Skip to main content

Homogeneous Randers Spaces

  • Chapter
  • First Online:
Homogeneous Finsler Spaces

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

In this chapter we study homogeneous Randers spaces. In Sect. 7.1, we give a method to construct invariant Randers metrics on a coset space of a Lie group, through studying invariant vector fields on homogeneous manifolds. In Sect. 7.2, we use the formula of the Levi-Civita connection of an invariant Riemannian metric on a coset space to deduce an explicit simple formula for the S-curvature of invariant Randers metrics. In Sects. 7.3 and 7.4, we study homogeneous Einstein–Randers metrics. The main results are a rigidity result that every homogeneous Einstein–Randers metric with negative Ricci scalar must be Riemannian, and a complete classification of all homogeneous Einstein–Randers metrics on spheres. As a result, we find many new homogeneous Einstein metrics on spheres. In Sect. 7.5, we prove that a homogeneous Randers metric is Ricci quadratic if and only if it is Berwald. Finally, in Sects. 7.6 and 7.7, we study homogeneous Randers metrics with positive flag curvature or negative flag curvature. This results in an isometric classification of homogeneous Randers spaces with positive flag curvature and almost isotropic S-curvature, and a rigidity result asserting that a homogeneous Randers metric with negative flag curvature and almost isotropic S-curvature must be Riemannian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abate, M., Patrizio, G.: Finsler metrics – a global approach. Lecture notes in Math., vol. 1591. Springer, Berlin (1994)

    Google Scholar 

  2. Akabar-Zadeh, H.: Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy. Belg. Bull. Cl. Sci. (5) 74, 281–322 (1988)

    Google Scholar 

  3. Akhiezer, D.N., Vinberg, E.B.: Weakly symmetric spaces and spherical varieties. Transformation Groups 4, 3–24 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alekseevskii, D.V.: Classification of quaternionic spaces with a transitive solvable group of motions. Izv. Akad. Nauk. SSSR Ser. Mat. 9, 315–362 (1975) (English translation: Math. USSR-Izv 9, 297–339 (1975))

    Google Scholar 

  5. Alekseevskii, D.V., Kinmel’fel’d, B.N.: Structure of homogeneous Riemannian manifolds with zero Ricci curvature. Funct. Anal. Appl. 9, 95–102 (1975)

    Google Scholar 

  6. Aloff, S., Wallach, N.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrose, W., Singer, I.M.: A theorem on holonomy. Trans. Am. Math. Soc. 75, 428–443 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrose, W., Singer, I.M.: On homogeneous Riemannian manifolds. Duke Math. J. 25, 647–669 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  9. An, H., Deng, S.: Invariant (α, β)-metrics on homogeneous manifolds. Monatsh. Math. 154, 89–102 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler spaces with Applications in Physics and Biology. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  11. Bacso, S., Matsumoto, M.: Randers spaces with the h-curvature tensor H dependent on position alone. Publ. Math. Debrecen 57, 185–192 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bao, D.: Randers space forms. Periodica Mathematica Hungarica 48, 3–15 (2004)

    Article  MATH  Google Scholar 

  14. Bao, D.: On two curvature-driven problems in Finsler geometry. Adv. Pure Math. 48, 19–71 (2007)

    Google Scholar 

  15. Bao, D., Chern, S.S.: On a notable connection in Finsler geometry. Houston J. Math. 19, 135–180 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000)

    Book  MATH  Google Scholar 

  17. Bao, D., Lackey, B.: Randers surfaces whose Laplacians have completely positive symbol. Nonlinear Anal. A 38, 27–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bao, D., Robles, C.: On Randers spaces of constant flag curvature. Rep. Math. Phys. 51, 9–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry. In: Bao, D., Bryant, R.L., Chern, S.S., Shen, Z. (eds.) A Sampler of Riemannian-Finsler Geometry, pp. 197–260. Cambridge University Press, London (2004)

    Google Scholar 

  20. Bao, D., Shen, Z.: Finsler metrics with constant positive curvature on the sphere S 3. J. Lond. Math. Soc. 66, 453–467 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66, 377–435 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Bazaikin, Y.V.: On a certain class of 13-dimensional Riemannian manifolds with positive curvature. Siberian Math. J. 37, 1219–1237 (1996)

