Stationary Inclusions and Hemivariational Inequalities

  • Stanisław Migórski
  • Anna Ochal
  • Mircea Sofonea
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 26)

Abstract

In this chapter we study stationary operator inclusions, i.e., inclusions in which the derivatives of the unknown with respect to the time variable are not involved. We start with a basic existence result for abstract operator inclusions. Then we use it in order to prove the existence of solutions for various operator inclusions of subdifferential type. We also prove that, under additional assumptions, the solution of the corresponding inclusions is unique. Finally, we specialize our existence and uniqueness results in the study of stationary hemivariational inequalities. The theorems presented in this chapter will be applied in the study of static frictional contact problems in Chap. 7.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)MATHGoogle Scholar
  2. 2.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Oxford (2003)MATHGoogle Scholar
  3. 3.
    Ahmed, N.U., Kerbal, S.: Optimal control of nonlinear second order evolution equations. J. Appl. Math. Stoch. Anal. 6, 123–136 (1993)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Amassad, A., Fabre, C., Sofonea, M.: A quasistatic viscoplastic contact problem with normal compliance and friction. IMA J. Appl. Math. 69, 463–482 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Amassad, A., Shillor, M., Sofonea, M.: A quasistatic contact problem with slip dependent coefficient of friction. Math. Methods Appl. Sci. 22, 267–284 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Amassad, A., Sofonea, M.: Analysis of a quasistatic viscoplastic problem involving Tresca friction law. Discrete Contin. Dyn. Syst. 4, 55–72 (1998)MathSciNetMATHGoogle Scholar
  7. 7.
    Andersson, L.-E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. 16, 347–370 (1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Andersson, L.-E.: A global existence result for a quasistatic contact problem with friction. Adv. Math. Sci. Appl. 5, 249–286 (1995)MathSciNetMATHGoogle Scholar
  9. 9.
    Andersson, L.-E.: A quasistatic frictional problem with a normal compliance penalization term. Nonlinear Anal. 37, 689–705 (1999)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Andersson, L.-E.: Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42, 169–202 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)MATHGoogle Scholar
  12. 12.
    Atkinson, K., Han, W.: Theoretical numerical analysis: a functional analysis framework, 3rd edn. Texts in Applied Mathematics, vol. 39, Springer, New York (2009)Google Scholar
  13. 13.
    Aubin, J.P.: L’analyse non linéaire et ses motivations économiques. Masson, Paris, (1984)Google Scholar
  14. 14.
    Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory. Springer, Berlin, New York, Tokyo (1984)MATHCrossRefGoogle Scholar
  15. 15.
    Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel, Boston (1990)MATHGoogle Scholar
  16. 16.
    Awbi, B., Rochdi, M., Sofonea, M.: Abstract evolution equations for viscoelastic frictional contact problems. Z. Angew. Math. Phys. 51, 218–235 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. Wiley, Chichester (1984)MATHGoogle Scholar
  18. 18.
    Barboteu, M., Fernandez, J.R., Raffat, T.: Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Comput. Methods Appl. Mech. Engrg. 197, 3724–3732 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Barboteu, M., Han, W., Sofonea, M.: Numerical analysis of a bilateral frictional contact problem for linearly elastic materials. IMA J. Numer. Anal. 22, 407–436 (2002)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Barboteu, M., Sofonea, M.: Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation. Appl. Math. Comput. 215, 2978–2991 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Barboteu, M., Sofonea, M.: Modelling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J. Math. Anal. Appl. 358, 110–124 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei, Bucharest-Noordhoff, Leyden (1976)MATHCrossRefGoogle Scholar
  23. 23.
    Barbu, V.: Optimal Control of Variational Inequalities. Pitman, Boston (1984)MATHGoogle Scholar
  24. 24.
    Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. D. Reidel Publishing Company, Dordrecht (1986)MATHGoogle Scholar
  25. 25.
    Bartosz, K.: Hemivariational inequality approach to the dynamic viscoelastic sliding contact problem with wear. Nonlinear Anal. 65, 546–566 (2006)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Bartosz, K.: Hemivariational inequalities modeling dynamic contact problems with adhesion. Nonlinear Anal. 71, 1747–1762 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Batra, R.C., Yang, J.S.: Saint-Venant’s principle in linear piezoelectricity. J. Elasticity 38, 209–218 (1995)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Bian, W.: Existence results for second order nonlinear evolution inclusions. Indian J. Pure Appl. Math. 11, 1177–1193 (1998)MathSciNetGoogle Scholar
  29. 29.
    Bisegna, P., Lebon, F., Maceri, F.: The unilateral frictional contact of a piezoelectric body with a rigid support. In: Martins, J.A.C., Marques, M.D.P.M. (eds.), Contact Mechanics, pp. 347–354. Kluwer, Dordrecht (2002)Google Scholar
  30. 30.
    Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18, 115–175 (1968)Google Scholar
  31. 31.
    Brézis, H.: Problèmes unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)Google Scholar
  32. 32.
    Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Mathematics Studies, North Holland, Amsterdam (1973)MATHGoogle Scholar
  33. 33.
    Brézis, H.: Analyse fonctionnelle—Théorie et applications. Masson, Paris (1987)Google Scholar
  34. 34.
    Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)MATHGoogle Scholar
  35. 35.
    Browder, F., Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Campillo, M., Dascalu, C., Ionescu, I.R.: Instability of a periodic system of faults. Geophys. J. Int. 159, 212–222 (2004)CrossRefGoogle Scholar
  37. 37.
    Campillo, M., Ionescu, I.R.: Initiation of antiplane shear instability under slip dependent friction. J. Geophys. Res. 102 B9, 363–371 (1997)Google Scholar
  38. 38.
    Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, New York (2007)MATHGoogle Scholar
  39. 39.
    Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer, Berlin (1977)Google Scholar
  40. 40.
    Cazenave, T., Haraux, A.: Introduction aux problèmes d’évolution semi-linéaires. Ellipses, Paris (1990).MATHGoogle Scholar
  41. 41.
    Chang, K.C.: Variational methods for nondifferentiable functionals and applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Chau, O., Han, W., Sofonea, M.: Analysis and approximation of a viscoelastic contact problem with slip dependent friction. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 8, 153–174 (2001)MathSciNetMATHGoogle Scholar
  43. 43.
    Chau, O., Motreanu, D., Sofonea, M.: Quasistatic frictional problems for elastic and viscoelastic materials. Appl. Math. 47, 341–360 (2002)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Ciarlet, P.G.: Mathematical Elasticity, vol. I: Three-dimensional elasticity. Studies in Mathematics and its Applications, vol. 20, North-Holland, Amsterdam (1988)Google Scholar
  45. 45.
    Ciulcu, C., Motreanu, D., Sofonea, M.: Analysis of an elastic contact problem with slip dependent coefficient of friction. Math. Inequal. Appl. 4, 465–479 (2001)MathSciNetMATHGoogle Scholar
  46. 46.
    Clarke, F.H.: Generalized gradients and applications. Trans. Amer. Math. Soc. 205, 247–262 (1975)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Clarke, F.H.: Generalized gradients of Lipschitz functionals. Adv. Math. 40, 52–67 (1981)MATHCrossRefGoogle Scholar
  48. 48.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Interscience, New York (1983)MATHGoogle Scholar
  49. 49.
    Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)MATHGoogle Scholar
  50. 50.
    Cocu, M.: Existence of solutions of Signorini problems with friction. Int. J. Eng. Sci. 22, 567–581 (1984)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Cocu, M., Pratt, E., Raous, M.: Existence d’une solution du problème quasistatique de contact unilatéral avec frottement non local. C.R. Acad. Sci. Paris Sér. I Math. 320, 1413–1417 (1995)Google Scholar
  52. 52.
    Cocu, M., Pratt, E., Raous, M.: Formulation and approximation of quasistatic frictional contact. Int. J. Eng. Sci. 34, 783–798 (1996)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Cocu, M., Ricaud, J.M.: Existence results for a class of implicit evolution inequalities and application to dynamic unilateral contact problems with friction. C.R. Acad. Sci. Paris Sér. I Math. 329, 839–844 (1999)Google Scholar
  54. 54.
    Cocu, M., Ricaud, J.M.: Analysis of a class of implicit evolution inequalities associated to dynamic contact problems with friction. Int. J. Eng. Sci. 328, 1534–1549 (2000)MathSciNetGoogle Scholar
  55. 55.
    Cohn, D.L., Measure Theory. Birkhäuser, Boston (1980)MATHGoogle Scholar
  56. 56.
    Corneschi, C., Hoarau-Mantel, T.-V., Sofonea, M.: A quasistatic contact problem with slip dependent coefficient of friction for elastic materials. J. Appl. Anal. 8, 59–80 (2002)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Cristescu, N., Suliciu, I.: Viscoplasticity. Martinus Nijhoff Publishers, Editura Tehnicǎ, Bucharest (1982)MATHGoogle Scholar
  58. 58.
    Deimling, K.: Differential Inclusions. Springer, New York, Heidelberg, Berlin (1980)Google Scholar
  59. 59.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)MATHCrossRefGoogle Scholar
  60. 60.
    Demkowicz, I., Oden, J.T.: On some existence and uniqueness results in contact problems with non local friction. Nonlinear Anal. 6, 1075–1093 (1982)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Denkowski, Z., Migórski S.: A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. Nonlinear Anal. 60, 1415–1441 (2005)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Denkowski, Z., Migórski, S.: Hemivariational inequalities in thermoviscoelasticity. Nonlinear Anal. 63, e87–e97 (2005)MATHGoogle Scholar
  63. 63.
    Denkowski, Z., Migórski, S.: On sensitivity of optimal solutions to control problems for hyperbolic hemivariational inequalities. In: Cagnol, J., Zolesio, J.-P. (eds.), Control and Boundary Analysis, pp. 147–156. Marcel Dekker, New York (2005)Google Scholar
  64. 64.
    Denkowski, Z., Migórski, S., Ochal, A.: Existence and uniqueness to a dynamic bilateral frictional contact problem in viscoelasticity. Acta Appl. Math. 94, 251–276 (2006)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Denkowski, Z., Migórski, S., Ochal, A.: Optimal control for a class of mechanical thermoviscoelastic frictional contact problems. Control Cybernet. 36, 611–632 (2007)MathSciNetMATHGoogle Scholar
  66. 66.
    Denkowski, Z., Migórski, S., Papageorgiu, N.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers, Boston (2003)Google Scholar
  67. 67.
    Denkowski, Z., Migórski, S., Papageorgiu, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston (2003)Google Scholar
  68. 68.
    Diestel, J., Uhl, J.: Vector Measures. Mathematical Surveys and Monographs, vol. 15, AMS, Providence, RI (1977)Google Scholar
  69. 69.
    Dinculeanu, N.: Vector Measures. Akademie, Berlin (1966)MATHGoogle Scholar
  70. 70.
    Doghri, I.: Mechanics of Deformable Solids. Springer, Berlin (2000)MATHGoogle Scholar
  71. 71.
    Drozdov, A.D.: Finite Elasticity and Viscoelasticity—A Course in the Nonlinear Mechanics of Solids. World Scientific, Singapore (1996)MATHCrossRefGoogle Scholar
  72. 72.
    Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)MATHCrossRefGoogle Scholar
  73. 73.
