Advertisement

Extended Extremal Monotone Measures on Composition Products of Measurable Spaces

  • Gia Sirbiladze
Chapter
Part of the IFSR International Series on Systems Science and Engineering book series (IFSR, volume 28)

Abstract

This chapter continues the investigation of extremal fuzzy measures and their extensions begun in Chap. 3. Here we consider the basic properties of composition extremal monotone measures. Several variants of their representations are given. The notion of H-composition over extremal monotone measures is introduced, and some algebraic properties of the corresponding structures, which form the most important part of the fuzzy instrument of modeling extremal fuzzy dynamic systems, are discussed.

References

  1. 1.
    Ashtiani, A.A., Menhaj, M.B.: Fuzzy relational dynamic system with smooth fuzzy composition. J. Math. Comput. Sci. 2(1), 1–8 (2011)Google Scholar
  2. 2.
    Ban, A.I., Gal, S.G.: On the defect of additivity of fuzzy measures. Fuzzy Set Syst. 127(3), 353–362 (2002)MathSciNetMATHGoogle Scholar
  3. 3.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1947)Google Scholar
  4. 4.
    Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970/1971)Google Scholar
  5. 5.
    Bertoluzza, C., Gil, M.A., Ralescu, D.A. (eds.): Statistical Modeling, Analysis and Management of Fuzzy Data. Studies in Fuzziness and Soft Computing. Physica, Heidelberg (2002)MATHGoogle Scholar
  6. 6.
    Bouchon-Meunier, B., Kreinovich, V., Lokshin, A., Nguyen, H.T.: On the formulation of optimization under elastic constraints (with control in mind). Fuzzy optimization. Fuzzy Set Syst. 81(1), 5–29 (1996)MathSciNetMATHGoogle Scholar
  7. 7.
    Buckley, J.J., Feuring, J.: Fuzzy differential equations. Fuzzy Set Syst. 110(1), 43–54 (2000)MathSciNetMATHGoogle Scholar
  8. 8.
    de Campos Ibañez, L.M., Bolanos Carmona, M.J.: Representation of fuzzy measures through probabilities. Fuzzy Set Syst. 31(1), 23–36 (1989)Google Scholar
  9. 9.
    de Campos, L.M., Lamata, M.T., Moral, S.: Distances between fuzzy measures through associated probabilities: Some applications. Fuzzy Set Syst. 35(1), 57–68 (1990)MATHGoogle Scholar
  10. 10.
    Castillo, O., Melin, P.: Soft Computing for Control of Non-Linear Dynamical Systems. Studies in Fuzziness and Soft Computing, vol. 63. Physica, Heidelberg (2001)Google Scholar
  11. 11.
    Chen, G., Xie, Q., Shieh, L.S.: Fuzzy Kalman filtering. Inform. Sci. 109(1–4), 197–209 (1998)MathSciNetMATHGoogle Scholar
  12. 12.
    Chen, G., Wang, J., Shieh, L.: Interval Kalman filtering. IEEE Trans. Aero. Electron. Syst. 33(1), 250–259 (1997)Google Scholar
  13. 13.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953–1954)Google Scholar
  14. 14.
    Cooke, R.M.: Experts in Uncertainty. Opinion and Subjective Probability in Science. Environmental Ethics and Science Policy Series. The Clarendon Press, New York (1991)Google Scholar
  15. 15.
    Criado, F., Gachechiladze, T., Jorjiashvili, N., Khvedelidze, Z., Meladze, H., Sanchez, J.M., Sirbiladze, G., Tsertsvadze, G.: Theory of connectivity and apportionment of representative activity chains in the problem of decision-making concerning earthquake possibility. Int. J. Gen. Syst. 32(2), 103–121 (2003)MathSciNetGoogle Scholar
  16. 16.
    Criado, F., Gachechiladze, T., Meladze, H., Tsertsvadze, G., Sirbiladze, G.: Ignorance, knowledge and information. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 14(4), 12–15 (1999)MathSciNetMATHGoogle Scholar
  17. 17.
    Delgado, M., Moral, S.: Upper and lower fuzzy measures. Fuzzy Set Syst. 33(2), 191–200 (1989)MathSciNetMATHGoogle Scholar
  18. 18.
    Dempster, P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetMATHGoogle Scholar
  19. 19.
    Denneberg, D.: Non-additive Measure and Integral. Theory and Decision Library. Series B: Mathematical and Statistical Methods, vol. 27. Kluwer, Dordrecht (1994)Google Scholar
  20. 20.
    Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. Theory and Applications. World Scientific, River Edge (1994)MATHGoogle Scholar
  21. 21.