    Article  MathSciNet  Google Scholar 

  23. Bérard Bergery, L.: Les variétés Riemannienes homogènes simplement connexes de dimension impair à courbure strictement positive. J. Math. Pures Appl. 55, 47–68 (1976)

    Google Scholar 

  24. Berger, M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa (3) 15, 179–246 (1961)

    Google Scholar 

  25. Berndt, J., Vanhecke, L.: Geometry of weakly symmetric spaces. J. Math. Soc. Jpn. 48, 745–760 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Glob. Anal. Geom. 15, 153–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Berndt, J., Ricci, F., Vanhecke, L.: Weakly symmetric groups of Heisenberg type. Differ. Geom. Appl. 8, 275–284 (1998)

    Article  MathSciNet  Google Scholar 

  28. Besse, A.: Einstein Manifolds. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Bochner, S., Montgomery, D.: Locally compact groups of differentiable transformations. Ann. Math. 47, 639–653 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bogoslovski, Yu.G.: Status and perspectives of theory of local anisotropic space-time. Physics of Nuclei and Particles. Moscow State University, Russia (1997) (in Russian)

    Google Scholar 

  31. Borel, A., Some remarks about Lie groups transitive on spheres and tori. Bull. Am. Math. Soc. 55, 580–587 (1940)

    Article  MathSciNet  Google Scholar 

  32. Brinzei, N.: Projective relations for m-th root metric spaces. Available at the website: http://arxiv1.library.cornell.edu/abs/0711.4781v2/, preprint. Accessed 2007

  33. Brion, M.: Classification des espaces homogènes sphériques. Compositio Math. 63, 189–208 (1989)

    MathSciNet  Google Scholar 

  34. Br\(\ddot{\mathrm{o}}\)cker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, New York (1995)

    Google Scholar 

  35. Busemann, H., Phadke, B.: Two theorems on general symmetric spaces. Pac. J. Math. 92, 39–48 (1981)

    MathSciNet  MATH  Google Scholar 

  36. Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces. Mem. Am. Math. Soc. 24(229) (1980)

    Google Scholar 

  37. Cartan, E.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 54, 214–264 (1926)

    MathSciNet  Google Scholar 

  38. Cartan, E.: Sur la détermination d’un système orthogonal complet dans un espace de Riemann symétrique clos. Rend. Circ. Mat. Palermo 53, 217–252 (1929)

    Article  MATH  Google Scholar 

  39. Chen, X., Deng, S.: A new proof of a theorem of H. C. Wang. Balkan J. Geom. Appl. 16(2), 25–26 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Chen, B.Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces I. Duke Math. J. 44, 745–755 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, B.Y., Nagano, T.: Totally geodesic submanifolds of symmetric spaces II. Duke Math. J. 45, 405–425 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chern, S.S.: On the Euclidean connections in a Finsler space. Proc. Nat. Acad. Sci. USA 29, 33–37 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chern, S.S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Notices Am. Math. Soc. 43, 959–963 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Chern, S.S., Shen, Z.: Riemann-Finsler Geometry. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  45. D’Atri, J.E., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc. 18(215) (1979)

    Google Scholar 

  46. Deicke, A.: Über die Finsler Räume mit A i  = 0. Arch. Math. 4, 45–51 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  47. Deng, S.: Fixed points of isometries of a Finsler space. Publ. Math. Debrecen 72, 469–474 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Deng, S.: The S-curvature of homogeneous Randers spaces. Differ. Geom. Appl. 27, 75–84 (2009)

    Article  MATH  Google Scholar 

  49. Deng, S.: An algebraic approach to weakly symmetric Finsler spaces. Can. J. Math. 62, 52–73 (2010)

    Article  MATH  Google Scholar 

  50. Deng, S.: Invariant Finsler metrics on polar homogeneous spaces. Pac. J. Math. 247, 47–74 (2010)

    Article  MATH  Google Scholar 

  51. Deng, S.: On the classification of weakly symmetric Finsler spaces. Israel J. Math. 181, 29–52 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Deng, S.: Clifford-Wolf translations of Finsler spaces of negative flag curvature, preprint. arXiv: 1204.1048, 2012/arxiv.org

