme catalysis. Eur J Biochem 269:3096–3102CrossRefGoogle Scholar
  38. 38.
    Menten L, Michaelis MI (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369Google Scholar
  39. 39.
    Estell DA (1991) Liquid detergent with stabilized enzyme. US Patent 5,039,446Google Scholar
  40. 40.
    Yeh W-K, Yang H-C, McCarthy JR (eds) (2010) Enzyme technologies: metagenomics, evolution, biocatalysis and biosynthesis, Part A. Wiley, New YorkGoogle Scholar
  41. 41.
    Martin CH et al (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286CrossRefGoogle Scholar
  42. 42.
    Warnecke F, Hess MA (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142:91–95CrossRefGoogle Scholar
  43. 43.
    Eggert T (2006) Optimization of industrial enzymes by molecular engineering. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations (Ch. 4), 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  44. 44.
    Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547CrossRefGoogle Scholar
  45. 45.
    Knietsch A et al (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416CrossRefGoogle Scholar
  46. 46.
    Ward DE et al (2002) Proteolysis in hyperthermophilic microorganisms. Archaea 1:63–74CrossRefGoogle Scholar
  47. 47.
    Böttcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–282CrossRefGoogle Scholar
  48. 48.
    Dodge T (2009) Production of industrial enzymes. In: Whitehurst RJ, van Oort M (eds) Enzymes in food technology, 2nd edn. Wiley-Blackwell, Oxford, UKGoogle Scholar
  49. 49.
    Krishna C (2005) Solid-state fermentation system—an overview. Crit Rev Biotechnol 25:1–30CrossRefGoogle Scholar
  50. 50.
    Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283CrossRefGoogle Scholar
  51. 51.
    Kumar D et al (2008) Microbial proteases and application as laundry detergent additive. Res J Microbiol 3:661–672CrossRefGoogle Scholar
  52. 52.
    Outtrup H, Jørgensen ST (2008) The importance of bacillus species in the production of industrial enzymes. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell Science, OxfordGoogle Scholar
  53. 53.
    Maurer K-H (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334CrossRefGoogle Scholar
  54. 54.
    Choudhary RB, Jana AK, Jha MK (2004) Enzyme technology applications in leather processing. Indian J Chem Technol 11:659–671Google Scholar
  55. 55.
    De Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861Google Scholar
  56. 56.
    Gupta R et al (2003) Microbial-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  57. 57.
    Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255CrossRefGoogle Scholar
  58. 58.
    Ito S et al (2003) Carbohydrate-active enzymes from alkaliphiles. J Appl Glycosci 50:257–262CrossRefGoogle Scholar
  59. 59.
    Rausch KD, Belyea RL (2006) The future of co-products from corn processing. Appl Biochem Biotechnol 128:47–86CrossRefGoogle Scholar
  60. 60.
    Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300Google Scholar
  61. 61.
    Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64:832–844Google Scholar
  62. 62.
    Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefGoogle Scholar
  63. 63.
    Soundari SG, Sashi V (2009) Bacterial xylanases. Asian J Microbiol Biotechnol Environ Sci 11:677–682Google Scholar
  64. 64.
    Hoondal GS et al (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418CrossRefGoogle Scholar
  65. 65.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  66. 66.
    Shanmugam KT, Ingram LO (2008) Engineering biocatalysts for production of commodity chemicals. J Mol Microbiol Biotechnol 15:8–15CrossRefGoogle Scholar
  67. 67.
    Anuradha P et al (2009) Microbial lipases: a potential tool for industrial applications. J Pure Appl Microbiol 3:301–306Google Scholar
  68. 68.
    De Maria L et al (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300CrossRefGoogle Scholar
  69. 69.
    Singh B, Kunze G, Satyanarayana T (2011) Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnol Mol Biol Rev 6:69–87Google Scholar
  70. 70.
    Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50CrossRefGoogle Scholar
  71. 71.
    Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501CrossRefGoogle Scholar
  72. 72.
    Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:19–208CrossRefGoogle Scholar
  73. 73.
    Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226CrossRefGoogle Scholar
  74. 74.
    Majeau J-A, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350CrossRefGoogle Scholar
  75. 75.
    Theriot CM, Grunden AM (2010) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43CrossRefGoogle Scholar
  76. 76.