    Dunford, N., Schwartz, J.: Linear Operators. Part I, Wiley, New York (1958)MATHGoogle Scholar
  74. 74.
    Duvaut, G.: Loi de frottement non locale. J. Méc. Th. et Appl. Special issue, 73–78 (1982)Google Scholar
  75. 75.
    Eck, C., Jarušek, J.: Existence results for the static contact problem with Coulomb friction. Math. Methods Appl. Sci. 8, 445–468 (1998)MATHCrossRefGoogle Scholar
  76. 76.
    Eck, C., Jarušek, J.: Existence results for the semicoercive static contact problem with Coulomb friction. Nonlinear Anal. 42, 961–976 (2000)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Eck, C., Jarušek, J., Krbeč, M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. Pure and Applied Mathematics, vol. 270, Chapman/CRC Press, New York (2005)Google Scholar
  78. 78.
    Eck, C., Jarušek, J., Sofonea, M.: A Dynamic elastic-visco-plastic unilateral contact problem with normal damped response and Coulomb friction. European J. Appl. Math. 21, 229–251 (2010)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)MATHGoogle Scholar
  80. 80.
    Evans, L.C.: Partial Differential Equations. AMS Press, Providence (1999)Google Scholar
  81. 81.
    Fichera, G.: Problemi elastostatici con vincoli unilaterali. II. Problema di Signorini con ambique condizioni al contorno. Mem. Accad. Naz. Lincei, VIII, vol. 7, 91–140 (1964)MathSciNetMATHGoogle Scholar
  82. 82.
    Friedman, A.: Variational Principles and Free-boundary Problems. Wiley, New York (1982)MATHGoogle Scholar
  83. 83.
    Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications, vol. 9, Chapman & Hall/CRC, Boca Raton, FL (2006)Google Scholar
  84. 84.
    Gasinski, L., Smolka, M.: An existence theorem for wave-type hyperbolic hemivariational inequalities. Math. Nachr. 242, 1–12 (2002)MathSciNetCrossRefGoogle Scholar
  85. 85.
    Germain, P., Muller, P.: Introduction à la mécanique des milieux continus, Masson, Paris (1980)MATHGoogle Scholar
  86. 86.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)MATHGoogle Scholar
  87. 87.
    Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)MATHGoogle Scholar
  88. 88.
    Goeleven, D., Miettinen, M., Panagiotopoulos, P.D.: Dynamic hemivariational inequalities and their applications. J. Optim. Theory Appl. 103, 567–601 (1999)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Goeleven, D., Motreanu, D.: Hyperbolic hemivariational inequality and nonlinear wave equation with discontinuities. In: Gilbert, R.P. et al. (eds.) From Convexity to Nonconvexity, pp. 111–122. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  90. 90.
    Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities, Theory, Methods and Applications, vol. I: Unilateral Analysis and Unilateral Mechanics. Kluwer Academic Publishers, Boston, Dordrecht, London (2003)Google Scholar
  91. 91.
    Goeleven, D., Motreanu, D.: Variational and Hemivariational Inequalities, Theory, Methods and Applications, vol. II: Unilateral Problems. Kluwer Academic Publishers, Boston, Dordrecht, London (2003)Google Scholar
  92. 92.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)MATHGoogle Scholar
  93. 93.
    Guo, X.: On existence and uniqueness of solution of hyperbolic differential inclusion with discontinuous nonlinearity. J. Math. Anal. Appl. 241, 198–213 (2000)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Guo, X.: The initial boundary value problem of mixed-typed hemivariational inequality. Int. J. Math. Math. Sci. 25, 43–52 (2001)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Guran, A. (ed.): Proceedings of the First International Symposium on Impact and Friction of Solids, Structures and Intelligent Machines. World Scientific, Singapore (2000)Google Scholar
  96. 96.
    Guran, A., Pfeiffer, F., Popp, K. (eds.): Dynamics with friction: modeling, analysis and experiment, Part I. World Scientific, Singapore (1996)MATHGoogle Scholar
  97. 97.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)MATHGoogle Scholar
  98. 98.
    Halmos, P.R.: Measure Theory. D. Van Nostrand Company, Princeton, Toronto, London, New York (1950)MATHGoogle Scholar
  99. 99.
    Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis. Springer, New York (1999)MATHGoogle Scholar
  100. 100.
    Han, W., Sofonea, M.: Evolutionary variational inequalities arising in viscoelastic contact problems. SIAM J. Numer. Anal. 38, 556–579 (2000)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Han W., Sofonea, M.: Time-dependent variational inequalities for viscoelastic contact problems, J. Comput. Appl. Math. 136, 369–387 (2001)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics, vol. 30, American Mathematical Society, Providence, RI-International Press, Somerville, MA (2002)Google Scholar
  103. 103.
    Haslinger, J., Hlaváček, I., Nečas J.: Numerical methods for unilateral problems in solid mechanics. In Handbook of Numerical Analysis, vol. IV, Ciarlet, P.G., and J.-L. Lions (eds.), North-Holland, Amsterdam, pp. 313–485 (1996)Google Scholar
  104. 104.
    Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer Academic Publishers, Boston, Dordrecht, London (1999)Google Scholar
  105. 105.
    Hewitt, E., Stromberg, K.: Abstract Analysis. Springer, New York, Inc. (1965)MATHCrossRefGoogle Scholar
  106. 106.
    Hild, P.: On finite element uniqueness studies for Coulomb’s frictional contact model. Int. J. Appl. Math. Comput. Sci. 12, 41–50 (2002)MathSciNetMATHGoogle Scholar
  107. 107.
    Hiriart-Urruty, J.-B., Lemaréchal C.: Convex Analysis and Minimization Algorithms, I, II. Springer, Berlin (1993)Google Scholar
  108. 108.
    Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1988)MATHCrossRefGoogle Scholar
  109. 109.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I: theory. Kluwer, Dordrecht, The Netherlands (1997)Google Scholar
  110. 110.
    Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990)Google Scholar
  111. 111.
    Ionescu, I.R., Dascalu, C., Campillo, M.: Slip-weakening friction on a periodic System of faults: spectral analysis. Z. Angew. Math. Phys. 53, 980–995 (2002)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Ionescu, I.R., Nguyen, Q.-L.: Dynamic contact problems with slip dependent friction in viscoelasticity. Int. J. Appl. Math. Comput. Sci. 12, 71–80 (2002)MathSciNetMATHGoogle Scholar
  113. 113.
    Ionescu, I.R., Nguyen, Q.-L., Wolf, S.: Slip displacement dependent friction in dynamic elasticity. Nonlinear Anal. 53, 375–390 (2003)MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Ionescu, I.R., Paumier, J.-C.: Friction dynamique avec coefficient dépandant de la vitesse de glissement. C.R. Acad. Sci. Paris Sér. I Math. 316, 121–125 (1993)Google Scholar
  115. 115.
    Ionescu, I.R., Paumier, J.-C.: On the contact problem with slip rate dependent friction in elastodynamics. Eur. J. Mech. A Solids 13, 556–568 (1994)MathSciNetGoogle Scholar
  116. 116.
    Ionescu, I.R., Paumier, J.-C.: On the contact problem with slip displacement dependent friction in elastostatics. Int. J. Eng. Sci. 34, 471–491 (1996)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Ionescu, I.R., Sofonea, M.: Functional and Numerical Methods in Viscoplasticity. Oxford University Press, Oxford (1993)MATHGoogle Scholar
  118. 118.
    Ionescu, I.R., Wolf, S.: Interaction of faults under slip dependent friction. Nonlinear eingenvalue analysis. Math. Methods Appl. Sci. 28, 77–100 (2005)MathSciNetMATHGoogle Scholar
  119. 119.
    Jarušek, J.: Contact problem with given time-dependent friction force in linear viscoelasticity. Comment. Math. Univ. Carolin. 31, 257–262 (1990)MathSciNetMATHGoogle Scholar
  120. 120.
    Jarušek, J.: Dynamic contact problems with given friction for viscoelastic bodies. Czechoslovak Math. J. 46, 475–487 (1996)MathSciNetMATHGoogle Scholar
  121. 121.
    Jarušek, J., Eck, C.: Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. Math. Models Methods Appl. Sci. 9, 11–34 (1999)MATHCrossRefGoogle Scholar
  122. 122.
    Jarušek, J., Málek, J., Nečas, J., Šverák, V.: Variational inequality for a viscous drum vibrating in the presence of an obstacle. Rend. Mat. Appl. 12, 943–958 (1992)MathSciNetMATHGoogle Scholar
  123. 123.
    Jarušek, J., Sofonea, M.: On the solvability of dynamic elastic-visco-plastic contact problems. ZAMM Z. Angew. Math. Mech. 88, 3–22 (2008)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Jarušek, J., Sofonea, M.: On the solvability of dynamic elastic-visco-plastic contact problems with adhesion. Ann. Acad. Rom. Sci. Ser. Math. Appl. 1, 191–214 (2009)MathSciNetGoogle Scholar
  125. 125.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  126. 126.
    Kalita, P.: Decay of energy of a system described by hyperbolic hemivariational inequality. Nonlinear Anal. 74, 116–1181 (2011)MathSciNetCrossRefGoogle Scholar
  127. 127.
    Khludnev, A.M., Sokolowski, J.: Modelling and Control in Solid Mechanics. Birkhäuser-Verlag, Basel (1997)MATHGoogle Scholar
  128. 128.
    Kikuchi, N., Oden, J.T.: Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Eng. Sci. 18, 1173–1284 (1980)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)MATHCrossRefGoogle Scholar
  130. 130.
    Kim, J.U.: A boundary thin obstacle problem for a wave equation. Comm. Part. Differ. Equat. 14, 1011–1026 (1989)MATHCrossRefGoogle Scholar
  131. 131.
    Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Classics in Applied Mathematics, vol. 31, SIAM, Philadelphia (2000)Google Scholar
  132. 132.
    Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht, The Netherlands (1991)Google Scholar
  133. 133.
    Klarbring, A., Mikelič, A., Shillor, M.: Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26, 811–832 (1988)MATHCrossRefGoogle Scholar
  134. 134.
    Klarbring, A., Mikelič, A., Shillor, M.: On friction problems with normal compliance. Nonlinear Anal. 13, 935–955 (1989)MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Komura, Y.: Nonlinear semigroups in Hilbert Spaces. J. Math. Soc. Japan 19, 493–507 (1967)MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Kufner, A., John, O., Fučik, S.: Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden (1977)Google Scholar
  137. 137.
    Kulig, A.: Hemivariational inequality approach to the dynamic viscoelastic contact problem with nonmonotone normal compliance and slip-dependent friction. Nonlinear Anal. Real World Appl. 9, 1741–1755 (2008)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Kuttler, K.L.: Dynamic friction contact problem with general normal and friction laws. Nonlinear Anal. 28, 559–575 (1997)MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    Kuttler, K.: Topics in Analysis. Private communication (2006)Google Scholar
  140. 140.
    Kuttler, K.L., Shillor, M.: Set-valued pseudomonotone maps and degenerate evolution inclusions. Commun. Contemp. Math. 1, 87–123 (1999)MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    Kuttler, K.L., Shillor, M.: Dynamic bilateral contact with discontinuous friction coefficient. Nonlinear Anal. 45, 309–327 (2001)MathSciNetMATHCrossRefGoogle Scholar
  142. 142.