    Google Scholar 

  53. Deng, S.: Finsler metrics and the degree of symmetry of a closed manifold. Indiana U. Math. J. 60, 713–727 (2011)

    Article  MATH  Google Scholar 

  54. Deng, S.: On the symmetry of Riemannian manifolds. J. Reine Angew. Math., published online. doi:10.1515/CRELLE.2012.040

    Google Scholar 

  55. Deng, S., Hou, Z.: The group of isometries of a Finsler space. Pac. J. Math. 207, 149–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  56. Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A: Math. Gen. 37, 8245–8253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Deng, S., Hou, Z.: Minkowski symmetric Lie algebras and symmetric Berwald spaces. Geometriae Dedicata 113, 95–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Deng, S., Hou, Z.: On locally and globally symmetric Berwald spaces. J. Phys. A: Math. Gen. 38, 1691–1697 (2005)

    Article  MathSciNet  Google Scholar 

  59. Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds II: Complex structures. J. Phys. A: Math. Gen. 39, 2599–2609 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifold. J. Phys. A: Math. Gen. 37, 4353–4360 (2004); Corrigendum, J. Phys. A: Math. Gen. 39, 5249–5250 (2006)

    Google Scholar 

  61. Deng, S., Hou, Z.: Homogeneous Finsler spaces of negative curvature. J. Geom. Phys. 57, 657–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Deng, S., Hou, Z.: On symmetric Finsler spaces. Israel J. Math. 166, 197–219 (2007)

    Article  MathSciNet  Google Scholar 

  63. Deng, S., Hou, Z.: Positive definite Minkowski Lie algebras and bi-invariant Finsler metrics on Lie groups. Geometriae Dedicata 136, 191–201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Deng, S., Hou, Z.: Homogeneous Einstein–Randers spaces of negative Ricci curvature. C. R. Math. Acad. Sci. Paris 347, 1169–1172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Deng, S., Hou, Z.: Naturally reductive homogeneous Finsler spaces. Manuscripta Math. 131, 215–219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Deng, S., Hou, Z.: Weakly symmetric Finsler spaces. Comm. Contemp. Math. 12, 309–323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Deng, S., Wang, X.: The S-curvature of homogeneous (α, β)-metrics. Balkan J. Geom. Appl. 15(2), 39–48 (2010)

    MathSciNet  MATH  Google Scholar 

  68. Deng, S., Xu, M.: Clifford–Wolf translations of Finsler spaces. Forum Math. (2012), published online, doi:10.1515/forum-2012-0032

    Google Scholar 

  69. Deng, S., Xu, M.: Clifford–Wolf translations of homogeneous Randers spheres, preprint. arXiv: 1204.5232, 2012/arxiv.org

    Google Scholar 

  70. Eschenburg, J.: New examples of manifolds of positive curvature. Invent. Math. 66, 469–480 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  71. Foulon, P.: Curvature and global rigidity in Finsler manifolds. Houston J. Math. 28, 263–292 (2002)

    MathSciNet  MATH  Google Scholar 

  72. Gorbatsevich, V.V.: Invariant intrinsic Finsler metrics on homogeneous spaces and strong subalgebras of Lie algebras. Siberian Math. J. 49, 36–47 (2008)

    Article  MathSciNet  Google Scholar 

  73. Gordon, C.S.: Naturally reductive homogeneous Riemannian manifolds. Can. J. Math. 37, 467–487 (1985)

    Article  MATH  Google Scholar 

  74. Gordon, C.S.: Homogeneous Riemannian manifolds whose geodesics are orbits. In: Topics in Geometry, in Memory of Joseph D’Atri, pp. 155–174. Birkhäuser, Basel (1996)

    Google Scholar 

  75. Gordan, C.S., Kerr, M.: New homogeneous Einstein metrics of negative Ricci curvature. Geometriae Dedicata 19, 75–101 (2001)

    Google Scholar 

  76. Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature and Cohomology, II. Academic, New York (1973)

    MATH  Google Scholar 

  77. Grove, K., Ziller, W.: Cohomogeneity one manifolds with positive Ricci curvature. Invent. Math. 149, 619–664 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  78. Grove, K., Wilking, B., Ziller, W.: Positively curved cohomogeneity one manifolds and 3-Sasaki geometry. J. Differ. Geom. 78, 33–111 (2008)