    Ding, Z., Ma, M., Kandel, A.: On the observability of fuzzy dynamical control systems. I. Fuzzy Set Syst. 111(2), 225–236 (2000)MathSciNetMATHGoogle Scholar
  22. 22.
    Dong, W.M., Wong, F.S.: Fuzzy weighted averages and implementation of the extension principle. Fuzzy Set Syst. 21(2), 183–199 (1987)MathSciNetMATHGoogle Scholar
  23. 23.
    Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51(1), 47–69 (2006)MATHGoogle Scholar
  24. 24.
    Dubois, D., Marichal, J.-L., Prade, H., Roubens, M., Sabbadin, R.: The use of the discrete Sugeno integral in decision making: A survey. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(5), 539–561 (2001)MathSciNetMATHGoogle Scholar
  25. 25.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus. I. Integration of fuzzy mappings. Fuzzy Set Syst. 8(1), 1–17 (1982)MathSciNetMATHGoogle Scholar
  26. 26.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus. III. Differentiation. Fuzzy Set Syst. 8(3), 225–233 (1982)MathSciNetMATHGoogle Scholar
  27. 27.
    Dubois, D., Prade, H.: Possibility Theory. An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)MATHGoogle Scholar
  28. 28.
    Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of qualitative possibility theory. Eur. J. Oper. Res. 128(3), 459–478 (2001)MathSciNetMATHGoogle Scholar
  29. 29.
    Dubois, D., Prade, H.: Formal representations of uncertainty. In: Bouyssou, D., Dubois, D., Pirlot, M., Prade, H. (eds.) Decision-Making Process: Concepts and Methods, pp. 85–156. ISTE, London (2009)Google Scholar
  30. 30.
    Dumitrescu, D., Háloiu, C., Dumitrescu, A.: Generators of fuzzy dynamical systems. Fuzzy Set Syst. 113(3), 447–452 (2000).MATHGoogle Scholar
  31. 31.
    Elliott, R.J.: Stochastic Calculus and Applications. Applications of Mathematics (New York), vol. 18. Springer, New York (1982)Google Scholar
  32. 32.
    Esogbue, A.O., Bellman, R.E.: Fuzzy dynamic programming and its extensions. Fuzzy sets and decision analysis, pp. 147–167. Studies in the Management Sciences, vol. 20. North-Holland, Amsterdam (1984)Google Scholar
  33. 33.
    Esogbue, A.O., Kacprzyk, J.: Fuzzy dynamic programming. Fuzzy sets in decision analysis, operations research and statistics, pp. 281–307. Handb. Fuzzy Sets Ser., vol. 1. Kluwer, Boston (1998)Google Scholar
  34. 34.
    Feng, Y.: Mean-square integral and differential of fuzzy stochastic processes. Fuzzy Set Syst. 102(2), 271–280 (1999)MATHGoogle Scholar
  35. 35.
    Feng, Y.: Fuzzy stochastic differential systems. Fuzzy Set Syst. 115(3), 351–363 (2000)MATHGoogle Scholar
  36. 36.
    Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Applications of Mathematics, vol. 1. Springer, Berlin (1975)Google Scholar
  37. 37.
    Fodor, J., Baets, B., Perny, P. (eds.): Preferences and decisions under incomplete knowledge. Studies in Fuzziness and Soft Computing, vol. 51. Physica, Heidelberg (2000)Google Scholar
  38. 38.
    Friedman, M., Henne, M., Kandel, A.: Most typical values for fuzzy sets. Fuzzy Set Syst. 87(1), 27–37 (1997)MathSciNetMATHGoogle Scholar
  39. 39.
    Friedman, M., Ming, M., Kandel, A.: Numerical methods for calculating the fuzzy integral. Fuzzy Set Syst. 83(1), 57–62 (1996)MathSciNetMATHGoogle Scholar
  40. 40.
    Friedman, M., Schneider, M., Kandel, A.: The use of weighted fuzzy expected value (WFEV) in fuzzy expert systems. Fuzzy Set Syst. 31(1), 37–45 (1989)MathSciNetMATHGoogle Scholar
  41. 41.
    Goetschel, R., Jr., Voxman, W.: Elementary fuzzy calculus. Fuzzy Set Syst. 18(1), 31–43 (1986)MathSciNetMATHGoogle Scholar
  42. 42.
    Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Set Syst. 69(3), 279–298 (1995)MathSciNetMATHGoogle Scholar
  43. 43.
    Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory. Eur. J. Oper. Res. 186(2), 766–785 (2008)MathSciNetMATHGoogle Scholar
  44. 44.
    Grabisch, M., Murofushi, T., Sugeno M. (eds.): Fuzzy Measures and Integrals. Theory and Applications. Studies in Fuzziness and Soft Computing, vol. 40. Physica, Heidelberg (2000)Google Scholar
  45. 45.
