Skip to main content

The Energy of Random Graphs

  • Chapter
  • First Online:
  • 1719 Accesses

Abstract

In the previous chapter, several lower and upper bounds have been established for various classes of graphs, among which bipartite graphs are of particular interest. But only a few graphs attain the equalities in these bounds. In [105], an exact estimate of the energy of random graphs G n (p) was established, by using the Wigner semicircle law for any probability p. Furthermore, in [105], the energy of random multipartite graphs was investigated, by considering a generalization of the Wigner matrix, and some estimates of the energy of random multipartite graphs were obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Abreu, D.M. Cardoso, I. Gutman, E.A. Martins, M. Robbiano, Bounds for the signless Laplacian energy. Lin. Algebra Appl. 435, 2365–2374 (2011)

    MathSciNet  MATH  Google Scholar 

  2. C. Adiga, R. Balakrishnan, W. So, The skew energy of a digraph. Lin. Algebra Appl. 432, 1825–1835 (2010)

    MathSciNet  MATH  Google Scholar 

  3. C. Adiga, Z. Khoshbakht, I. Gutman, More graphs whose energy exceeds the number of vertices. Iran. J. Math. Sci. Inf. 2(2), 13–19 (2007)

    Google Scholar 

  4. C. Adiga, M. Smitha. On the skew Laplacian energy of a digraph. Int. Math. Forum 4, 1907–1914 (2009)

    MathSciNet  MATH  Google Scholar 

  5. C. Adiga, M. Smitha, On maximum degree energy of a graph. Int. J. Contemp. Math. Sci. 4, 385–396 (2009)

    MathSciNet  MATH  Google Scholar 

  6. J. Aihara, A new definition of Dewar-type resonance energies. J. Am. Chem. Soc. 98, 2750–2758 (1976)

    Google Scholar 

  7. AIM Workshop on Spectra of Families of Matrices Described by Graphs, Digraphs, and Sign Patterns – Open Questions, 7 December 2006

    Google Scholar 

  8. S. Akbari, E. Ghorbani, Choice number and energy of graphs. Lin. Algebra Appl. 429, 2687–2690 (2008)

    MathSciNet  MATH  Google Scholar 

  9. S. Akbari, E. Ghorbani, J.H. Koolen, M.R. Oboudi, On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs. Electron. J. Combinator. 17, R115 (2010)

    MathSciNet  Google Scholar 

  10. S. Akbari, E. Ghorbani, M.R. Oboudi, Edge addition, singular values and energy of graphs and matrices. Lin. Algebra Appl. 430, 2192–2199 (2009)

    MathSciNet  MATH  Google Scholar 

  11. S. Akbari, E. Ghorbani, S. Zare, Some relations between rank, chromatic number and energy of graphs. Discr. Math. 309, 601–605 (2009)

    MathSciNet  MATH  Google Scholar 

  12. S. Akbari, F. Moazami, S. Zare, Kneser graphs and their complements are hyperenergetic. MATCH Commun. Math. Comput. Chem. 61, 361–368 (2009)

    MathSciNet  MATH  Google Scholar 

  13. T. Aleksić, Upper bounds for Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 60, 435–439 (2008)

    MathSciNet  MATH  Google Scholar 

  14. F. Alinaghipour, B. Ahmadi, On the energy of complement of regular line graph. MATCH Commun. Math. Comput. Chem. 60, 427–434 (2008)

    MathSciNet  MATH  Google Scholar 

  15. A. Alwardi, N.D. Soner, I. Gutman, On the common-neighborhood energy of a graph. Bull. Acad. Serbe Sci. Arts (Cl. Math. Nat.) 143, 49–59 (2011)

    Google Scholar 

  16. E.O.D. Andriantiana, Unicyclic bipartite graphs with maximum energy. MATCH Commun. Math. Comput. Chem. 66, 913–926 (2011)

    MathSciNet  Google Scholar 

  17. E.O.D. Andriantiana, More trees with large energy. MATCH Commun. Math. Comput. Chem. 68, 675–695 (2012)

    Google Scholar 

  18. E.O.D. Andriantiana, S. Wagner, Unicyclic graphs with large energy. Lin. Algebra Appl. 435, 1399–1414 (2011)

    MathSciNet  MATH  Google Scholar 

  19. G. Anderson, O. Zeitouni, A CLT for a band matrix model. Probab. Theor. Relat. Field. 134, 283–338 (2005)

    MathSciNet  Google Scholar 

  20. M. Aouchiche, P. Hansen, A survey of automated conjectures in spectral graph theory. Lin. Algebra Appl. 432, 2293–2322 (2010)

    MathSciNet  MATH  Google Scholar 

  21. M. Aouchiche, P. Hansen, A survey of Nordhaus–Gaddum type relations. Les Cahiers du GERAD G-2010-74, X+1–81 (2010)

    Google Scholar 

  22. S.K. Ayyaswamy, S. Balachandran, I. Gutman, On second-stage spectrum and energy of a graph. Kragujevac J. Math. 34, 139–146 (2010)

    MathSciNet  Google Scholar 

  23. S.K. Ayyaswamy, S. Balachandran, I. Gutman, Upper bound for the energy of strongly connected digraphs. Appl. Anal. Discr. Math. 5, 37–45 (2011)

    MathSciNet  Google Scholar 

  24. D. Babić, I. Gutman, More lower bounds for the total π-electron energy of alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 32, 7–17 (1995)

    Google Scholar 

  25. Z.D. Bai, Methodologies in spectral analysis of large dimensional random matrices, a review, Statistica Sinica 9, 611–677 (1999)

    MathSciNet  MATH  Google Scholar 

  26. R. Balakrishnan, The energy of a graph. Lin. Algebra Appl. 387, 287–295 (2004)

    MATH  Google Scholar 

  27. R.B. Bapat, Graphs and Matrices, Section 3.4 (Springer, Hindustan Book Agency, London, 2011)

    Google Scholar 

  28. R.B. Bapat, S. Pati, Energy of a graph is never an odd integer. Bull. Kerala Math. Assoc. 1, 129–132 (2004)

    MathSciNet  Google Scholar 

  29. A. Barenstein, R. Gay, Complex Variables (Springer, New York, 1991)

    Google Scholar 

  30. S. Barnard, J.M. Child, Higher Algebra (MacMillan, London, 1952)

    Google Scholar 

  31. R. Bhatia, Matrix Analysis (Springer, New York, 1997)

    Google Scholar 

  32. F.M. Bhatti, K.C. Das, S.A. Ahmed, On the energy and spectral properties of the He matrix of the hexagonal systems. Czech. Math. J., in press

    Google Scholar 

  33. N. Biggs, Algebriac Graph Theory (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  34. P. Billingsley, Probability and Measure (Wiley, New York, 1995)

    MATH  Google Scholar 

  35. S.R. Blackburn, I.E. Shparlinski, On the average energy of circulant graphs. Lin. Algebra Appl. 428, 1956–1963 (2008)