    MathSciNet  MATH  Google Scholar 

  79. Grove, K., Verdiani, L., Ziller, W.: An exotic T 1 S 4 with positive curvature, Geometric and Functional Analysis, 21, 499–524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  80. Heber, J.: Noncompact homogeneous Einstein manifolds. Invent. Math. 133, 279–252 (1998)

    MathSciNet  MATH  Google Scholar 

  81. Heintze, E.: On homogeneous manifolds of negative curvature. Math. Ann. 211, 23–34 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  82. Helgason, S.: Totally geodesic spheres in compact symmetric spaces. Math. Ann. 165, 309–317 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  83. Helgason, S.: Differential Geometry, Lie groups and Symmetric Spaces, 2nd edn. Academic, New York (1978)

    MATH  Google Scholar 

  84. Hsiang, W.Y.: The natural metric on \(SO (n + 2)/ SO (n)\) is the most symmetric. Bull. Am. Math. Soc. 73, 55–58 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  85. Hsiang, W.C., Hsiang, W.Y.: The degree of symmetry of homotopy spheres. Ann. Math. 89, 52–67 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  86. Hu, Z., Deng, S.: Invariant fourth-root metrics on the Grassmannian manifolds. J. Geom. Phys. 61, 18–25 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  87. Hu, Z., Deng, S.: Homogeneous Randers spaces of isotropic S-curvature and positive flag curvature. Math. Z. 270, 989–1009 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. Hu, Z., Deng, S.: On flag curvature of homogeneous Randers spaces. Can. J. Math. (2012), published online, doi:10.4153/CJM-2012-004-6

    Google Scholar 

  89. Hu, Z., Deng, S.: Ricci-quadratic homogeneous Randers spaces, preprint. arxiv: 1207.1786/arxiv.org

    Google Scholar 

  90. Hu, Z., Deng, S.: Three-dimensional homogeneous Finsler spaces. Math. Nachr. 285, 1243–1254 (2012). doi:10.1002/mana.201100100

    Article  MATH  Google Scholar 

  91. Huang, L., Mo, X.: On curvature decreasing property of a class of navigation problems. Publ. Math. Debrecen 71, 991–996 (2007)

    MathSciNet  Google Scholar 

  92. Ichijy\(\bar{\mathrm{o}}\), Y.: Finsler spaces modeled on a Minkowski space. J. Math. Kyoto Univ. 16, 639–652 (1976)

    Google Scholar 

  93. Ingarden, R.S.: On physical applications of Finsler geometry. Contemp. Math. 196, 213–223 (1996)

    Article  MathSciNet  Google Scholar 

  94. Jensen, G.R.: Einstein metrics on principal fibre bundles. J. Differ. Geom. 8, 599–614 (1973)

    MATH  Google Scholar 

  95. Kaplan, A.: Fundamental solution for a class of hypo-elleptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)

    Article  MATH  Google Scholar 

  96. Kath, I., Olbrich, M.: Metric Lie algebras with maximal isotropic centre. Math. Z. 246, 23–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  97. Kath, I., Olbrich, M.: On the structure of pseudo-Riemannian symmetric spaces. Transformation Groups 14, 847–885 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  98. Kim, C.W.: Locally symmetric positively curved Finsler spaces. Arch. Math. (Basel) 88, 378–384 (2007)

    Google Scholar 

  99. Kobayashi, S.: Fixed points of isometries. Nagoya Math. J. 13, 63–68 (1958)

    MathSciNet  MATH  Google Scholar 

  100. Kobayashi, S.: Homogeneous Riemannian manifolds of negative curvature. Tohoku Math. J. 14, 413–415 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  101. Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  102. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1, 1963, vol. 2, 1969. Interscience Publishers, New York (1969)

    Google Scholar 

  103. Koszul, J.L.: Exposés sue les espaces homogènes symétriques. Pub. Soc. Math. Sao Paulo 77, (1959)

    Google Scholar 

  104. Kowalski, O.: Spaces with volume-preserving symmetries and related classes of Riemannian manifolds. Rend. Sem. Mat. Univ. Politec. Torino, Facicolo Speciale, Settembre, pp. 131–158 (1983)

    Google Scholar 

  105. Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B 7(5), 189–246 (1991)