    Grabisch, M., Labreuche, Ch.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Q. J. Oper. Res. 6(1), 1–44 (2008)MathSciNetMATHGoogle Scholar
  46. 46.
    Greco, S., Marques Pereira, R.A., Squillante, M., Yager, R.R., Kacprzyk, J. (eds.): Preferences and Decisions, Models and Applications. Studies in Fuzziness and Soft Computing, vol. 257. Springer, Heidelberg (2010)Google Scholar
  47. 47.
    Halmos, P.R.: Measure Theory. D. Van Nostrand, New York (1950)MATHGoogle Scholar
  48. 48.
    Higashi, M., Klir, G.J.: Identification of fuzzy relation systems. IEEE Trans. Syst. Man Cybern. 14(2), 349–355 (1984)MathSciNetMATHGoogle Scholar
  49. 49.
    Höhle, U.: Fuzzy measures as extensions of stochastic measures. J. Math. Anal. Appl. 92(2), 372–380 (1983)MathSciNetMATHGoogle Scholar
  50. 50.
    Inuiguchi, M., Tanino, T.: Possibilistic linear programming with fuzzy if-then rule coefficients. Fuzzy Optim. Decis. Making 1(1), 65–91 (2002)MathSciNetMATHGoogle Scholar
  51. 51.
    Kacprzyk, J.: Multistage Fuzzy Control: A Model-Based Approach to Control and Decision-Making. Wiley, New York (1997)MATHGoogle Scholar
  52. 52.
    Kacprzyk, J., Wilbik, A., Zadrozny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Set Syst. 159(12), 1485–1499 (2008)MathSciNetMATHGoogle Scholar
  53. 53.
    Kaleva, O.: Fuzzy differential equations. Fuzzy Set Syst. 24(3), 301–317 (1987)MathSciNetMATHGoogle Scholar
  54. 54.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)Google Scholar
  55. 55.
    Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. J. Basic Eng. 83, 95–108 (1961)MathSciNetGoogle Scholar
  56. 56.
    Kandel, A.: Fuzzy statistics and forecast evaluation. IEEE Trans. Syst. Man Cybern. SMC-8(5), 396–401 (1978)MathSciNetGoogle Scholar
  57. 57.
    Kandel, A.: On the control and evaluation of uncertain processes. IEEE Trans. Automat. Contr. 25(6), 1182–1187 (1980)MathSciNetMATHGoogle Scholar
  58. 58.
    Kandel, A., Byatt, W.J.: Fuzzy sets, fuzzy algebra, and fuzzy statistics. Proc. IEEE 66(12), 1619–1639 (1978)Google Scholar
  59. 59.
    Kandel, A., Byatt, W.J.: Fuzzy processes. Fuzzy Set Syst. 4(2), 117–152 (1980)MathSciNetMATHGoogle Scholar
  60. 60.
    Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets. Volume I: Fundamental Theoretical Elements. Academic, New York (1975)Google Scholar
  61. 61.
    Kaufmann, A.: Les Expertons. Hermes, Paris (1987)MATHGoogle Scholar
  62. 62.
    Kaufmann, A.: Theory of expertons and fuzzy logic. Mathematical modelling. Fuzzy Set Syst. 28(3), 295–304 (1988)MathSciNetMATHGoogle Scholar
  63. 63.
    Klement, E.P.: Fuzzy σ-algebras and fuzzy measurable functions. Fuzzy Set Syst. 4(1), 83–93 (1980)MathSciNetMATHGoogle Scholar
  64. 64.
    Kloeden, P.E.: Fuzzy dynamical systems. Fuzzy Set Syst. 7(3), 275–296 (1982)MathSciNetMATHGoogle Scholar
  65. 65.
    Klir, G.J.: On fuzzy-set interpretation of possibility theory. Fuzzy Set Syst. 108(3), 263–273 (1999)MathSciNetMATHGoogle Scholar
  66. 66.
    Klir, G.J.: Facets of Systems Science. 2nd edn., IFSR International Series on Systems Science and Engineering, vol. 15. Kluwer/Plenum, New York (2001)Google Scholar
  67. 67.
    Klir, G.J.: Generalized information theory: Aims, results, and open problems. Reliab. Eng. Syst. Saf. 83(1–3), 21–38 (2004)Google Scholar
  68. 68.
    Klir, G.J.: Uncertainty and Information: Foundations of Generalized Information Theory. Wiley, Hoboken (2006)Google Scholar
  69. 69.
    Klir, G.J., Elias, D.: Architecture of Systems Problem Solving. 2nd edn., IFSR International Series on Systems Science and Engineering, vol. 21. Kluwer/Plenum, New York (2003)Google Scholar
  70. 70.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  71. 71.