    MathSciNet  MATH  Google Scholar 

  36. D.A. Bochvar, I.V. Stankevich, Approximate formulas for some characteristics of the electron structure of molecules, 1. Total electron energy. Zh. Strukt. Khim. 21, 61–66 (in Russian) (1980)

    Google Scholar 

  37. B. Bollobás, Extremal Graph Theory (Academic, London, 1978)

    MATH  Google Scholar 

  38. B. Bollobás, Random Graphs (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  39. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications (MacMllan, London, 1976)

    MATH  Google Scholar 

  40. J.A. Bondy, U.S.R. Murty, Graph Theory (Springer, Berlin, 2008)

    MATH  Google Scholar 

  41. A.S. Bonifácio, N.M.M. de Abreu, C.T.M. Vinagre, I. Gutman, Hyperenergetic and non-hyperenergetic graphs, in Proceedings of the XXXI Congresso Nacional de Matematica Applicada e Computacional (CNMAC 2008), Belem (Brazil), 2008, pp. 1–6 (in Portuguese)

    Google Scholar 

  42. A.S. Bonifácio, C.T.M. Vinagre, N.M.M. de Abreu, Constructing pairs of equienergetic and non-cospectral graphs. Appl. Math. Lett. 21, 338–341 (2008)

    MathSciNet  MATH  Google Scholar 

  43. B. Borovićanin, I. Gutman, in Nullity of Graphs, ed. by D. Cvetković, I. Gutman. Applications of Graph Spectra (Mathematical Institute, Belgrade, 2009), pp. 107–122

    Google Scholar 

  44. S.B. Bozkurt, A.D. Güngör, I. Gutman, A.S. Çevik, Randić matrix and Randić energy. MATCH Commun. Math. Comput. Chem. 64, 239–250 (2010)

    MathSciNet  Google Scholar 

  45. S.B. Bozkurt, A.D. Güngör, B. Zhou, Note on the distance energy of graphs. MATCH Commun. Math. Comput. Chem. 64, 129–134 (2010)

    MathSciNet  Google Scholar 

  46. V. Božin, M. Mateljević, Energy of Graphs and Orthogonal Matrices, ed. by W. Gautschi, G. Mastroianni, T.M. Rassias. Approximation and Computation – In Honor of Gradimir V. Milovanović (Springer, New York, 2011), pp. 85–94

    Google Scholar 

  47. V. Brankov, D. Stevanović, I. Gutman, Equienergetic chemical trees. J. Serb. Chem. Soc. 69, 549–553 (2004)

    Google Scholar 

  48. A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance–Regular Graphs (Springer, New York, 1989)

    MATH  Google Scholar 

  49. A.E. Brouwer, W.H. Haemers, Spectra of Graphs (Springer, Berlin, 2012)

    MATH  Google Scholar 

  50. R. Brualdi, Energy of a Graph, in: Notes for AIM Workshop on Spectra of Families of Matrices Described by Graphs, Digraphs, and Sign Patterns, 2006

    Google Scholar 

  51. Y. Cao, A. Lin, R. Luo, X. Zha, On the minimal energy of unicyclic Hückel molecular graphs possessing Kekulé structures. Discr. Appl. Math. 157, 913–919 (2009)

    MathSciNet  MATH  Google Scholar 

  52. G. Caporossi, E. Chasset, B. Furtula, Some conjectures and properties on distance energy. Les Cahiers du GERAD G-2009-64, V + 1–7 (2009)

    Google Scholar 

  53. G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy. J. Chem. Inf. Comput. Sci. 39, 984–996 (1999)

    Google Scholar 

  54. D.M. Cardoso, E.A. Martins, M. Robbiano, V. Trevisan, Computing the Laplacian spectra of some graphs. Discr. Appl. Math. doi:10.1016/j.dam.2011.04.002

    Google Scholar 

  55. D.M. Cardoso, I. Gutman, E.A. Martins, M. Robbiano, A generalization of Fiedler’s lemma and some applications. Lin. Multilin. Algebra 435, 2365–2374 (2011)

    MathSciNet  MATH  Google Scholar 

  56. P.C. Carter, An empirical equation for the resonance energy of polycyclic aromatic hydrocarbons. Trans. Faraday Soc. 45, 597–602 (1949)

    Google Scholar 

  57. M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R  − 1 of graphs. Lin. Algebra Appl. 433, 172–190 (2010)

    MathSciNet  MATH  Google Scholar 

  58. A. Chen, A. Chang, W.C. Shiu, Energy ordering of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 55, 95–102 (2006)

    MathSciNet  MATH  Google Scholar 

  59. B. Cheng, B. Liu, On the nullity of graphs. El. J. Lin. Algebra 16, 60–67 (2007)

    MathSciNet  MATH  Google Scholar 

  60. C.M. Cheng, R.A. Horn, C.K. Li, Inequalities and equalities for the Cartesian decomposition of complex matrices. Lin. Algebra Appl. 341, 219–237 (2002)

    MathSciNet  MATH  Google Scholar 

  61. R. Churchill, J. Brown, Complex Variables and Applications (McGraw–Hill, New York, 1984)

    Google Scholar 

  62. J. Cioslowski, Upper bound for total π-electron energy of benzenoid hydrocarbons. Z. Naturforsch. 40a, 1167–1168 (1985)

    Google Scholar 

  63. J. Cioslowski, The use of the Gauss–Chebyshev quadrature in estimation of the total π-electron energy of benzenoid hydrocarbons. Z. Naturforsch. 40a, 1169–1170 (1985)

    Google Scholar 

  64. J. Cioslowski, Additive nodal increments for approximate calculation of the total π-electron energy of benzenoid hydrocarbons. Theor. Chim. Acta 68, 315–319 (1985)

    Google Scholar 

  65. J. Cioslowski, Decomposition of the total π-electron energy of polycyclic hydrocarbons into the benzene ring increments. Chem. Phys. Lett. 122, 234–236 (1985)

    Google Scholar 

  66. J. Cioslowski, The generalized McClelland formula. MATCH Commun. Math. Chem. 20, 95–101 (1986)

    Google Scholar 

  67. J. Cioslowski, A unified theory of the stability of benzenoid hydrocarbons. Int. J. Quantum Chem. 31, 581–590 (1987)

    Google Scholar 

  68. J. Cioslowski, Scaling properties of topological invariants. Topics Curr. Chem. 153, 85–99 (1990)

    Google Scholar 

  69. J. Cioslowski, A final solution of the problem concerning the (N, M, K)-dependence of the total π-electron energy of conjugated systems? MATCH Commun. Math. Chem. 25, 83–93 (1990)

    Google Scholar 

  70. J. Cioslowski, I. Gutman, Upper bounds for the total π-electron energy of benzenoid hydrocarbons and their relations. Z. Naturforsch. 41a, 861–865 (1986)

