Digital Holographic Microscopy by Mirau Interferometric Objective

  • Miguel León-Rodríguez
  • Ramón Rodríguez-Vera
  • Juan A. Rayas
  • Sergio Calixto
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Typically Digital holographic microscopy (DHM) uses either a Michelson or Mach-Zehnder interferometers as an interferometric tool for attaining an in-line digital hologram. These interferometers need not only a well optical aligning in order to compensate the spherical aberration but also a special optical path difference compensation system when a low coherence illumination source is used. A Mirau interferometric objective appears as an alternative to overcome these difficult tasks and automatic reduction of quadratic aberration in DHM. A spatial averaging process of phase images reconstructed at different reconstruction distances is performed, with the reconstruction distance range being specified by the numerical focus depth of the optical system. An improved phase image is attained with a 46% of shot noise reduction. We use the integral of the angular spectrum as a reconstruction method to obtain a single-object complex amplitude that is needed to perform the averaging process. We also show the corresponding simulations and experimental results. The topography of a homemade TiO2 step wise of 100 nm high was measured and compared with the Atomic Force Microscope results. As far as we know, Mirau integrated on DHM has not been used.


Phase Image Shot Noise Reference Wave Optical Path Difference Object Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Furlong C, Pryputniewics RJ (2003) Optoelectronic characterization of shape and deformations of MEMS accelerometers used in transportation applications. Opt Eng 42:1223–1231CrossRefGoogle Scholar
  2. 2.
    Sun H, Player M, Watson J, Hendry D, Perkins R, Gust G, Paterson D (2005) The uses of digital/electronic holography for biological applications. Appl Opt 7:S399–S4007Google Scholar
  3. 3.
    Mann C, Yu L, Kim M (2006) Movies of cellular and sub-cellular motion by digital holographic microscopy. Biomed Eng 5:21–31Google Scholar
  4. 4.
    León-Rodríguez M, Rodríguez-Vera R, Rayas JA, Calixto S (2011) Amplitude and phase recovering from a micro-digital hologram using angular spectrum. Rev Mex Fis 57(4):315–321Google Scholar
  5. 5.
    Goodman JW, Lawrence RW (1967) Digital image formation from electronically detected holograms. Appl Phys Lett 11:77–79CrossRefGoogle Scholar
  6. 6.
    Kronrod MA, Merzlyakov NS, Yaroslavskii P (1972) Reconstruction of a hologram with a computer. Sov Phys Tech Phys 17:333–334Google Scholar
  7. 7.
    Schnars U, Jüptner W (1994) Direct recording of holograms by to CCD-target and numerical reconstruction. Appl Opt 33(2):179–181CrossRefGoogle Scholar
  8. 8.
    Kebbel V, Hartmann HJ, Jüptner W (2001) To new approach for testing of aspherical micro-optics with high numerical aperture. Proc SPIE 4451:345–355CrossRefGoogle Scholar
  9. 9.
    Charrière F, Kühn J, Colomb T, Monfort F, Cuche E, Emery Y, Weible K, Marquet P, Depeursinge C (2006) Characterization of microlenses by digital holographic microscopy. Appl Opt 45:829–835CrossRefGoogle Scholar
  10. 10.
    Kemper B, Stürwald S, Remmersmann C, Langehanenbergerg P, Von Bally G (2008) Characterization of light emitting diodes (LEDs) for applications in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt Eng 46:499–507CrossRefGoogle Scholar
  11. 11.
    Carl D, Kemper B, Wernicke G, Von Bally G (2004) Parameter optimized digital holographic microscope for high resolution living cells analysis. Appl Opt 43:6536–6544CrossRefGoogle Scholar
  12. 12.
    Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti P (2005) Measurement of the integral index and dinamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13(23):9361–9373CrossRefGoogle Scholar
  13. 13.
    Garcia-Sucerquia J, Xu W, Jericho SK, Jericho MH, Kreuzer HJ (2008) 4-D imaging of flows flow digital with in-line holographic microscopy. Optik 119:419–423CrossRefGoogle Scholar
  14. 14.
    Ferraro P, Grilli S, Alferi D, Of Nicola S, Finizio A, Pieranttini G, Javidi B, Coppola G, Striano V (2005) Extended focused image in microscopy by digital holography. Opt Express 13(18):6738–6749CrossRefGoogle Scholar
  15. 15.
    Colomb T, Pavillon N, Kühn J, Cuche E, Depeursinge C, Emery Y (2010) Extended depth-of-focus by digital holographic microscopy. Opt Lett 35(11):1840–1842CrossRefGoogle Scholar
  16. 16.
    Colomb T, Cuche E, Charrière F, Kühn J, Aspert N, Monfort F, Marquet P, Depeursinge C (2006) Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. Appl Opt 45(5):851–863CrossRefGoogle Scholar
  17. 17.
    Di JI, Zhao J, Sun W, Jiang H, Yan X (2009) Phase aberration compensation of digital holographic microscopy based on least squares surface fitting. Opt Commun 282:3873–3877CrossRefGoogle Scholar
  18. 18.
    Colomb T, Kühn J, Charrière F, Depeursinge C, Marquet P, Aspert N (2006) Total aberration compensations in digital holographic microscopy with a reference conjugated hologram. Opt Express 14(10):4300–4306CrossRefGoogle Scholar
  19. 19.
    Kang X (2008) An effective method for reducing speckle noise in digital holography. Chin Opt Lett 6(2):100–103CrossRefGoogle Scholar
  20. 20.
    Baumbach T, Colenovic E, Kebbel V, Jüptner W (2006) Improvement of accuracy in digital holography by uses of multiple holograms. Appl Opt 45:6077–6085CrossRefGoogle Scholar
  21. 21.
    Rong L, Xiao W, Pan F, Liu S, Li R (2010) Speckle noise reduction in digital holography by use of multiple polarization holograms. Chin Opt Lett 8(7):653–655CrossRefGoogle Scholar
  22. 22.
    Charriére F, Rappaz B, Kühn J, Colomb T, Market P, Depeursinge C (2007) Influence of shot noise on phase measurement accuracy in digital holographic microscopy. Opt Express 15(14):8818–8831CrossRefGoogle Scholar
  23. 23.
    Dubois F, Novella M, Minetti C, Monnom O, Istasse E (2004) Partial spatial coherence effects in digital holographic microscopy with to laser source. Appl Opt 43:1131–1139CrossRefGoogle Scholar
  24. 24.
    Kühn J, Charrière F, Colomb T, Cuche E, Montfort F, Emery Y, Marquet P, Depeursinge C (2008) Axial sub-nanometer accuracy in digital holographic microscopy. Meas Sci Technol 19:1–8CrossRefGoogle Scholar
  25. 25.
    Potcoava M, Km M (2009) Fingerprint biometry applications of digital holography and low-coherence interferography. Appl Opt 48:H9–H15CrossRefGoogle Scholar
  26. 26.
    Dubois F, Joannes L, Legros J (1999) Improved three-dimensional imaging with digital holography microscope with to source of partial spatial coherence. Appl Opt 38:7085–7094CrossRefGoogle Scholar
  27. 27.
    Bergmann L, Schaefer C (2003) Optics of waves and particles. W. Gruyter, BerlinGoogle Scholar
  28. 28.
    Goodman JW (1996) Introduction to fourier optics. McGraw-Hill, New YorkGoogle Scholar
  29. 29.
    Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Opt Lett 22(16):1268–1270CrossRefGoogle Scholar
  30. 30.
    Goodman JW (1985) Statistical optics. Wiley, New YorkGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  • Miguel León-Rodríguez
    • 1
  • Ramón Rodríguez-Vera
    • 1
  • Juan A. Rayas
    • 1
  • Sergio Calixto
    • 1
  1. 1.Centro de Investigaciones en Óptica, A.C.LeónMexico

Personalised recommendations