    Klir, G.J., Harmanec, D.: Types and Measures of Uncertainty. In: Kacprzyk, J., Nurmi, H., Fedrizzi, M. (eds.) Consensus under Fuzziness. Kluwer, Boston (1996)Google Scholar
  72. 72.
    Klir, G.J., Wang, Z., Harmanec, D.: Constructing fuzzy measures in expert systems. Fuzzy Set Syst. 92(2), 251–264 (1997)MathSciNetMATHGoogle Scholar
  73. 73.
    Klir, G.J., Wierman, M.J.: Uncertainty-Based Information. Elements of Generalized Information Theory, 2nd edn. Studies in Fuzziness and Soft Computing, vol. 15. Physica, Heidelberg (1999)Google Scholar
  74. 74.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. With a foreword by Lotfi A. Zadeh. Prentice Hall PTR, Upper Saddle River (1995)MATHGoogle Scholar
  75. 75.
    Kojadinovic, I.: Minimum variance capacity identification. Eur. J. Oper. Res. 177(1), 498–514 (2007)MathSciNetMATHGoogle Scholar
  76. 76.
    Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: A limit theorem in some dynamic fuzzy systems. Fuzzy Set Syst. 51(1), 83–88 (1992)MathSciNetMATHGoogle Scholar
  77. 77.
    Kurano M., Yasuda, M., Nakagami, J., Yoshida, Y.: A fuzzy relational equation in dynamic fuzzy systems. Fuzzy Set Syst. 101(3), 439–443 (1999)MathSciNetMATHGoogle Scholar
  78. 78.
    Li, J.-N., Yi J.-Q., Zhao, D.-B., Xi, G.-C.: A new fuzzy identification approach for complex systems based on neural-fuzzy inference network. Acta Automatica Sin. 32(5), 695–703 (2006)Google Scholar
  79. 79.
    Lin, Y.: General Systems Theory. A Mathematical Approach. IFSR International Series on Systems Science and Engineering, vol. 12. Kluwer/Plenum, New York (1999)Google Scholar
  80. 80.
    Liu, B.: Toward fuzzy optimization without mathematical ambiguity. Fuzzy Optim. Decis. Making 1(1), 43–63 (2002)MATHGoogle Scholar
  81. 81.
    Liu, B.: Uncertainty Theory, 2nd edn. Springer, Berlin (2007)MATHGoogle Scholar
  82. 82.
    Liu, B., Liu Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)Google Scholar
  83. 83.
    Liu, L., Yager, R.R.: Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing, vol. 219. Springer, Berlin (2008)Google Scholar
  84. 84.
    Lodwick, W.L.: Interval and fuzzy analysis: A unified approach. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 148. Academic, New York (2007)Google Scholar
  85. 85.
    Mahmoud Taheri, S.: Trends in fuzzy statistics. Aust. J. Stat. 32(3), 239–257 (2003)Google Scholar
  86. 86.
    Marichal, J.-L.: An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Trans. Fuzzy Syst. 8(6), 800–807 (2000)MathSciNetGoogle Scholar
  87. 87.
    Marichal, J.-L.: An axiomatic approach of the discrete Sugeno integral as a tool to aggregate interacting criteria in a qualitative framework. IEEE Trans. Fuzzy Syst. 9(1), 164–172 (2001)MathSciNetGoogle Scholar
  88. 88.
    Marichal, J.-L.: Entropy of discrete Choquet capacities. Eur. J. Oper. Res. 137(3), 612–624 (2002)MathSciNetMATHGoogle Scholar
  89. 89.
    Marichal, J.-L., Roubens, M.: Entropy of discrete fuzzy measures. Measures and aggregation: formal aspects and applications to clustering and decision. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(6), 625–640 (2000)Google Scholar
  90. 90.
    Ming, M., Friedman, M., Kandel, A.: General fuzzy least squares. Fuzzy Set Syst. 88(1), 107–118 (1997)MathSciNetMATHGoogle Scholar
  91. 91.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar
  92. 92.
    Murofushi, T.: A technique for reading fuzzy measures (I): The Shapley value with respect to a fuzzy measure. In: 2nd Fuzzy Workshop, pp. 39–48, Nagaoka, Japan (October 1992)Google Scholar
  93. 93.
    Murofushi, T., Sugeno, M.: An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Set Syst. 29(2), 201–227 (1989)MathSciNetMATHGoogle Scholar
  94. 94.
    Nachtegael, M., Van der Weken, D., Van De Ville, D., Kerre, E.E. (eds.): Fuzzy filters for image processing. Studies in Fuzziness and Soft Computing, vol. 122. Springer, Berlin (2003).Google Scholar
  95. 95.