    Google Scholar 

  71. V. Consonni, R. Todeschini, New spectral index for molecule description. MATCH Commun. Math. Comput. Chem. 60, 3–14 (2008)

    MathSciNet  MATH  Google Scholar 

  72. J. Conway, Functions of One Complex Variable (Springer, Berlin, 1978)

    Google Scholar 

  73. C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules. Proc. Cambridge Phil. Soc. 36, 201–203 (1940)

    Google Scholar 

  74. C.A. Coulson, J. Jacobs, Conjugation across a single bond. J. Chem. Soc. 2805–2812 (1949)

    Google Scholar 

  75. C.A. Coulson, H.C. Longuet–Higgins, The electronic structure of conjugated systems. I. General theory. Proc. Roy. Soc. A 191, 39–60 (1947)

    Google Scholar 

  76. C.A. Coulson, B. O’Leary, R.B. Mallion, Hückel Theory for Organic Chemists (Academic, London, 1978)

    Google Scholar 

  77. R. Craigen, H. Kharaghani, in Hadamard Matrices and Hadamard Designs, ed. by C.J. Colbourn, J.H. Denitz. Handbook of Combinatorial Designs, Chapter V.1 (Chapman & Hall/CRC, Boca Raton, 2007)

    Google Scholar 

  78. Z. Cui, B. Liu, On Harary matrix, Harary index and Harary energy. MATCH Commun. Math. Comput. Chem. 68, 815–823 (2012)

    Google Scholar 

  79. D. Cvetković, A table of connected graphs on six vertices. Discr. Math. 50, 37–49 (1984)

    MATH  Google Scholar 

  80. D. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra (North–Holland, Amsterdam, 1988)

    Google Scholar 

  81. D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application (Academic, New York, 1980)

    Google Scholar 

  82. D. Cvetković, J. Grout, Graphs with extremal energy should have a small number of distinct eigenvalues. Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 134, 43–57 (2007)

    Google Scholar 

  83. D. Cvetković, I. Gutman, The algebraic multiplicity of the number zero in the spectrum of a bipartite graph. Mat. Vesnik, 9, 141–150 (1972)

    MathSciNet  Google Scholar 

  84. D. Cvetković, I. Gutman, The computer system GRAPH: A useful tool in chemical graph theory. J. Comput. Chem. 7, 640–644 (1986)

    Google Scholar 

  85. D. Cvetković, I. Gutman (eds.), Applications of Graph Spectra (Mathematical Institution, Belgrade, 2009)

    MATH  Google Scholar 

  86. D. Cvetković, I. Gutman (eds.) Selected Topics on Applications of Graph Spectra (Mathematical Institute, Belgrade, 2011)

    MATH  Google Scholar 

  87. D. Cvetković, M. Petrić, A table of connected graphs on six vertices. Discr. Math. 50, 37–49 (1984)

    MATH  Google Scholar 

  88. D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs. Lin. Algebra Appl. 423, 155–171 (2007)

    MATH  Google Scholar 

  89. D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  90. K.C. Das, Sharp bounds for the sum of the squares of the degrees of a graph. Kragujevac J. Math. 25, 31–49 (2003)

    MathSciNet  MATH  Google Scholar 

  91. K.C. Das, Maximizing the sum of the squares of the degrees of a graph. Discr. Math. 285, 57–66 (2004)

    MATH  Google Scholar 

  92. K.C. Das, F.M. Bhatti, S.G. Lee, I. Gutman, Spectral properties of the He matrix of hexagonal systems. MATCH Commun. Math. Comput. Chem. 65, 753–774 (2011)

    MathSciNet  Google Scholar 

  93. K.C. Das, P. Kumar, Bounds on the greatest eigenvalue of graphs. Indian J. Pure Appl. Math. 34, 917–925 (2003)

    MathSciNet  MATH  Google Scholar 

  94. J. Day, W. So, Singular value inequality and graph energy change. El. J. Lin. Algebra 16, 291–299 (2007)

    MathSciNet  MATH  Google Scholar 

  95. J. Day, W. So, Graph energy change due to edge deletion. Lin. Algebra Appl. 428, 2070–2078 (2008)

    MathSciNet  MATH  Google Scholar 

  96. N.N.M. de Abreu, C.T.M. Vinagre, A.S. Bonifácio, I. Gutman, The Laplacian energy of some Laplacian integral graphs. MATCH Commun. Math. Comput. Chem. 60, 447–460 (2008)

    MathSciNet  MATH  Google Scholar 

  97. D. de Caen, An upper bound on the sum of squares of degrees in a graph. Discr. Math. 185, 245–248 (1998)

    MATH  Google Scholar 

  98. J.A. de la Peña, L. Mendoza, Moments and π-electron energy of hexagonal systems in 3-space. MATCH Commun. Math. Comput. Chem. 56, 113–129 (2006)

    MathSciNet  MATH  Google Scholar 

  99. J.A. de la Peña, L. Mendoza, J. Rada, Comparing momenta and π-electron energy of benzenoid molecules. Discr. Math. 302, 77–84 (2005)

    MATH  Google Scholar 

  100. P. Deift, Orthogonal Polynomials and Random Matrices – A Riemann–Hilbert Approach (American Mathematical Society, New York, 2000)

    MATH  Google Scholar 

  101. M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw–Hill, New York, 1969)

    Google Scholar 

  102. M. Doob, Graphs with a small number of distinct eigenvalues. Ann. New York Acad. Sci. 175, 104–110 (1970)

    MathSciNet  MATH  Google Scholar 

  103. W. Du, X. Li, Y. Li, Various energies of random graphs. MATCH Commun. Math. Comput. Chem. 64, 251–260 (2010)

    MathSciNet  Google Scholar 

  104. W. Du, X. Li, Y. Li, The Laplacian energy of random graphs. J. Math. Anal. Appl. 368, 311–319 (2010)

    MathSciNet  MATH  Google Scholar 

  105. W. Du, X. Li, Y. Li, The energy of random graphs. Lin. Algebra Appl. 435, 2334–2346 (2011)

    MathSciNet  MATH  Google Scholar 

  106. W. England, K. Ruedenberg, Why is the delocalization energy negative and why is it proportional to the number of π electrons? J. Am. Chem. Soc. 95, 8769–8775 (1973)

    Google Scholar 

  107. S. Fajtlowicz, On conjectures of Grafitti. II. Congr. Numer. 60, 187–197 (1987)

    MathSciNet  Google Scholar 

  108. K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Natl. Acad. Sci. USA 37, 760–766 (1951)

    MATH  Google Scholar 

  109. G.H. Fath-Tabar, A.R. Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy of graphs. Math. Commun. 15, 443–451 (2010)

    MathSciNet  MATH  Google Scholar 

  110. G.H. Fath-Tabar, A.R. Ashrafi, I. Gutman, Note on Laplacian energy of graphs. Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 137, 1–10 (2008)