    Kuttler, K.L., Shillor, M.: Dynamic contact with normal compliance, wear and discontinuous friction coefficient. SIAM J. Math. Anal. 34, 1–27 (2002)MathSciNetMATHCrossRefGoogle Scholar
  143. 143.
    Larsen, R.: Functional Analysis. Marcel Dekker, New York (1973)MATHGoogle Scholar
  144. 144.
    Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)MATHGoogle Scholar
  145. 145.
    Lemaître, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)MATHCrossRefGoogle Scholar
  146. 146.
    Lerguet, Z., Shillor, M., Sofonea, M.: A frictional contact problem for an electro-viscoelastic body. Electron. J. Differential Equations 170, 1–16 (2007)MathSciNetGoogle Scholar
  147. 147.
    Li, Y., Liu, Z.: Dynamic contact problem for viscoelastic piezoelectric materials with slip dependent friction. Nonlinear Anal. 71, 1414–1424 (2009)MathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    Li, Y., Liu, Z.: Dynamic contact problem for viscoelastic piezoelectric materials with normal damped response and friction. J. Math. Anal. Appl. 373, 726–738 (2011)MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Lions, J.-L.: Quelques méthodes de resolution des problémes aux limites non linéaires. Dunod, Paris (1969)MATHGoogle Scholar
  150. 150.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non-homogènes I. Dunod, Paris (1968); English translation: Non-homogeneous boundary value problems and applications, vol. I. Springer, New York, Heidelberg (1972)Google Scholar
  151. 151.
    Liu, Z., Migórski, S.: Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete Contin. Dyn. Syst. Ser. B 9, 129–143 (2008)MathSciNetMATHGoogle Scholar
  152. 152.
    Liu, Z., Migórski, S., Ochal, A.: Homogenization of boundary hemivariational inequalities in linear elasticity. J. Math. Anal. Appl. 340, 1347–1361 (2008)MathSciNetMATHCrossRefGoogle Scholar
  153. 153.
    Maceri, F., Bisegna, P.: The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Model. 28, 19–28 (1998)MathSciNetMATHCrossRefGoogle Scholar
  154. 154.
    Malvern, L.E.: Introduction to the Mechanics of a Continuum Medium. Princeton-Hall, NJ (1969)Google Scholar
  155. 155.
    Martins, J.A.C., Marques, M.D.P.M. (eds.): Contact Mechanics. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  156. 156.
    Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11, 407–428 (1987)MathSciNetCrossRefGoogle Scholar
  157. 157.
    Matysiak, S.J. (ed.): Contact Mechanics, Special issue of J. Theoret. Appl. Mech. 39(3) (2001)Google Scholar
  158. 158.
    Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springer, Berlin, Heidelberg (2000)MATHGoogle Scholar
  159. 159.
    Maz’ja, V.G.: Sobolev Spaces. Springer, Berlin (1985)Google Scholar
  160. 160.
    Migórski, S.: Existence, variational and optimal control problems for nonlinear second order evolution inclusions. Dynam. Systems Appl. 4, 513–528 (1995)MathSciNetMATHGoogle Scholar
  161. 161.
    Migórski, S.: Existence and relaxation results for nonlinear second order evolution inclusions. Discuss. Math. Differ. Incl. Control Optim. 15, 129–148 (1995)MATHGoogle Scholar
  162. 162.
    Migórski, S.: Evolution hemivariational inequalities in infinite dimension and their control. Nonlinear Anal. 47, 101–112 (2001)MathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    Migórski, S.: Homogenization technique in inverse problems for boundary hemivariational inequalities, Inverse Probl. Sci. Eng. 11, 229–242 (2003)CrossRefGoogle Scholar
  164. 164.
    Migórski, S.: Hemivariational inequalities modeling viscous incompressible fluids. J. Nonlinear Convex Anal. 5, 217–227 (2004)MathSciNetMATHGoogle Scholar
  165. 165.
    Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84, 669–699 (2005)MathSciNetMATHCrossRefGoogle Scholar
  166. 166.
    Migórski, S.: Boundary hemivariational inequalities of hyperbolic type and applications. J. Global Optim. 31, 505–533 (2005)MathSciNetMATHCrossRefGoogle Scholar
  167. 167.
    Migórski, S.: Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete Contin. Dyn. Syst. Ser. B 6, 1339–1356 (2006)MathSciNetMATHCrossRefGoogle Scholar
  168. 168.
    Migórski, S.: Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems. Comput. Math. Appl. 52, 677–698 (2006)MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    Migórski, S.: A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete Contin. Dyn. Syst. Ser. S 1, 117–126 (2008)MathSciNetMATHCrossRefGoogle Scholar
  170. 170.
    Migórski, S.: Evolution hemivariational inequalities with spplications. In: Gao, D.Y., Motreanu, D. (eds.), Handbook of Nonconvex Analysis and Applications, pp. 409–473. International Press, Boston (2010)Google Scholar
  171. 171.
    Migórski, S., Ochal, A.: Inverse coefficient problem for elliptic hemivariational inequality. In: Gao, D.Y., Ogden, R.W., Stavroulakis, G.E. (eds.), Nonsmooth/Nonconvex Mechanics: Modeling, Analysis and Numerical Methods, pp. 247–262. Kluwer Academic Publishers, Dordrecht, Boston, London (2001)Google Scholar
  172. 172.
    Migórski, S., Ochal, A.: Hemivariational inequality for viscoelastic contact problem with slip-dependent friction. Nonlinear Anal. 61, 135–161 (2005)MathSciNetMATHCrossRefGoogle Scholar
  173. 173.
    Migórski, S., Ochal, A.: Hemivariational inequalities for stationary Navier–Stokes equations. J. Math. Anal. Appl. 306, 197–217 (2005)MathSciNetMATHCrossRefGoogle Scholar
  174. 174.