    MathSciNet  Google Scholar 

  106. Krämer, M.: Sphärische untergruppen in Kompakten zusammenhängenden Liegruppen. Compositio Math. 38, 129–153 (1979)

    MathSciNet  MATH  Google Scholar 

  107. Ku, H., Mann, L., Sicks, J., Su, J.: The degree of symmetry of a product manifold. Trans. Am. Math. Soc. 146, 133–149 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  108. Ku, H., Mann, L., Sicks, J., Su, J.: The degree of symmetry of a homotopy real projective space. Trans. Am. Math. Soc. 161, 51–61 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  109. Kuiper, N.H.: Groups of motions of order \(\frac{1} {2}n(n - 1) + 1\) in Riemannian n-spaces. Indag. Math. 48, 313–318 (1955)

    Google Scholar 

  110. Lauret, J.: Homogeneous nilmanifolds attached to representations of compact Lie groups. Manuscripta Math. 99, 287–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  111. Lauret, J.: Einstein solvmanifolds are standard. Ann. Math. 172, 1859–1877 (2010)

    MathSciNet  MATH  Google Scholar 

  112. Lawson, H., Yau, S.T.: Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres. Comment. Math. Helv. 49, 232–244 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  113. Li, B., Shen, Z.: On projectively flat fourth root metrics. Can. Math. Bull. 55, 138–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  114. Mather, J.: Differentiable invariant. Topology 16, 145–155 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  115. Matsumoto, M.: Foundations of Finsler Geometry and Special Finsler Spaces. Kaiseisha Press, Japan (1986)

    MATH  Google Scholar 

  116. Matveev, V.S., Troyanov, M.: The Binet–Legender ellipsoid in Finsler geometry. Math. DG arxiv: 1104–1647.v1, preprint. Accessed 2012

    Google Scholar 

  117. Mazur, S.: Quelques propriétés characteristiques des espaces Euclidiens. C. R. Acad. Sci. Paris Ser. I 207, 761–764 (1938)

    Google Scholar 

  118. Mestag, T.: Relative equilibria of invariant lagrangian systems on a Lie group. In: Differential Geometry Methods in Mechanics and Field Theory, pp. 115–129. Academic, New York (2007)

    Google Scholar 

  119. Mikityuk, I.V.: On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Math. Sb. 57, 527–546 (1987)

    Article  Google Scholar 

  120. Milnor, J.: Curvature of left invariant Riemannian metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  121. Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. Math. 44, 454–470 (1943)

    MathSciNet  MATH  Google Scholar 

  122. Montgomery, D., Yang, C.T.: The existence of a slice. Ann. Math. 65, 108–116 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  123. Myers, S.B., Steenrod, N.: The group of isometries of a Riemannian manifold. Ann. Math. 40, 400–416 (1939)

    Article  MathSciNet  Google Scholar 

  124. Nguyêñ, H.: Characterizing weakly symmetric spaces as Gelfand pairs. J. Lie Theor. 9, 285–291 (1999)

    MATH  Google Scholar 

  125. Obata, M.: On n-dimensional homogeneous spaces of Lie groups of dimension greater than \(\frac{1} {2}n(n - 1)\). J. Math. Soc. Jpn. 7, 371–388 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  126. Onishchik, A.L.: Transitive compact transformation groups. Math. Sb. 60, 447–485 (1963)

    Google Scholar 

  127. Palais, R.S.: A global formulation of the Lie theory of transformation groups. Mem. Am. Math. Soc. 22m (1957)

    Google Scholar 

  128. Palais, R.S.: On the differentiability of isometries. Proc. Am. Math. Soc. 8, 805–7807 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  129. Pavlov, D.G. (ed.): Space-Time Structure. Collected papers, TETRU (2006)

    Google Scholar 

  130. Popov, V.L., Vinberg, E.B.: Invariant theory. In: Algebraic Geometry IV. Springer, Berlin (1994)

    Google Scholar 

  131. Randers, G.: On an asymmetrical metric in the four-space of general relativity. Phys. Rev. 59, 195–199 (1941)

    Article  MathSciNet  Google Scholar 

  132. del Riego, L.: Tenseurs de Weyl d’un spray de directions, Thesis, Université Scientifique et Medicale de Grenoble (1973)

    Google Scholar 

  133. Robles, C.: Einstein metrics of Randers type, doctoral dissertation, University of British Colombia (2003)

    Google Scholar 

  134. Schultz, R.: Semifree circle actions and the degree of symmetry of homotopy spheres. Am. J. Math. 93, 829–839 (1971)