    Nguyen, H.T., Wu, B.: Fundamentals of Statistics with Fuzzy Data. Studies in Fuzziness and Soft Computing, vol. 198. Springer, Berlin (2006)Google Scholar
  96. 96.
    Nin, J., Torra, V.: Fuzzy measures and integrals in re-identification problems. In: Proceedings of International Symposium on Nonlinear Theory and its Applications (NOLTA 2006), Bologna, Italy, published in a CD-ROM (2006)Google Scholar
  97. 97.
    Norris, D., Pilsworth, B.W., Baldwin, J.F.: Medical diagnosis from patient records – a method using fuzzy discrimination and connectivity analyses. Fuzzy Set Syst. 23(1), 73–87 (1987)MathSciNetGoogle Scholar
  98. 98.
    Park, J.Y., Han, H.K.: Fuzzy differential equations. Fuzzy Set Syst. 110(1), 69–77 (2000)MathSciNetMATHGoogle Scholar
  99. 99.
    Park, J.Y., Kwun, Y.C., Jeong, J.U.: Existence of solutions of fuzzy integral equations in Banach spaces. Fuzzy Set Syst. 72(3), 373–378 (1995)MathSciNetMATHGoogle Scholar
  100. 100.
    Pap, E.: Null-Additive Set Functions. Mathematics and Its Applications, vol. 337. Kluwer, Dordrecht (1995)Google Scholar
  101. 101.
    Pap, E., Štajner, I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory. Fuzzy measures and integrals. Fuzzy Set Syst. 102(3), 393–415 (1999)MATHGoogle Scholar
  102. 102.
    Poleshchuk, O., Komarov, E.: Expert Fuzzy Information Processing. Studies in Fuzziness and Soft Computing, vol. 268. Springer, Berlin (2011)Google Scholar
  103. 103.
    Pons, O., Kacprzyk, J., Vila, M.A. (eds.): Knowledge Management in Fuzzy Databases. Studies in Fuzziness and Soft Computing, vol. 39. Physica, Heidelberg (2000)Google Scholar
  104. 104.
    Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91(2), 552–558 (1983)MathSciNetMATHGoogle Scholar
  105. 105.
    Ruan, D., Kacprzyk, J., Fedrizzi, M. (eds.): Soft Computing for Risk Evaluation and Management. Applications in Technology, Environment and Finance. Physica, Heidelberg (2001)Google Scholar
  106. 106.
    Schneider, M., Friedman, M., Kandel, A.: On fuzzy reasoning in expert systems. In: Proceedings of the 1987 International Symposium on Multiplevalued Logic, Boston, MA (1987)Google Scholar
  107. 107.
    Schneider, M., Kandel, A.: Properties of the fuzzy expected value and the fuzzy expected interval in fuzzy environment. Fuzzy Set Syst. 28(1), 55–68 (1988)MathSciNetGoogle Scholar
  108. 108.
    Schnider, M., Kandel, A.: Expectations in fuzzy environments. J. Fuzzy Logic Intell. Syst. 3, 76–93 (1993)Google Scholar
  109. 109.
    Seikkala, S.: On the fuzzy initial value problem. Fuzzy Set Syst. 24(3), 319–330 (1987)MathSciNetMATHGoogle Scholar
  110. 110.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  111. 111.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)MathSciNetGoogle Scholar
  112. 112.
    Shapley, L.S.: A value for n-person games. Contributions to the theory of games, vol. 2, pp. 307–317. Annals of Mathematics Studies, no. 28. Princeton University Press, Princeton (1953)Google Scholar
  113. 113.
    Simon, D.: Kalman filtering for fuzzy discrete time dynamic systems. Appl. Soft Comput. 3(3), 191–207 (2003)Google Scholar
  114. 114.
    Sirbiladze, G.: Choquet capacities on the field of insufficient expert data. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 14(4), 31–37 (1999)Google Scholar
  115. 115.
    Sirbiladze, G.: Insufficient data and weighted fuzzy expected interval of population. Proc. Tbilisi State University 342(20), 33–38 (2000)MATHGoogle Scholar
  116. 116.
    Sirbiladze, G.: Fuzzy subset construction through the associated probabilities. Bull. Georgian Acad. Sci. 163(3), 436–439 (2001)MathSciNetMATHGoogle Scholar
  117. 117.