    Migórski, S., Ochal, A.: A unified approach to dynamic contact problems in viscoelasticity. J. Elasticity 83, 247–275 (2006)MathSciNetMATHCrossRefGoogle Scholar
  175. 175.
    Migórski, S., Ochal, A.: Existence of solutions for second order evolution inclusions with application to mechanical contact problems. Optimization 55, 101–120 (2006)MathSciNetMATHCrossRefGoogle Scholar
  176. 176.
    Migórski, S.,Ochal, A.: Nonlinear impulsive evolution inclusions of second order. Dynam. Systems Appl. 16, 155–174 (2007)MathSciNetMATHGoogle Scholar
  177. 177.
    Migórski, S., Ochal, A.: Vanishing viscosity for hemivariational inequality modeling dynamic problems in elasticity. Nonlinear Anal. 66, 1840–1852 (2007)MathSciNetMATHCrossRefGoogle Scholar
  178. 178.
    Migórski, S., Ochal, A.: Dynamic bilateral contact problem for viscoelastic piezoelectric materials with adhesion. Nonlinear Anal. 69, 495–509 (2008)MathSciNetMATHCrossRefGoogle Scholar
  179. 179.
    Migórski, S., Ochal, A.: Quasistatic hemivariational inequality via vanishing acceleration approach. SIAM J. Math. Anal. 41, 1415–1435 (2009)MathSciNetMATHCrossRefGoogle Scholar
  180. 180.
    Migórski, S., Ochal, A.: Nonconvex inequality models for contact problems of nonsmooth mechanics. In: Kuczma, M., Wilmanski, K. (eds.) Computer Methods in Mechanics: Computational Contact Mechanics, Advanced Structured Materials, vol. 1, pp. 43–58. Springer, Berlin, Heidelberg (2010)Google Scholar
  181. 181.
    Migórski, S., Ochal, A., Sofonea, M.: Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math. Models Methods Appl. Sci. 18, 271–290 (2008)MathSciNetMATHCrossRefGoogle Scholar
  182. 182.
    Migórski, S., Ochal, A., Sofonea, M.: Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders. Nonlinear Anal. 70, 3738–3748 (2009)MathSciNetMATHCrossRefGoogle Scholar
  183. 183.
    Migórski, S., Ochal, A., Sofonea, M.: Modeling and analysis of an antiplane piezoelectric contact problem. Math. Models Methods Appl. Sci. 19, 1295–1324 (2009)MathSciNetMATHCrossRefGoogle Scholar
  184. 184.
    Migórski, S., Ochal, A., Sofonea, M.: Variational analysis of static frictional contact problems for electro-elastic materials. Math. Nachr. 283, 1314–1335 (2010)MathSciNetMATHCrossRefGoogle Scholar
  185. 185.
    Migórski, S., Ochal, A., Sofonea, M.: A dynamic frictional contact problem for piezoelectric materials. J. Math. Anal. Appl. 361, 161–176 (2010)MathSciNetMATHCrossRefGoogle Scholar
  186. 186.
    Migórski, S., Ochal, A., Sofonea, M.: Weak solvability of antiplane frictional contact problems for elastic cylinders. Nonlinear Anal. Real World Appl. 11, 172–183 (2010)MathSciNetMATHCrossRefGoogle Scholar
  187. 187.
    Migórski, S., Ochal, A., Sofonea, M.: Analysis of a dynamic contact problem for electro-viscoelastic cylinders. Nonlinear Anal. 73, 1221–1238 (2010)MathSciNetMATHCrossRefGoogle Scholar
  188. 188.
    Migórski, S., Ochal, A., Sofonea, M.: Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete Contin. Dyn. Syst. Ser. B 15, 687–705 (2011)MathSciNetMATHCrossRefGoogle Scholar
  189. 189.
    Migórski, S., Ochal, A., Sofonea, M.: History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics. Nonlinear Anal. Real World Appl. 12, 3384–3396 (2011)MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin, Heidelberg (2006)Google Scholar
  191. 191.
    Mordukhovich, B.: Variational Analysis and Generalized Differentiation II: Applications. Springer, Berlin, Heidelberg (2006)Google Scholar
  192. 192.
    Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities and Applications. Kluwer Academic Publishers, Boston, Dordrecht, London (1999)Google Scholar
  193. 193.
    Motreanu, D., Sofonea, M.: Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials. Abstr. Appl. Anal. 4, 255–279 (1999)MathSciNetMATHCrossRefGoogle Scholar
  194. 194.
    Motreanu, D., Sofonea, M.: Quasivariational inequalities and applications in frictional contact problems with normal compliance. Adv. Math. Sci. Appl. 10, 103–118 (2000)MathSciNetMATHGoogle Scholar
  195. 195.
    Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)Google Scholar
  196. 196.
    Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Praha (1967)MATHGoogle Scholar
  197. 197.
    Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York (1981)Google Scholar
  198. 198.
    Nguyen, Q.S.: Stability and Nonlinear Solid Mechanics. Wiley, Chichester (2000)Google Scholar
  199. 199.
    Ochal, A.: Existence results for evolution hemivariational inequalities of second order. Nonlinear Anal. 60, 1369–1391 (2005)MathSciNetMATHCrossRefGoogle Scholar
  200. 200.
    Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Engrg. 52, 527–634 (1985)MathSciNetMATHCrossRefGoogle Scholar
  201. 201.
    Oden, J.T., Pires, E.B.: Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity. J. Appl. Mech. 50, 67–76 (1983)MathSciNetMATHCrossRefGoogle Scholar
  202. 202.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser, Boston (1985)MATHCrossRefGoogle Scholar
  203. 203.