    Google Scholar 

  111. E.J. Farrell, An introduction to matching polynomials. J. Comb. Theor. B 27, 75–86 (1979)

    MATH  Google Scholar 

  112. E.J. Farrell, The matching polynomial and its relation to the acyclic polynomial of a graph. Ars Combin. 9, 221–228 (1980)

    MathSciNet  MATH  Google Scholar 

  113. O. Favaron, M. Mahéo, J.F. Saclé, Some eigenvalue properties of graphs (Conjectures of Grafitti – II). Discr. Math. 111, 197–220 (1993)

    MATH  Google Scholar 

  114. M. Fiedler, Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices. Czech. Math. J. 24, 392–402 (1974)

    MathSciNet  Google Scholar 

  115. M. Fiedler, Additive compound graphs. Discr. Math. 187, 97–108 (1998)

    MathSciNet  MATH  Google Scholar 

  116. S. Fiorini, I. Gutman, I. Sciriha, Trees with maximum nullity. Lin. Algebra Appl. 397, 245–251 (2005)

    MathSciNet  MATH  Google Scholar 

  117. P.W. Fowler, Energies of Graphs and Molecules, ed. by T.E. Simos, G. Maroulis. Computational Methods in Modern Science and Engineering, vol. 2 (Springer, New York, 2010), pp. 517–520

    Google Scholar 

  118. H. Fripertinger, I. Gutman, A. Kerber, A. Kohnert, D. Vidović, The energy of a graph and its size dependence. An improved Monte Carlo approach. Z. Naturforsch. 56a, 342–346 (2001)

    Google Scholar 

  119. E. Fritscher, C. Hoppen, I. Rocha, V. Trevisan, On the sum of the Laplacian eigenvalues of a tree. Lin. Algebra Appl. 435, 371–399 (2011)

    MathSciNet  MATH  Google Scholar 

  120. Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)

    MathSciNet  MATH  Google Scholar 

  121. B. Furtula, S. Radenković, I. Gutman, Bicyclic molecular graphs with greatest energy. J. Serb. Chem. Soc. 73, 431–433 (2008)

    Google Scholar 

  122. K.A. Germina, S.K. Hameed, T. Zaslavsky, On products and line graphs of signed graphs, their eigenvalues and energy. Lin. Algebra Appl. 435, 2432–2450 (2011)

    MATH  Google Scholar 

  123. E. Ghorbani, J.H. Koolen, J.Y. Yang, Bounds for the Hückel energy of a graph. El. J. Comb. 16, #R134 (2009)

    Google Scholar 

  124. C.D. Godsil, I. Gutman, On the theory of the matching polynomial. J. Graph Theor. 5, 137–144 (1981)

    MathSciNet  MATH  Google Scholar 

  125. C. Godsil, G. Royle, Algebraic Graph Theory (Springer, New York, 2001)

    MATH  Google Scholar 

  126. S.C. Gong, G.H. Xu, 3-Regular digraphs with optimum skew energy. Lin. Algebra Appl. 436, 465–471 (2012)

    MathSciNet  MATH  Google Scholar 

  127. A. Graovac, D. Babić, K. Kovačević, Simple estimates of the total and the reference pi-electron energy of conjugated hydrocarbons. Stud. Phys. Theor. Chem. 51, 448–457 (1987)

    Google Scholar 

  128. A. Graovac, I. Gutman, P.E. John, D. Vidović, I. Vlah, On statistics of graph energy. Z. Naturforsch. 56a, 307–311 (2001)

    Google Scholar 

  129. A. Graovac, I. Gutman, O.E. Polansky, Topological effect on MO energies, IV. The total π-electron energy of S– and T-isomers. Monatsh. Chem. 115, 1–13 (1984)

    Google Scholar 

  130. A. Graovac, I. Gutman, N. Trinajstić, On the Coulson integral formula for total π-electron energy. Chem. Phys. Lett. 35, 555–557 (1975)

    Google Scholar 

  131. A. Graovac, I. Gutman, N. Trinajstić, A linear relationship between the total π-electron energy and the characteristic polynomial. Chem. Phys. Lett. 37, 471–474 (1976)

    Google Scholar 

  132. A. Graovac, I. Gutman, N. Trinajstić, Graph–theoretical study of conjugated hydrocarbons: Total pi-electron energies and their differences. Int. J. Quantum Chem. 12(Suppl. 1), 153–155 (1977)

    Google Scholar 

  133. A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules (Springer, Berlin, 1977)

    MATH  Google Scholar 

  134. R. Grone, R. Merris, The Laplacian spectrum of a graph II. SIAM J. Discr. Math. 7, 221–229 (1994)

    MathSciNet  MATH  Google Scholar 

  135. R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11, 218–238 (1990)

    MathSciNet  MATH  Google Scholar 

  136. E. Gudiño, J. Rada, A lower bound for the spectral radius of a digraph. Lin. Algebra Appl. 433, 233–240 (2010)

    MATH  Google Scholar 

  137. A.D. Güngör, S.B. Bozkurt, On the distance spectral radius and distance energy of graphs. Lin. Multilin. Algebra 59, 365–370 (2011)

    MATH  Google Scholar 

  138. A.D. Güngör, A.S. Çevik, On the Harary energy and Harary Estrada index of a graph. MATCH Commun. Math. Comput. Chem. 64, 281–296 (2010)

    MathSciNet  Google Scholar 

  139. H.H. Günthard, H. Primas, Zusammenhang von Graphentheorie und MO–Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39, 1645–1653 (1956)

    Google Scholar 

  140. J. Guo, Sharp upper bounds for total π-electron energy of alternant hydrocarbons. J. Math. Chem. 43, 713–718 (2008)

    MathSciNet  MATH  Google Scholar 

  141. J. Guo, On the minimal energy ordering of trees with perfect matchings. Discr. Appl. Math. 156, 2598–2605 (2008)

    MATH  Google Scholar 

  142. I. Gutman, Bounds for total π-electron energy. Chem. Phys. Lett. 24, 283–285 (1974)

    Google Scholar 

  143. I. Gutman, Estimating the π-electron energy of very large conjugated systems. Die Naturwissenschaften 61, 216–217 (1974)

    Google Scholar 

  144. I. Gutman, The nonexistence of topological formula for total π-electron energy. Theor. Chim. Acta 35, 355–359 (1974)

    Google Scholar 

  145. I. Gutman, Acyclic systems with extremal Hückel π-electron energy. Theor. Chim. Acta 45, 79–87 (1977)

    Google Scholar 

  146. I. Gutman, Bounds for total π-electron energy of polymethines. Chem. Phys. Lett. 50, 488–490 (1977)

    Google Scholar 

  147. I. Gutman, A class of approximate topological formulas for total π-electron energy. J. Chem. Phys. 66, 1652–1655 (1977)