    Sirbiladze, G.: On a universal representation-interpreter of a fuzzy measure. Bull. Georgian Acad. Sci. 170(3), 454–457 (2004)MathSciNetGoogle Scholar
  118. 118.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. I. Extended extremal fuzzy measures. Int. J. Gen. Syst. 34(2), 107–138 (2005)MathSciNetMATHGoogle Scholar
  119. 119.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. II. Extended extremal fuzzy measures on composition products of measurable spaces. Int. J. Gen. Syst. 34(2), 139–167 (2005)MathSciNetMATHGoogle Scholar
  120. 120.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. III. Modeling of extremal and controllable extremal fuzzy processes. Int. J. Gen. Syst. 34(2), 169–198 (2005)MathSciNetMATHGoogle Scholar
  121. 121.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. IV. Identification of fuzzy-integral models of extremal fuzzy processes. Int. J. Gen. Syst. 35(4), 435–459 (2006)MathSciNetMATHGoogle Scholar
  122. 122.
    Sirbiladze, G.: Modelling of extremal fuzzy dynamic systems. V. Optimization of continuous controllable extremal fuzzy processes and the choice of decisions. Int. J. Gen. Syst. 35(5), 529–554 (2006)MathSciNetMATHGoogle Scholar
  123. 123.
    Sirbiladze, G.: Modeling of extremal fuzzy dynamic systems. VI. Problems of states estimation (filtration) of extremal fuzzy process. Int. J. Gen. Syst. 36(1), 19–58 (2007)Google Scholar
  124. 124.
    Sirbiladze, G.G.: Transformation theorems for extended lower and upper Sugeno integrals. Math. Notes 83(3–4), 399–419 (2008)MathSciNetMATHGoogle Scholar
  125. 125.
    Sirbiladze, G.: A fuzzy identification problem for the stationary discrete extremal fuzzy dynamic system. In: Proc. 3rd Intern. Conf. CI ’09, pp. 323–332, Tbilisi, Georgia (2009)Google Scholar
  126. 126.
    Sirbiladze, G.: Fuzzy identification problem for continuous extremal fuzzy dynamic system. Fuzzy Optim. Decis. Making 9(3), 233–274 (2010)MathSciNetMATHGoogle Scholar
  127. 127.
    Sirbiladze, G.: Fuzzy dynamic programming problem for extremal fuzzy dynamic system. In: Fuzzy optimization, pp. 231–270. Studies in Fuzziness and Soft Computing, vol. 254. Springer, Berlin (2010)Google Scholar
  128. 128.
    Sirbiladze, G., Gachechiladze, T.: Restored fuzzy measures in expert decision-making. Inform. Sci. 169(1–2), 71–95 (2005)MathSciNetMATHGoogle Scholar
  129. 129.
    Sirbiladze, G., Gvaberidze, B.: Possibilistic analysis of the fuzzy covering problem. Bull. Georgian Acad. Sci. 167(1), 47–50 (2003)MathSciNetGoogle Scholar
  130. 130.
    Sirbiladze, G., Ghvaberidze, B., Matsaberidze, B.: Using minimal fuzzy covering in decision-making systems. Inform. Sci. 179(12), 2022–2027 (2009)Google Scholar
  131. 131.
    Sirbiladze, G., Khachidze, G.: Decision-making aiding fuzzy information analysis in investments. Part. I. Demster–Shafer’s expected utility in investments. Proc. Tbilisi State Univ. Appl. Math. Comput. Sci. 353(22–23), 95–108 (2003)Google Scholar
  132. 132.
    Sirbiladze, G., Khutsisvili, I.: Decision support’s precising technology in the investment project risk management. In: Proceedings 11th WSEAS International Conference Automatic Control, Modelling and Simulation (ACMOS ’09), pp. 303–312, Istanbul, Turkey (2009)Google Scholar
  133. 133.
    Sirbiladze, G., Khutsisvili, I., Dvalishvili, P.: Decision precision fuzzy technology to evaluate the credit risks of investment projects. In: IEEE 10th International Conference on Intelligent Systems Design and Applications (ISDA 2010), pp. 103–108, Cairo, Egypt (2010)Google Scholar
  134. 134.
    Sirbiladze, G., Sikharulidze, A.: Weighted fuzzy averages in fuzzy environment. I. Insufficient expert data and fuzzy averages. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(2), 139–157 (2003)Google Scholar
  135. 135.
    Sirbiladze, G., Sikharulidze, A.: Weighted fuzzy averages in fuzzy environment. II. Generalized weighted fuzzy expected values in fuzzy environment. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(2), 159–172 (2003)Google Scholar
  136. 136.
    Sirbiladze, G., Sikharulidze, A., Ghvaberidze, B., Matsaberidze, B.: Fuzzy-probabilistic aggregations in the discrete covering problem. Int. J. Gen. Syst. 40(2), 169–196 (2011)MathSciNetMATHGoogle Scholar
  137. 137.
    Sirbiladze, G., Sikharulidze, A., Korakhashvili, G.: Decision-making aiding fuzzy information analysis in investments. Part. I. Discrimination analysis in investment projects. Proc. Tbilisi State Univ. Appl. Math. Comput. Sci. 353(22–23), 77–94 (2003)Google Scholar
  138. 138.