    Pedreschi F, Kaack K, Granby K (2008) The effect of asparaginase in the formation of acrylamide in French fries. Food Chem 109:386–392CrossRefGoogle Scholar
  77. 77.
    Mathews I et al (2007) Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46:8969–8979CrossRefGoogle Scholar
  78. 78.
    Ager DJ, May O (2008) Pharmaceutical industry: biocatalysts and chemocatalysts. In: Begley TP (ed) Wiley encyclopedia of chemical biology. Wiley, New York, pp 1–15Google Scholar
  79. 79.
    Takasaki Y, Tanabe O. Enzyme method for converting glucose in glucose syrups to fructose. US Patent 3,616,221Google Scholar
  80. 80.
    Davis BG, Boyer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18:618–640CrossRefGoogle Scholar
  81. 81.
    Kirk O, Christensen MW (2002) Lipases from Candida antarctica—unique biocatalysts from a unique origin. Org Proc Res Dev 6:446–451CrossRefGoogle Scholar
  82. 82.
    Greenberg WA et al (2009) Aldolase enzymes for complex synthesis. In: Whittall J, Sutton P (eds) Practical methods for biocatalysis and biotransformations (Ch. 6). Wiley, ChichesterGoogle Scholar
  83. 83.
    Guisan JM (ed) (2006) Immobilization of enzymes and cells (Methods in biotechnology), 2nd edn. Humana Press, TotowaGoogle Scholar
  84. 84.
    Přenosil JE, Kut ÖM, Dunn IJ, Heinzle E (2009) Biocatalysis, 2. Immobilized biocatalysts. In: Bellussi G et al (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  85. 85.
    Berendsen WR, Lapin A, Reuss M (2006) Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol Prog 22:1305–1312CrossRefGoogle Scholar
  86. 86.
    Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B: Enzym 62:197–212CrossRefGoogle Scholar
  87. 87.
    Mateo C et al (2007) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc Trans 35:1593–1601CrossRefGoogle Scholar
  88. 88.
    Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646CrossRefGoogle Scholar
  89. 89.
    Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRefGoogle Scholar
  90. 90.
    Kristenen JB et al (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12:387–394CrossRefGoogle Scholar
  91. 91.
    Becker U et al (2008) Industrial applications of whole-cell biocatalysis. Pharm Technol 41(S6):S8–S11Google Scholar
  92. 92.
    Bechtold M, Panke S (2009) In situ product recovery integrated with biotransformations. Chimia 63:345–348CrossRefGoogle Scholar
  93. 93.
    Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  94. 94.
    Koskinen AMP, Klibanov AM (eds) (1995) Enzymatic reactions in organic media. Springer, BerlinGoogle Scholar
  95. 95.
    Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRefGoogle Scholar
  96. 96.
    Adlercreutz P (2008) Fundamentals of biocatalysis in neat organic solvents. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media (Ch. 1). Wiley-VCH, WeinheimGoogle Scholar
  97. 97.
    Drauz K, Waldmann H (eds) (2002) Enzyme catalysis in organic synthesis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  98. 98.
    Krieger N et al (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotechnol 42:279–286Google Scholar
  99. 99.
    Tufvesson P et al (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11CrossRefGoogle Scholar
  100. 100.
    Parker K, Salas N, Nwosu VC (2010) High fructose corn syrup: production, uses and public health concerns. Biotechnol Mol Biol Rev 5:71–78Google Scholar
  101. 101.
    Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:391–1400Google Scholar
  102. 102.
    Bruggink A (ed) (2001) Synthesis of β-lactam antibiotics: chemistry, biocatalysis & process integration. Kluwer Academic, DordrechtGoogle Scholar
  103. 103.
    Sonke T, Kaptein B, Schoemaker HE (2009) Use of enzymes in the synthesis of amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry: origins and synthesis of amino acids (Ch. 3), vol 1. Wiley-VCH, WeinheimGoogle Scholar
  104. 104.
    Tosa T, Mori T, Fuse N, Chibata I (1969) Studies on continuous enzyme reactions 6: enzymatic properties of DEAE-sepharose aminoacylase complex. Agr Biol Chem 33:1047–1056CrossRefGoogle Scholar
  105. 105.
    Patel R (ed) (2006) Biocatalysis in the pharmaceutical and biotechnology industries. CRC Press, FloridaGoogle Scholar
  106. 106.