    Google Scholar 

  148. I. Gutman, A topological formula for total π-electron energy. Z. Naturforsch. 32a, 1072–1073 (1977)

    Google Scholar 

  149. I. Gutman, The energy of a graph. Ber. Math.–Statist. Sekt. Forschungsz. Graz 103, 1–22 (1978)

    Google Scholar 

  150. I. Gutman, Bounds for Hückel total π-electron energy. Croat. Chem. Acta 51, 299–306 (1978)

    Google Scholar 

  151. I. Gutman, The matching polynomial. MATCH Commun. Math. Comput. Chem. 6, 75–91 (1979)

    MATH  Google Scholar 

  152. I. Gutman, Total π-electron energy of a class of conjugated polymers. Bull. Soc. Chim. Beograd 45, 67–68 (1980)

    Google Scholar 

  153. I. Gutman, New approach to the McClelland approximation. MATCH Commun. Math. Comput. Chem. 14, 71–81 (1983)

    Google Scholar 

  154. I. Gutman, Bounds for total π-electron energy of conjugated hydrocarbons. Z. Phys. Chem. (Leipzig) 266, 59–64 (1985)

    Google Scholar 

  155. I. Gutman, Acyclic conjugated molecules, tree and their energies. J. Math. Chem. 1, 123–143 (1987)

    MathSciNet  Google Scholar 

  156. I. Gutman, The generalized Cioslowski formula. MATCH Commun. Math. Comput. Chem. 22, 269–275 (1987)

    Google Scholar 

  157. I. Gutman, On the dependence of the total π-electron energy of a benzenoid hydrocarbon on the number of Kekulé structures. Chem. Phys. Lett. 156, 119–121 (1989)

    Google Scholar 

  158. I. Gutman, McClelland-type lower bound for total π-electron energy. J. Chem. Soc. Faraday Trans. 86, 3373–3375 (1990)

    Google Scholar 

  159. I. Gutman, McClelland–type approximations for total π-electron energy of benzenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 26, 123–135 (1991)

    Google Scholar 

  160. I. Gutman, Estimation of the total π-electron energy of a conjugated molecule. J. Chin. Chem. Soc. 39, 1–5 (1992)

    Google Scholar 

  161. I. Gutman, Total π-electron energy of benzenoid hydrocarbons. Topics Curr. Chem. 162, 29–63 (1992)

    Google Scholar 

  162. I. Gutman, Remark on the moment expansion of total π-electron energy. Theor. Chim. Acta 83, 313–318 (1992)

    Google Scholar 

  163. I. Gutman, Approximating the total π-electron energy of benzenoid hydrocarbons: A record accurate formula of (n, m)-type. MATCH Commun. Math. Comput. Chem. 29, 61–69 (1993)

    MATH  Google Scholar 

  164. I. Gutman, Approximating the total π-electron energy of benzenoid hydrocarbons: On an overlooked formula of Cioslowski. MATCH Commun. Math. Comput. Chem. 29, 71–79 (1993)

    MATH  Google Scholar 

  165. I. Gutman, A regularity for the total π-electron energy of phenylenes. MATCH Commun. Math. Comput. Chem. 31, 99–110 (1994)

    Google Scholar 

  166. I. Gutman, An approximate Hückel total π-electron energy formula for benzenoid aromatics: Some amendments. Polyc. Arom. Comp. 4, 271–274 (1995)

    Google Scholar 

  167. I. Gutman, A class of lower bounds for total π-electron energy of alternant conjugated hydrocarbons. Croat. Chem. Acta 68, 187–192 (1995)

    Google Scholar 

  168. I. Gutman, On the energy of quadrangle-free graphs. Coll. Sci. Papers Fac. Sci. Kragujevac 18, 75–82 (1996)

    MATH  Google Scholar 

  169. I. Gutman, Note on Türker’s approximate formula for total π-electron energy of benzenoid hydrocarbons. ACH – Models Chem. 133, 415–420 (1996)

    Google Scholar 

  170. I. Gutman, Hyperenergetic molecular graphs. J. Serb. Chem. Soc. 64, 199–205 (1999)

    Google Scholar 

  171. I. Gutman, On the Hall rule in the theory of benzenoid hydrocarbons. Int. J. Quant. Chem. 74, 627–632 (1999)

    Google Scholar 

  172. I. Gutman, A simple (n, m)-type estimate of the total π-electron energy. Indian J. Chem. 40A, 929–932 (2001)

    Google Scholar 

  173. I. Gutman, in The Energy of a Graph: Old and New Results, ed. by A. Betten, A. Kohnert, R. Laue, A. Wassermann. Algebraic Combinatorics and Applications (Springer, Berlin, 2001), pp. 196–211

    Google Scholar 

  174. I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on moleculr topology. J. Serb. Chem. Soc. 70, 441–456 (2005)

    Google Scholar 

  175. I. Gutman, Cyclic conjugation energy effects in polycyclic π-electron systems. Monatsh. Chem. 136, 1055–1069 (2005)

    Google Scholar 

  176. I. Gutman, in Chemical Graph Theory – The Mathematical Connection, ed. by J.R. Sabin, E.J. Brändas. Advances in Quantum Chemistry 51 (Elsevier, Amsterdam, 2006), pp. 125–138

    Google Scholar 

  177. I. Gutman, On graphs whose energy exceeds the number of vertices. Lin. Algebra Appl. 429, 2670–2677 (2008)

    MATH  Google Scholar 

  178. I. Gutman, in Hyperenergetic and Hypoenergetic Graphs, ed. by D. Cvetković, I. Gutman. Selected Topics on Applications of Graph Spectra (Mathematical Institute, Belgrade, 2011), pp. 113–135

    Google Scholar 

  179. I. Gutman, Generalizing the McClelland and Koolen–Moulton inequalities for total π-electron energy. Int. J. Chem. Model. 3, (2012) in press

    Google Scholar 

  180. I. Gutman, A.R. Ashrafi, G.H. Fath–Tabar, Equienergetic graphs. Farhang va Andishe-e-Riazi 15, 41–50 (1389) (in Persian, 1389 ∼ 2011)

    Google Scholar 

  181. I. Gutman, N. Cmiljanović, S. Milosavljević, S. Radenković, Effect of non-bonding molecular orbitals on total π-electron energy. Chem. Phys. Lett. 383, 171–175 (2004)

    Google Scholar 

  182. I. Gutman, N. Cmiljanović, S. Milosavljević, S. Radenković, Dependence of total π-electron energy on the number of non-bonding molecular orbitals. Monatsh. Chem. 135, 765–772 (2004)

    Google Scholar 

  183. I. Gutman, S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, Berlin, 1989)

    Google Scholar 

  184. I. Gutman, N.M.M. de Abreu, C.T.M. Vinagre, A.S. Bonifácio, S. Radenković, Relation between energy and Laplacian energy. MATCH Commun. Math. Comput. Chem. 59, 343–354 (2008)