    Sirbiladze, G., Zaporozhets, N.: About two probability representations of fuzzy measures on a finite set. J. Fuzzy Math. 11(3), 549–565 (2003)MathSciNetMATHGoogle Scholar
  139. 139.
    Sirbiladze, G., Zaporozhets, N.: Choquet’s capacity of order two in the Murofushi-Sugeno’s probability representation of a fuzzy measure. Bull. Georgian Acad. Sci. 165(2), 235–238 (2002)MathSciNetMATHGoogle Scholar
  140. 140.
    Srivastava, P., Khare, M., Srivastava, Y.K.: Fuzzy dynamical systems-inverse and direct spectra. Fuzzy Set Syst. 113(3), 439–445 (2000)MathSciNetMATHGoogle Scholar
  141. 141.
    Sugeno, M.: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1979)Google Scholar
  142. 142.
    Takahagi, E.: On Identification methods of λ-fuzzy measures using weights and λ. J. Jpn. Soc. Fuzzy Theor. Syst. 12(5), 665–676 (2000)Google Scholar
  143. 143.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)Google Scholar
  144. 144.
    Tanaka, H., Ishibuchi, H., Yoshikava, S.: Exponential possibility regression analysis. Fuzzy Set Syst. 69(3), 305–318 (1995)MATHGoogle Scholar
  145. 145.
    Teodorescu, H.-N., Kandel, A., Schneider, M. (eds.): Fuzzy modeling and dynamics. Fuzzy Set Syst. 106(1) (1999)Google Scholar
  146. 146.
    Terano, T., Asai, K., Sugeno, M. (eds.): Fuzzy Systems Theory and Its Applications. Academic, Boston (1992)MATHGoogle Scholar
  147. 147.
    Tong, R.M.: The evolution of fuzzy models derived from experimental data. Fuzzy Set Syst. 4, 1–12 (1980)MATHGoogle Scholar
  148. 148.
    Torra, V., Narukawa, Y.: Modeling Decisions. Information Fusion and Aggregation Operators. Springer, Berlin (2007)MATHGoogle Scholar
  149. 149.
    Torra, V., Narukawa, Y.: Editorial: Aggregation operators. International Journal of Approximate Reasoning 46(3), 421–422 (2007)Google Scholar
  150. 150.
    Torra, V., Narukawa, Y.: Soft computing in decision modeling. Soft Comput. 14(5), 419–420 (2010)Google Scholar
  151. 151.
    Vachkov, G., Fukuda, T.: Simplified fuzzy model based identification of dynamical systems. Int. J. Fuzzy Syst. Taiwan 2(4), 229–235 (2000)Google Scholar
  152. 152.
    Verma, A., Liora, X., Golberg, D.E., Campbell, R.H.: Scaling Genetic Algorithms Using MapReduce. In: Proceedings of 2009 Ninth International Conference on Intelligent Systems Design and Applications (ISDA’09), pp. 13–18, Pisa, Italy (2009)Google Scholar
  153. 153.
    Wakker, P.: A behavioral foundation for fuzzy measures. Fuzzy Set Syst. 37(3), 327–350 (1990)MathSciNetMATHGoogle Scholar
  154. 154.
    Wang, J., Wang, Z.: Using neural networks to determine Sugeno measures by statistics. Neural Network 10(1), 183–195 (1997)Google Scholar
  155. 155.
    Wang, P.P., Tyan, C.-U.: Fuzzy dynamic system and fuzzy linguistic controller classification. Automatica 30(11), 1769–1774 (1994)MATHGoogle Scholar
  156. 156.
    Wang, W., Wang, Z., Klir, G.J.: Genetic algorithms for determining fuzzy measures from data. J. Intell. Fuzzy Syst. 6(2), 171–183 (1998)MathSciNetGoogle Scholar
  157. 157.
    Wang, Z., Klir, G.J.: Generalized Measure Theory. IFSR International Series on Systems Science and Engineering, vol. 25. Springer, New York (2009)Google Scholar
  158. 158.
    Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)MATHGoogle Scholar
  159. 159.
    Wang, Z., Klir, G.J., Wang, J.: Neural networks used for determining belief measures and plausibility measures. Intell. Automat. Soft Comput. 4(4), 313–324 (1998)Google Scholar
  160. 160.
    Weng, Z., Chen, G., Shieh, L.S., Larsson, J.: Evolutionary programming Kalman filter. Inform. Sci. 129(1–4), 197–210 (2000)MathSciNetMATHGoogle Scholar
  161. 161.