    Panagiotopoulos, P.D.: Nonconvex problems of semipermeable media and related topics. ZAMM Z. Angew. Math. Mech. 65, 29–36 (1985)MathSciNetMATHCrossRefGoogle Scholar
  204. 204.
    Panagiotopoulos, P.D.: Coercive and semicoercive hemivariational inequalities. Nonlinear Anal. 16, 209–231 (1991)MathSciNetMATHCrossRefGoogle Scholar
  205. 205.
    Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)MATHCrossRefGoogle Scholar
  206. 206.
    Panagiotopoulos, P.D.: Modelling of nonconvex nonsmooth energy problems: dynamic hemivariational inequalities with impact effects. J. Comput. Appl. Math. 63, 123–138 (1995)MathSciNetMATHCrossRefGoogle Scholar
  207. 207.
    Panagiotopoulos, P.D.: Hemivariational inequalities and fan-variational inequalities. New applications and results. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 43, 159–191 (1995)MathSciNetMATHGoogle Scholar
  208. 208.
    Panagiotopoulos, P.D., Pop, G.: On a type of hyperbolic variational-hemivariational inequalities. J. Appl. Anal. 5, 95–112 (1999)MathSciNetMATHCrossRefGoogle Scholar
  209. 209.
    Papageorgiou, N.S.: Existence of solutions for second-order evolution inclusions. Bull. Math. Soc. Sci. Math. Roumanie 37, 93–107 (1993)MathSciNetMATHGoogle Scholar
  210. 210.
    Papageorgiou, N.S., Yannakakis, N.: Second order nonlinear evolution inclusions I: existence and relaxation results. Acta Mat. Sin. (Engl. Ser.) 21, 977–996 (2005)Google Scholar
  211. 211.
    Papageorgiou, N.S., Yannakakis, N.: Second order nonlinear evolution inclusions II: structure of the solution set. Acta Mat. Sin. (Engl. Ser.) 22, 195–206 (2006)Google Scholar
  212. 212.
    Park, J.Y., Ha, T.G.: Existence of antiperiodic solutions for hemivariational inequalities. Nonlinear Anal. 68, 747–767 (2008)MathSciNetMATHCrossRefGoogle Scholar
  213. 213.
    Park, S.H., Park, J.Y., Jeong, J.M.: Boundary stabilization of hyperbolic hemivariational inequalities Acta Appl. Math. 104, 139–150 (2008)MathSciNetMATHGoogle Scholar
  214. 214.
    Pascali, D., Sburlan, S.: Nonlinear Mappings of Monotone Type. Sijthoff and Noordhoff International Publishers, Alpen aan den Rijn (1978)MATHGoogle Scholar
  215. 215.
    Patron, V.Z., Kudryavtsev, B.A.: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon & Breach, London (1988)Google Scholar
  216. 216.
    Pipkin, A.C.: Lectures in Viscoelasticity Theory. Applied Mathematical Sciences, vol. 7, George Allen & Unwin Ltd. London, Springer, New York (1972)Google Scholar
  217. 217.
    Rabinowicz, E.: Friction and Wear of Materials, 2nd edn. Wiley, New York (1995)Google Scholar
  218. 218.
    Raous, M., Jean, M., Moreau, J.J. (eds.): Contact Mechanics. Plenum Press, New York (1995)Google Scholar
  219. 219.
    Rocca, R.: Existence of a solution for a quasistatic contact problem with local friction. C.R. Acad. Sci. Paris Sér. I Math. 328, 1253–1258 (1999)Google Scholar
  220. 220.
    Rocca, R., Cocu, M.: Existence and approximation of a solution to quasistatic problem with local friction. Int. J. Eng. Sci. 39, 1233–1255 (2001)MathSciNetMATHCrossRefGoogle Scholar
  221. 221.
    Rochdi, M., Shillor, M., Sofonea, M.: Quasistatic viscoelastic contact with normal compliance and friction. J. Elasticity 51, 105–126 (1998)MathSciNetMATHCrossRefGoogle Scholar
  222. 222.
    Rockafellar, T.R.: Convex Analysis. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  223. 223.
    Rodríguez–Aros, A.D., Sofonea, M., Viaño, J.M.: A class of evolutionary variational inequalities with Volterra-type integral term. Math. Models Methods Appl. Sci. 14, 555–577 (2004)Google Scholar
  224. 224.
    Rodríguez–Aros, A.D., Sofonea, M., Viaño, J.M.: Numerical approximation of a viscoelastic frictional contact problem. C.R. Acad. Sci. Paris, Sér. II Méc. 334, 279–284 (2006)Google Scholar
  225. 225.
    Rodríguez–Aros, A.D., Sofonea, M., Viaño, J.M.: Numerical analysis of a frictional contact problem for viscoelastic materials with long-term memory. Numer. Math. 198, 327–358 (2007)Google Scholar
  226. 226.
    Royden, H.L.: Real Analysis. The Macmillan Company, New York, Collier-Macmillan Ltd, London (1963)MATHGoogle Scholar
  227. 227.
    Schatzman, M.: A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73, 138–191 (1980)MathSciNetMATHCrossRefGoogle Scholar
  228. 228.
    Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (1990)Google Scholar
  229. 229.
    Schwartz, L.: Théorie des Distributions. Hermann, Paris (1951)MATHGoogle Scholar
  230. 230.
    Shillor, M. (ed.): Recent advances in contact mechanics, Special issue of Math. Comput. Mode. 28 (4–8) (1998)Google Scholar
  231. 231.
    Shillor, M.: Quasistatic problems in contact mechanics. Int. J. Appl. Math. Comput. Sci. 11, 189–204 (2001)MathSciNetMATHGoogle Scholar
  232. 232.