    Article  MATH  Google Scholar 

  135. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. B. 20, 47–87 (1956)

    MathSciNet  MATH  Google Scholar 

  136. Shankar, K.: Isometry groups of homogeneous spaces with positive sectional curvature. Differ. Geom. Appl. 14, 57–78 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  137. Shen, Z.: Finsler manifolds of constant positive curvature. Contemp. Math. 196, 83–93 (1996)

    Article  Google Scholar 

  138. Shen, Z.: Volume comparison and its applications in Riemann–Finsler geometry. Adv. Math. 128, 306–328 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic, Dordrecht (2001)

    MATH  Google Scholar 

  140. Shen, Z.: On projectively related Einstein metrics in Riemann–Finsler geometry. Math. Ann. 320, 625–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  141. Shen, Z.: On R-quadratic Finsler spaces. Publ. Math. Debrecen 58, 263–274 (2001)

    MathSciNet  MATH  Google Scholar 

  142. Shen, Z.: Two-dimensional Finsler metrics with constant flag curvature. Manuscripta Math. 109, 349–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  143. Shen, Z.: Finsler metrics with K = 0 and S = 0. Can. J. Math. 55, 112–132 (2003)

    Article  MATH  Google Scholar 

  144. Shen, Z.: Landsberg curvature, S-curvature and Riemann curvature. In: Bao, D., Bryant, R., Chern, S.S., Shen, Z. (eds.) A Sampler of Finsler Geometry, pp. 303–355, MSRI Publications, no. 50. Cambridge University Press, London (2004)

    Google Scholar 

  145. Shen, Z.: Finsler manifolds with non-positive flag curvature and constant S-curvature. Math. Z. 249, 625–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  146. Shen, Z.: Some open problems in Finsler geometry. Available on Z. Shen’s home page at www.math.iupui.edu. Preprint (2009)

    Google Scholar 

  147. Shen, Z., Xing, H.: On Randers metrics of isotropic S-curvature. Acta Math. Sinica 24, 789–796 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  148. Shimada, H.: On Finsler spaces with the metric \(L = {({a}_{{i}_{1}{i}_{2}\cdots {i}_{m}}{y}^{{i}_{1}}{y}^{{i}_{2}}\cdots {y}^{{i}_{m}})}^{ \frac{1} {m} }\). Tensor N.S. 33(3), 365–372 (1979)

    Google Scholar 

  149. Simons, J.: On the transitivity of holonomy systems. Ann. Math. 76, 143–171 (1962)

    Article  MathSciNet  Google Scholar 

  150. Spiro, A.: Chern’s orthonormal frame bundle of a Finsler space. Houston J. Math. 25, 641–659 (1999)

    MathSciNet  MATH  Google Scholar 

  151. Szabó, Z.I.: Generalized spaces with many isometries. Geometriae Dedicata 11, 369–383 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  152. Szabó, Z.I.: Positive definite Berwald spaces. Tensor N. S. 38, 25–39 (1981)

    Google Scholar 

  153. Szabó, Z.I.: Spectral geometry for operator families on Riemannian manifolds. Sympos. Pure Math. 54, 615–665 (1993)

    Google Scholar 

  154. Tits, J.: Sur certaine d’espaces homogènes de groupes de Lie. Acad. Roy. Belg. Cl. Sci. Mém. Coll. 29(3) (1955)

    Google Scholar 

  155. Tits, J.: Espaces homogènes complexes. Comment. Math. Helv. 37, 111–120 (1963)

    Article  MathSciNet  Google Scholar 

  156. Van Danzig, D., Van Der Waerden, B.L.: Über metrische homogene Räume. Abh. Math. Sem. Univ. Hamburg 6, 367–376 (1928)

    Article  Google Scholar 

  157. Varadarajan, V.S.: Lie Groups, Lie Algebras and Their Representations. Springer, New York (1984)

    MATH  Google Scholar 

  158. Verdianni, L., Ziller, W.: Positively curved homogeneous metrics on spheres. Math. Z. 261, 473–488 (2009)

    Article  MathSciNet  Google Scholar 

  159. Wallach, N.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96, 277–295 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  160. Walter, T.H.: Einstein metrics on solvable groups. Math Z. 206, 457–471 (1991)