    Wang, Z., Leung, K.-S.: Uncertainty carried by fuzzy measures in aggregation. Proc. IPMU 2006, pp. 105–112Google Scholar
  162. 162.
    Wang, Z., Leung, K.-S., Klir, G.J.: Integration on finite sets. Int. J. Intell. Syst. 21(10), 1073–1092 (2006)Google Scholar
  163. 163.
    Wang, Z., Qiao, Z.: Transformation theorems for fuzzy integrals on fuzzy sets. Fuzzy Set Syst. 34(3), 355–364 (1990)MathSciNetMATHGoogle Scholar
  164. 164.
    Yager, R.R.: Fuzzy prediction based on regression models. Inform. Sci. 26(1), 45–63 (1982)MathSciNetMATHGoogle Scholar
  165. 165.
    Yager, R.: Level Sets for Compatibility Evaluation. Fuzzy Sets and Possibility Theory. Pergamon Press, New York (1986)Google Scholar
  166. 166.
    Yager, R.R.: A class of fuzzy measures generated from a Dempster-Shafer Belief structure. Int. J. Intell. Syst. 14(12, 1239–1247 (1999)Google Scholar
  167. 167.
    Yager, R.R.: On the entropy of fuzzy measures. IEEE Trans. Fuzzy Set Syst. 8(4), 453–461 (2000)Google Scholar
  168. 168.
    Yager, R.R.: On the evaluation of uncertain courses of action. Fuzzy Optim. Decis. Making 1(1), 13–41 (2002)MathSciNetMATHGoogle Scholar
  169. 169.
    Yager, R.R., Kacprzyk, J. (eds.): The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer, Norwell (1997)Google Scholar
  170. 170.
    Yager, R.R., Kacprzyk, J. (eds.): Advances in the Dempster-Shafer Theory of Evidence. Wiley, New York (1994)MATHGoogle Scholar
  171. 171.
    Yager, R.R., Kacprzyk, J., Beliakov, G. (eds.): Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing, vol. 265. Springer, Berlin (2011)Google Scholar
  172. 172.
    Yang, T.: Fuzzy Dynamic Systems and Computational Verbs Represented by Fuzzy Mathematics, vol. 3 of YangSky.com Monographs in Information Sciences. Yangs Scientific, Tucson (2003)Google Scholar
  173. 173.
    Yoshida, Y.: Markov chains with a transition possibility measure and fuzzy dynamic programming. Fuzzy Set Syst. 66(1), 39–57 (1994)MATHGoogle Scholar
  174. 174.
    Yoshida, Y.: Duality in dynamic fuzzy systems. Fuzzy Set Syst. 95(1), 53–65 (1998)MATHGoogle Scholar
  175. 175.
    Yoshida, Y.: A continuous-time dynamic fuzzy system. I. A limit theorem. Fuzzy Set Syst. 113(3), 453–460 (2000)MATHGoogle Scholar
  176. 176.
    Yoshida, Y.: A continuous-time dynamic fuzzy system. II. Fuzzy potentials. Fuzzy Set Syst. 113(3), 461–472 (2000)MATHGoogle Scholar
  177. 177.
    Yoshida, Y. (ed.): Dynamical Aspects in Fuzzy Decision Making. Studies in Fuzziness and Soft Computing, vol. 73. Physica, Heidelberg (2001)Google Scholar
  178. 178.
    Yoshida, Y., Yasuda, M., Nakagami, J., Kurano, M.: A limit theorem in dynamic fuzzy systems with a monotone property. Fuzzy Set Syst. 94(1), 109–119 (1998)MathSciNetMATHGoogle Scholar
  179. 179.
    Yuan, B., Klir, G.J.: A generalization of Sugeno Integrals. In: Proc. Fuzz-TEE’94, pp. 451–454, Orlando, FL (1994)Google Scholar
  180. 180.
    Zadeh, L.A.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)MathSciNetMATHGoogle Scholar
  181. 181.
    Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–427 (1968)MathSciNetMATHGoogle Scholar
  182. 182.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. I. Inform. Sci. 8, 199–249 (1975)MathSciNetMATHGoogle Scholar
  183. 183.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set Syst. 1(1), 3–28 (1978)MathSciNetMATHGoogle Scholar
  184. 184.
    Zimmermann, H.-J.: Fuzzy Sets, Decision Making and Expert Systems. Kluwer, Boston (1987)Google Scholar
  185. 185.
    Zuoyong, L., Zhenpei, C., Jitao, L.: A model of weather forecast by fuzzy grade statistic. Fuzzy Set Syst. 26(3), 275–281 (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Gia Sirbiladze
    • 1
  1. 1.Department of Computer SciencesIv. Javakhishvili Tbilisi St. UniversityTbilisiGeorgia

Personalised recommendations