    Shillor, M., Sofonea, M.: A quasistatic viscoelastic contact problem with friction. Int. J. Eng. Sci. 38, 1517–1533 (2000)MathSciNetMATHCrossRefGoogle Scholar
  233. 233.
    Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655, Springer, Berlin (2004)Google Scholar
  234. 234.
    Showalter, R.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. vol. 49, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI (1997)Google Scholar
  235. 235.
    Signorini, A.: Sopra alcune questioni di elastostatica. Atti della Società Italiana per il Progresso delle Scienze (1933)Google Scholar
  236. 236.
    Simon, J.: Compact sets in the space L p(0; T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)MathSciNetMATHCrossRefGoogle Scholar
  237. 237.
    Sofonea, M., El Essoufi, H.: A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal. 9, 229–242 (2004)Google Scholar
  238. 238.
    Sofonea, M., Han, W., Shillor, M.: Analysis and Approximation of Contact Problems with Adhesion or Damage. Pure and Applied Mathematics, vol. 276, Chapman-Hall/CRC Press, New York (2006)Google Scholar
  239. 239.
    Sofonea, M., Matei, A.: Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. Advances in Mechanics and Mathematics, vol. 18, Springer, New York (2009)Google Scholar
  240. 240.
    Sofonea, M., Rodríguez–Aros, A.D., Viaño J.M.: A class of integro-differential variational inequalities with applications to viscoelastic contact. Math. Comput. Model. 41, 1355–1369 (2005)Google Scholar
  241. 241.
    Sofonea, M., Viaño, J.M. (eds.), Mathematical Modelling and Numerical Analysis in Solid Mechanics. Special issue of Int. J. Appl. Math. Comput. Sci. 12 (1) (2002)Google Scholar
  242. 242.
    Strömberg, N.: Thermomechanical modelling of tribological systems. Ph.Thesis, D., no. 497, Linköping University, Sweden (1997)Google Scholar
  243. 243.
    Strömberg, N., Johansson, P., A. Klarbring, A.: Generalized standard model for contact friction and wear. In: Raous, M., Jean, M., Moreau, J.J. (eds.) Contact Mechanics, Plenum Press, New York (1995)Google Scholar
  244. 244.
    Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact friction and wear. Int. J. Solids Structures 33, 1817–1836 (1996)MATHCrossRefGoogle Scholar
  245. 245.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)MATHGoogle Scholar
  246. 246.
    Telega, J.J.: Topics on unilateral contact problems of elasticity and inelasticity. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.), Nonsmooth Mechanics and Applications, pp. 340–461. Springer, Wien (1988)Google Scholar
  247. 247.
    Telega, J.J.: Quasi-static Signorini’s contact problem with friction and duality. Int. Ser. Numer. Math. 101, 199–214 (1991)MathSciNetGoogle Scholar
  248. 248.
    Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge (2001)Google Scholar
  249. 249.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)Google Scholar
  250. 250.
    Truesdell, C. (ed.): Mechanics of Solids, vol. III: Theory of Viscoelasticity, Plasticity, Elastic Waves and Elastic Stability. Springer, Berlin (1973)Google Scholar
  251. 251.
    Wilson, W.R.D.: Modeling friction in sheet-metal forming simulation. In: Zabaras et al. (eds.), The Integration of Materials, Process and Product Design, pp. 139–147. Balkema, Rotterdam (1999)Google Scholar
  252. 252.
    Wloka, J.: Partielle Differentialgleichungen, Teubner, B.G., Stuttgart (1982) English translation: Partial Differential Equations. Cambridge University Press, Cambridge (1987)Google Scholar
  253. 253.
    Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002)Google Scholar
  254. 254.
    Wriggers, P., Nackenhorst, U. (eds.): Analysis and simulation of contact problems. Lecture Notes in Applied and Computational Mechanics, vol. 27, Springer, Berlin (2006)Google Scholar
  255. 255.
    Wriggers, P., Panagiotopoulos, P.D. (eds.): New Developments in Contact Problems. Springer, Wien, New York (1999)MATHGoogle Scholar
  256. 256.
    Xiao, Y., Huang, N.: Browder-Tikhonov regularization for a class of evolution second order hemivariational inequalities. J. Global Optim. 45, 371–388 (2009)MathSciNetMATHCrossRefGoogle Scholar
  257. 257.
    Yang, S.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)MATHGoogle Scholar
  258. 258.
    Yang, J.S., Batra, J.M., Liang, X.Q.: The cylindrical bending vibration of a laminated elastic plate due to piezoelectric acutators. Smart Mater. Struct. 3, 485–493 (1994)CrossRefGoogle Scholar
  259. 259.
    Yosida, K.: Functional Analysis, 5th edn. Springer, Berlin (1978)MATHCrossRefGoogle Scholar
  260. 260.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. I: Fixed-point Theorems, Springer, New York (1985)Google Scholar
  261. 261.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization. Springer, New York (1986)Google Scholar
  262. 262.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. IV: Applications to Mathematical Physics. Springer, New York (1988)Google Scholar
  263. 263.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. II/A: Linear Monotone Operators. Springer, New York (1990)Google Scholar
  264. 264.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990)Google Scholar
  265. 265.
    Zeidler, E.: Applied Functional Analysis: Main Principles and Their Applications. Springer, New York (1995)MATHGoogle Scholar
  266. 266.
    Zeidler, E.: Applied Functional Analysis: Applications of Mathematical Physics. Springer, New York (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stanisław Migórski
    • 1
  • Anna Ochal
    • 1
  • Mircea Sofonea
    • 2
  1. 1.Faculty of Mathematics and Computer Science Institute of Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Laboratoire de Mathématiques et Physique (LAMPS)Université de Perpignan Via DomitiaPerpignanFrance

Personalised recommendations