    MathSciNet  MATH  Google Scholar 

  185. I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal, second-maximal, and third-maximal energy. MATCH Commun. Math. Comput. Chem. 58, 85–92 (2007)

    MathSciNet  Google Scholar 

  186. I. Gutman, B. Furtula, D. Vidović, Coulson function and total π-electron energy. Kragujevac J. Sci. 24, 71–82 (2002)

    Google Scholar 

  187. I. Gutman, A. Graovac, S. Vuković, S. Marković, Some more isomer-undistinguishing approximate formulas for the total π-electron energy of benzenoid hydrocarbons. J. Serb. Chem. Soc. 54, 189–196 (1989)

    Google Scholar 

  188. I. Gutman, E. Gudiño, D. Quiroz, Upper bound for the energy of graphs with fixed second and fourth spectral moments. Kragujevac J. Math. 32, 27–35 (2009)

    MathSciNet  MATH  Google Scholar 

  189. I. Gutman, G.G. Hall, Linear dependence of total π-electron energy of benzenoid hydrocarbons on Kekulé structure count. Int. J. Quant. Chem. 41, 667–672 (1992)

    Google Scholar 

  190. I. Gutman, G.G. Hall, S. Marković, Z. Stanković, V. Radivojević, Effect of bay regions on the total π-electron energy of benzenoid hydrocarbons. Polyc. Arom. Comp. 2, 275–282 (1991)

    Google Scholar 

  191. I. Gutman, Y. Hou, Bipartite unicyclic graphs with greatest energy. MATCH Commun. Math. Comput. Chem. 43, 17–28 (2001)

    MathSciNet  MATH  Google Scholar 

  192. I. Gutman, Y. Hou, H.B. Walikar, H.S. Ramane, P.R. Hampiholi, No Hückel graph is hyperenergetic. J. Serb. Chem. Soc. 65, 799–801 (2000)

    Google Scholar 

  193. I. Gutman, G. Indulal, R. Todeschini, Generalizing the McClelland bounds for total π-electron energy. Z. Naturforsch. 63a, 280–282 (2008)

    Google Scholar 

  194. I. Gutman, A. Kaplarević, A. Nikolić, An auxiliary function in the theory of total π-electron energy. Kragujevac J. Sci. 23, 75–88 (2001)

    Google Scholar 

  195. I. Gutman, D. Kiani, M. Mirzakhah, On incidence energy of graphs. MATCH Commun. Math. Comput. Chem. 62, 573–580 (2009)

    MathSciNet  MATH  Google Scholar 

  196. I. Gutman, D. Kiani, M. Mirzakhah, B. Zhou, On incidence energy of a graph. Lin. Algebra Appl. 431, 1223–1233 (2009)

    MathSciNet  MATH  Google Scholar 

  197. I. Gutman, A. Klobučar, S. Majstorović, C. Adiga, Biregular graphs whose energy exceeds the number of vertices. MATCH Commun. Math. Comput. Chem. 62, 499–508 (2009)

    MathSciNet  MATH  Google Scholar 

  198. I. Gutman, J.H. Koolen, V. Moulton, M. Parac, T. Soldatović, D. Vidović, Estimating and approximating the total π-electron energy of benzenoid hydrocarbons. Z. Naturforsch. 55a, 507–512 (2000)

    Google Scholar 

  199. I. Gutman, X. Li, Y. Shi, J. Zhang, Hypoenergetic trees. MATCH Commun. Math. Comput. Chem. 60, 415–426 (2008)

    MathSciNet  MATH  Google Scholar 

  200. I. Gutman, X. Li, J. Zhang, in Graph Energy, ed. by M. Dehmer, F. Emmert–Streib. Analysis of Complex Networks. From Biology to Linguistics (Wiley–VCH, Weinheim, 2009), pp. 145–174

    Google Scholar 

  201. I. Gutman, S. Marković, Topological properties of benzenoid systems. XLVIIIa. An empirical study of two contradictory formulas for total π-electron energy. MATCH Commun. Math. Comput. Chem. 25, 141–149 (1990)

    Google Scholar 

  202. I. Gutman, S. Marković, G.G. Hall, Revisiting a simple regularity for benzenoid hydrocarbons: Total π-electron energy versus the number of Kekulé structures. Chem. Phys. Lett. 234, 21–24 (1995)

    Google Scholar 

  203. I. Gutman, S. Marković, M. Marinković, Investigation of the Cioslowski formula. MATCH Commun. Math. Comput. Chem. 22, 277–284 (1987)

    Google Scholar 

  204. I. Gutman, S. Marković, A.V. Teodorović, Ž. Bugarčić, Isomer–undistinguishing approximate formulas for the total π-electron energy of benzenoid hydrocarbons. J. Serb. Chem. Soc. 51, 145–149 (1986)

    Google Scholar 

  205. I. Gutman, S. Marković, A. Vesović, E. Estrada, Approximating total π-electron energy in terms of spectral moments. A quantitative approach. J. Serb. Chem. Soc. 63, 639–646 (1998)

    Google Scholar 

  206. I. Gutman, S. Marković, D. Vukićević, A. Stajković, The dependence of total π-electron energy of large benzenoid hydrocarbons on the number of Kekulé structures is non-linear. J. Serb. Chem. Soc. 60, 93–98 (1995)

    Google Scholar 

  207. I. Gutman, M. Mateljević, Note on the Coulson integral formula. J. Math. Chem. 39, 259–266 (2006)

    MathSciNet  MATH  Google Scholar 

  208. I. Gutman, M. Milun, N. Trinajstić, Comment on the paper: “Properties of the latent roots of a matrix. Estimation of π-electron energies” ed. by B.J. McClelland. J. Chem. Phys. 59, 2772–2774 (1973)

    Google Scholar 

  209. I. Gutman, M. Milun, N. Trinajstić, Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems. J. Am. Chem. Soc. 99, 1692–1704 (1977)

    Google Scholar 

  210. I. Gutman, L. Nedeljković, A.V. Teodorović, Topological formulas for total π-electron energy of benzenoid hydrocarbons – a comparative study. Bull. Soc. Chim. Beograd 48, 495–500 (1983)

    Google Scholar 

  211. I. Gutman, A. Nikolić, Ž. Tomović, A concealed property of total π-electron energy. Chem. Phys. Lett. 349, 95–98 (2001)

    Google Scholar 

  212. I. Gutman, L. Pavlović, The energy of some graphs with large number of edges. Bull. Acad. Serbe Sci. Arts. (Cl. Math. Natur.) 118, 35–50 (1999)

    Google Scholar 

  213. I. Gutman, S. Petrović, On total π-electron energy of benzenoid hydrocarbons. Chem. Phys. Lett. 97, 292–294 (1983)

    Google Scholar 

  214. I. Gutman, P. Petković, P.V. Khadikar, Bounds for the total π-electron energy of phenylenes. Rev. Roum. Chim. 41, 637–643 (1996)