    Woodley JM (2008) New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol 26:321–327CrossRefGoogle Scholar
  107. 107.
    Erb S (2006) Single-enantiomer drugs poised for further market growth. Pharm Technol 30(suppl):s14–s18Google Scholar
  108. 108.
    Meyer H-P, Turner NJ (2009) Biotechnological manufacturing options for organic chemistry. Mini-Rev Org Chem 6:300–306CrossRefGoogle Scholar
  109. 109.
    Stinson SC (2001) Chiral pharmaceuticals. Chem Eng News 79:79–97CrossRefGoogle Scholar
  110. 110.
    Tao J, Xu J-H (2009) Biocatalysis in development of green pharmaceutical processes. Curr Opin Chem Biol 13:43–50CrossRefGoogle Scholar
  111. 111.
    Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73CrossRefGoogle Scholar
  112. 112.
    Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Curr Org Synth 6:362–379CrossRefGoogle Scholar
  113. 113.
    Chen X, Kowal P, Wang PG (2000) Large-scale enzymatic synthesis of oligosaccharides. Curr Opin Drug Discov Devel 3:756–763Google Scholar
  114. 114.
    Taniguchi H (2008) Biocatalysis-based development of oligosaccharides in Japan. In: Hou CT, Shaw J-F (eds) Biocatalysis and bioenergy (Ch. 17). Wiley, New YorkGoogle Scholar
  115. 115.
    Monsan P, Paul F, Pelenc V, Boures E (1996) Enzymatic production of α-butylglucoside and its fatty acid esters. Ann New York Acad Sci 799:633–641CrossRefGoogle Scholar
  116. 116.
    Wong C-H, Whitesides G (1994) Enzymes in synthetic organic chemistry. In: Wong C-H et al (eds) Tetrahedron organic chemistry, vol 12. Pergamon, OxfordGoogle Scholar
  117. 117.
    Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 2011:1–15Google Scholar
  118. 118.
    Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:279–286Google Scholar
  119. 119.
    Arnold U (2009) Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Biotechnol Lett 31:1129–1139CrossRefGoogle Scholar
  120. 120.
    Tang Y, Tirrell DA (2001) Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. J Am Chem Soc 123:11089–11090CrossRefGoogle Scholar
  121. 121.
    Marti S et al (2008) Computational design of biological catalysts. Chem Soc Rev 37:2634–2643CrossRefGoogle Scholar
  122. 122.
    Vieceli J, Muellegger J, Tehrani A (2006) Computer-assisted design of industrial enzymes. The resurgence of rational design and in silico mutagenesis. Ind Biotechnol 2:303–308CrossRefGoogle Scholar
  123. 123.
    Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53CrossRefGoogle Scholar
  124. 124.
    van Rantwijk F, Madeira Lau R, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131CrossRefGoogle Scholar
  125. 125.
    Cantone S, Hanefeld U, Basso A (2007) Biocatalysis in non-conventional media—ionic liquids, supercritical fluids and the gas phase. Green Chem 9:954–971CrossRefGoogle Scholar
  126. 126.
    Matsuda T, Harada T, Nakamura K (2005) Biocatalysis in supercritical CO2. Curr Org Chem 9:299CrossRefGoogle Scholar
  127. 127.
    Matsuda T, Ohashi Y, Harada T, Yanagihara R, Nagasawa T, Nakamura K (2001) Conversion of pyrrole to pyrrole-2-carboxylate by cells of Bacillus megaterium in supercritical CO2. Chem Commun 21:2194–2195CrossRefGoogle Scholar
  128. 128.
    Reetz MT, Wiesenhoefer W, Francio G, Leitner W (2002) Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase. Chem Commun 9:992–993CrossRefGoogle Scholar
  129. 129.
    Cheng HN, Gross RA (2008) Polymer biocatalysis and biomaterials: current trends and developments. In: Cheng HN, Gross RA (eds) Polymer biocatalysis and biomaterials II, ACS symposium series, vol 999, pp 1–20Google Scholar
  130. 130.
    Wohlgemuth R (2007) Interfacing biocatalysis and organic synthesis. J Chem Technol Biotechnol 82:1055–1062CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.DuPont Industrial BiosciencesPalo AltoUSA

Personalised recommendations