    Article  MathSciNet  Google Scholar 

  161. Wang, H., Deng, S.: Some homogeneous Einstein–Randers spaces. Nonlinear Anal. 72, 4407–4414 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  162. Wang, H., Deng, S.: Left invariant Einstein-Randers metrics on compact Lie groups. Can. Math. Bull. (2011), published online, doi:10.4153/CMB-2011-145-6

    Google Scholar 

  163. Wang, H.C.: Finsler spaces with completely integrable equations of Killing. J. Lond. Math. Soc. 22, 5–9 (1947)

    Article  MATH  Google Scholar 

  164. Wang, H.C.: Two point homogeneous spaces. Ann. Math. 55, 177–191 (1952)

    MATH  Google Scholar 

  165. Wang, M., Ziller, W.: On normal homogeneous Einstein manifolds. Ann. Sci. Ec. Norm. Sup. 18, 563–633 (1985)

    MathSciNet  MATH  Google Scholar 

  166. Wang, M., Ziller, W.: Existence and non-existence of homogeneous Einstein metrics. Invent. Math. 84, 177–194 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  167. Wang, M., Ziller, W.: On isotropy irreducible Riemannian manifolds. Acta Math. 116, 223–261 (1991)

    Article  MathSciNet  Google Scholar 

  168. Wang, H., Huang, L., Deng, S.: Homogeneous Einstein-Randers metrics on spheres. Nonlinear Anal. 74, 6295–6301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  169. Wilking, B.: The normal homogeneous space { SU} (3) ×{ SO} (3) ∕ { U}  ∗ (2) has positive sectional curvature. Proc. Am. Math. Soc. 127, 1191–1194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  170. Wilson, E.N.: Isometry groups on homogeneous nilmanifolds. Geometriae Dedicata 12, 337–346 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  171. Wolf, J.A.: Sur la classification des variétés riemanniennes homogènes à courbure constante. C. R. Acad. Sci. Paris Ser. I 250, 3443–3445 (1960)

    MATH  Google Scholar 

  172. Wolf, J.A.: Locally symmetric homogeneous spaces. Comment. Math. Helv. 37, 65–101 (1962–1963)

    Google Scholar 

  173. Wolf, J.A.: Curvature in nilpotent Lie groups. Proc. Am. Math. Soc. 15, 271–274 (1964)

    Article  MATH  Google Scholar 

  174. Wolf, J.A.: Homogeneity and bounded isometries in manifolds of negative curvature. Illinois J. Math. 8, 14–18 (1964)

    MathSciNet  MATH  Google Scholar 

  175. Wolf, J.A.: The geometry and structure of isotropic irreducible homogeneous spaces. Acta Math. 20, 59–148 (1968); Correction, Acta Math. 152, 141–142 (1984)

    Google Scholar 

  176. Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Amer. Math. Soc. vol. 142 (2007)

    Google Scholar 

  177. Wolf, J.A.: Spaces of Constant Curvature, 6th edn. Amer. Math. Soc. Chelsea. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  178. Xu, B.: The degree of symmetry of certain compact smooth manifolds. J. Math. Soc. Jpn. 55, 727–737 (2003)

    Article  MATH  Google Scholar 

  179. Yakimova, O.: Weakly symmetric spaces of semisimple Lie groups. Moscow Univ. Math. Bull. 57(2), 37–40 (2002)

    MathSciNet  Google Scholar 

  180. Yakimova, O.: Weakly symmetric Riemannian manifolds with a reductive isometry group. Sb. Math. 195(3–4), 599–614 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  181. Yano, K.: On n-dimensional Riemannian manifolds admitting a group of motions of order \(\frac{1} {2}n(n - 1) + 1\). Trans. Am. Math. Soc. 74, 260–279 (1953)

    MATH  Google Scholar 

  182. Ziller, W.: Homogeneous Einstein metrics on spheres. Math. Ann. 259, 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  183. Ziller, W.: Weakly symmetric spaces. In: Topics in Geometry, in memory of Joseph D’Atri. Progress in Nonlinear Diff. Eqs. 20, pp. 355–368. Birkhäuser, Basel (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deng, S. (2012). Homogeneous Randers Spaces. In: Homogeneous Finsler Spaces. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4244-8_7

Download citation

Publish with us

Policies and ethics