    Google Scholar 

  215. I. Gutman, O.E. Polansky, Cyclic conjugation and the Hückel molecular orbital model. Theor. Chim. Acta 60, 203–226 (1981)

    Google Scholar 

  216. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)

    MATH  Google Scholar 

  217. I. Gutman, S. Radenković, Extending and modifying the Hall rule. Chem. Phys. Lett. 423, 382–385 (2006)

    Google Scholar 

  218. I. Gutman, S. Radenković, Hypoenergetic molecular graphs. Indian J. Chem. 46A, 1733–1736 (2007)

    Google Scholar 

  219. I. Gutman, S. Radenković, N. Li, S. Li, Extremal energy of trees. MATCH Commun. Math. Comput. Chem. 59, 315–320 (2008)

    MathSciNet  MATH  Google Scholar 

  220. I. Gutman, M. Rašković, Monte Carlo approach to total π-electron energy of conjugated hydrocarbons. Z. Naturforsch. 40a, 1059–1061 (1985)

    Google Scholar 

  221. I. Gutman, M. Robbiano, E. Andrade–Martins, D.M. Cardoso, L. Medina, O. Rojo, Energy of line graphs. Lin. Algebra Appl. 433, 1312–1323 (2010)

    Google Scholar 

  222. I. Gutman, B. Ruščić, N. Trinajstić, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)

    Google Scholar 

  223. I. Gutman, J.Y. Shao, The energy change of weighted graphs. Lin. Algebra Appl. 435, 2425–2431 (2011)

    MathSciNet  MATH  Google Scholar 

  224. I. Gutman, T. Soldatović, Novel approximate formulas for the total π-electron energy of benzenoid hydrocarbons. Bull. Chem. Technol. Maced. 19, 17–20 (2000)

    Google Scholar 

  225. I. Gutman, T. Soldatović, (n, m)-Type approximations for total π-electron energy of benzenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 44, 169–182 (2001)

    Google Scholar 

  226. I. Gutman, T. Soldatović, On a class of approximate formulas for total π-electron energy of benzenoid hydrocarbons. J. Serb. Chem. Soc. 66, 101–106 (2001)

    Google Scholar 

  227. I. Gutman, T. Soldatović, A. Graovac, S. Vuković, Approximating the total π-electron energy by means of spectral moments. Chem. Phys. Lett. 334, 168–172 (2001)

    Google Scholar 

  228. I. Gutman, T. Soldatović, M. Petković, A new upper bound and approximation for total π-electron energy. Kragujevac J. Sci. 23, 89–98 (2001)

    Google Scholar 

  229. I. Gutman, T. Soldatović, D. Vidović, The energy of a graph and its size dependence. A Monte Carlo approach. Chem. Phys. Lett. 297, 428–432 (1998)

    Google Scholar 

  230. I. Gutman, A. Stajković, S. Marković, P. Petković, Dependence of total π-electron energy of phenylenes on Kekulé structure count. J. Serb. Chem. Soc. 59, 367–373 (1994)

    Google Scholar 

  231. I. Gutman, S. Stanković, J. Durdević, B. Furtula, On the cycle–dependence of topological resonance energy. J. Chem. Inf. Model. 47, 776–781 (2007)

    Google Scholar 

  232. I. Gutman, D. Stevanović, S. Radenković, S. Milosavljević, N. Cmiljanović, Dependence of total π-electron energy on large number of non-bonding molecular orbitals. J. Serb. Chem. Soc. 69, 777–782 (2004)

    Google Scholar 

  233. I. Gutman, A.V. Teodorović, Ž. Bugarčić, On some topological formulas for total π-electron energy of benzenoid molecules. Bull. Soc. Chim. Beograd 49, 521–525 (1984)

    Google Scholar 

  234. I. Gutman, A.V. Teodorović, L. Nedeljković, Topological properties of benzenoid systems. Bounds and approximate formulae for total π-electron energy. Theor. Chim. Acta 65, 23–31 (1984)

    Google Scholar 

  235. I. Gutman, Ž. Tomović, Total π-electron energy of phenylenes: Bounds and approximate expressions. Monatsh. Chem. 132, 1023–1029 (2001)

    Google Scholar 

  236. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)

    Google Scholar 

  237. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. The loop rule. Chem. Phys. Lett. 20, 257–260 (1973)

    Google Scholar 

  238. I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Topics Curr. Chem. 42, 49–93 (1973)

    Google Scholar 

  239. I. Gutman, L. Türker, Approximating the total π-electron energy of benzenoid hydrocarbons: Some new estimates of (n, m)-type. Indian J. Chem. 32A, 833–836 (1993)

    Google Scholar 

  240. I. Gutman, L. Türker, J.R. Dias, Another upper bound for total π-electron energy of alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 19, 147–161 (1986)

    Google Scholar 

  241. I. Gutman, D. Utvić, A.K. Mukherjee, A class of topological formulas for total π-electron energy. J. Serb. Chem. Soc. 56, 59–63 (1991)

    Google Scholar 

  242. I. Gutman, D. Vidović, Quest for molecular graphs with maximal energy: A computer experiment. J. Chem. Inf. Comput. Sci. 41, 1002–1005 (2001)

    Google Scholar 

  243. I. Gutman, D. Vidović, Conjugated molecules with maximal total π-electron energy. Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 124, 1–7 (2003)

    Google Scholar 

  244. I. Gutman, D. Vidović, N. Cmiljanović, S. Milosavljević, S. Radenković, Graph energy – A useful molecular structure-descriptor. Indian J. Chem. 42A, 1309–1311 (2003)

    Google Scholar 

  245. I. Gutman, D. Vidović, H. Hosoya, The relation between the eigenvalue sum and the topological index Z revisited. Bull. Chem. Soc. Jpn. 75, 1723–1727 (2002)

    Google Scholar 

  246. I. Gutman, D. Vidović, T. Soldatović, Modeling the dependence of the π-electron energy on the size of conjugated molecules. A Monte Carlo approach. ACH – Models Chem. 136, 599–608 (1999)

    Google Scholar 

  247. I. Gutman, S. Zare Firoozabadi, J.A. de la Penña, J. Rada, On the energy of regular graphs. MATCH Commun. Math. Comput. Chem. 57, 435–442 (2007)

    MathSciNet  MATH  Google Scholar 

  248. I. Gutman, F. Zhang, On the quasiordering of bipartite graphs. Publ. Inst. Math. (Belgrade) 40, 11–15 (1986)

    MathSciNet  Google Scholar 

  249. I. Gutman, F. Zhang, On the ordering of graphs with respect to their matching numbers. Discr. Appl. Math. 15, 25–33 (1986)

    MathSciNet  MATH  Google Scholar 

  250. I. Gutman, B. Zhou, Laplacian energy of a graph. Lin. Algebra Appl. 414, 29–37 (2006)

    MathSciNet  MATH  Google Scholar 

  251. I. Gutman, B. Zhou, B. Furtula, The Laplacian-energy like invariant is an energy like invariant. MATCH Commun. Math. Comput. Chem. 64, 85–96 (2010)

    MathSciNet  Google Scholar 

  252. W.H. Haemers, Strongly regular graphs with maximal energy. Lin. Algebra Appl. 429, 2719–2723 (2008)

    MathSciNet  MATH  Google Scholar 

  253. W.H. Haemers, Q. Xiang, Strongly regular graphs with parameters (4m 4, 2m 4 + m 2, m 4 + m 2, m 4 + m 2) exist for all m > 1. Eur. J. Comb. 31, 1553–1559 (2010)

    MathSciNet  MATH  Google Scholar 

  254. G.G. Hall, The bond orders of alternant hydrocarbon molecules. Proc. Roy. Soc. A 229, 251–259 (1955)

    Google Scholar 

  255. G.G. Hall, A graphical model of a class of molecules. Int. J. Math. Educ. Sci. Technol. 4, 233–240 (1973)

    Google Scholar 

  256. M. Hall, Combinatorial Theory (Wiley, New York, 1986)

    MATH  Google Scholar 

  257. C.X. He, B.F. Wu, Z.S. Yu, On the energy of trees with given domination number. MATCH Commun. Math. Comput. Chem. 64, 169–180 (2010)

    MathSciNet  Google Scholar 

  258. C. Heuberger, H. Prodinger, S. Wagner, Positional number systems with digits forming an arithmetic progression. Monatsh. Math. 155, 349–375 (2008)

    MathSciNet  MATH  Google Scholar 

  259. C. Heuberger, S. Wagner, Maximizing the number of independent subsets over trees with bounded degree. J. Graph Theor. 58, 49–68 (2008)

    MathSciNet  MATH  Google Scholar 

  260. C. Heuberger, S. Wagner, Chemical trees minimizing energy and Hosoya index. J. Math. Chem. 46, 214–230 (2009)

    MathSciNet  MATH  Google Scholar 

  261. C. Heuberger, S. Wagner, On a class of extremal trees for various indices. MATCH Commun. Math. Comput. Chem. 62, 437–464 (2009)

    MathSciNet  MATH  Google Scholar 

  262. M. Hofmeister, Spectral radius and degree sequence. Math. Nachr. 139, 37–44 (1988)

    MathSciNet  MATH  Google Scholar 

  263. V.E. Hoggatt, M. Bicknell, Roots of Fibonacci polynomials. Fibonacci Quart. 11, 271–274 (1973)

    MathSciNet  MATH  Google Scholar 

  264. Y. Hong, X. Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees. Discr. Math 296, 187–197 (2005)

    MathSciNet  MATH  Google Scholar 

  265. R. Horn, C. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1989)

    MATH  Google Scholar 

  266. Y. Hou, Unicyclic graphs with minimal energy. J. Math. Chem. 29, 163–168 (2001)

    MathSciNet  MATH  Google Scholar 

  267. Y. Hou, Bicyclic graphs with minimum energy. Lin. Multilin. Algebra 49, 347–354 (2001)

    MATH  Google Scholar 

  268. Y. Hou, On trees with the least energy and a given size of matching. J. Syst. Sci. Math. Sci. 23, 491–494 (2003) [in Chinese]

    Google Scholar 

  269. Y. Hou, I. Gutman, Hyperenergetic line graphs. MATCH Commun. Math. Comput. Chem. 43, 29–39 (2001)

    MathSciNet  MATH  Google Scholar 

  270. Y. Hou, I. Gutman, C.W. Woo, Unicyclic graphs with maximal energy. Lin. Algebra Appl. 356, 27–36 (2002)

    MathSciNet  MATH  Google Scholar 

  271. Y. Hou, Z. Teng, C. Woo, On the spectral radius, k-degree and the upper bound of energy in a graph. MATCH Commun. Math. Comput. Chem. 57, 341–350 (2007)

    MathSciNet  MATH  Google Scholar 

  272. X. Hu, H. Liu, New upper bounds for the Hückel energy of graphs. MATCH Commun. Math. Comput. Chem. 66, 863–878 (2011)

    MathSciNet  Google Scholar 

  273. H. Hua, On minimal energy of unicyclic graphs with prescribed girth and pendent vertices. MATCH Commun. Math. Comput. Chem. 57, 351–361 (2007)

    MathSciNet  MATH  Google Scholar 

  274. H. Hua, Bipartite unicyclic graphs with large energy. MATCH Commun. Math. Comput. Chem. 58, 57–83 (2007)

    MathSciNet  MATH  Google Scholar 

  275. H. Hua, M. Wang, Unicyclic graphs with given number of pendent vertices and minimal energy. Lin. Algebra Appl. 426, 478–489 (2007)

    MathSciNet  MATH  Google Scholar 

  276. X. Hui, H. Deng, Solutions of some unsolved problems on hypoenergetic unicyclic, bicyclic and tricyclic graphs. MATCH Commun. Math. Comput. Chem. 64, 231–238 (2010)

    MathSciNet  Google Scholar 

  277. B. Huo, S. Ji, X. Li, Note on unicyclic graphs with given number of pendent vertices and minimal energy. Lin. Algebra Appl. 433, 1381–1387 (2010)

    MathSciNet  MATH  Google Scholar 

  278. B. Huo, S. Ji, X. Li, Solutions to unsolved problems on the minimal energies of two classes of graphs. MATCH Commun. Math. Comput. Chem. 66, 943–958 (2011)

    MathSciNet  Google Scholar 

  279. B. Huo, S. Ji, X. Li, Y. Shi, Complete solution to a conjecture on the fourth maximal energy tree. MATCH Commun. Math. Comput. Chem. 66, 903–912 (2011)

    MathSciNet  Google Scholar 

  280. B. Huo, S. Ji, X. Li, Y. Shi, Solution to a conjecture on the maximal energy of bipartite bicyclic graphs. Lin. Algebra Appl. 435, 804–810 (2011)

    MathSciNet  MATH  Google Scholar 

  281. B. Huo, X. Li, Y. Shi, Complete solution of a problem on the maximal energy of unicyclic bipartite graphs. Lin. Algebra Appl. 434, 1370–1377 (2011)

    MathSciNet  MATH  Google Scholar 

  282. B. Huo, X. Li, Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs. Eur. J. Comb. 32, 662–673 (2011)

    MathSciNet  MATH  Google Scholar 

  283. B. Huo, X. Li, Y. Shi, L. Wang, Determining the conjugated trees with the third – through the six-minimal energies. MATCH Commun. Math. Comput. Chem. 65, 521–532 (2011)

    MathSciNet  Google Scholar 

  284. A. Ilić, The energy of unitary Cayley graph. Lin. Algebra Appl. 431, 1881–1889 (2009)

    MATH  Google Scholar 

  285. A. Ilić, Distance spectra and distance energy of integral circulant graphs. Lin. Algebra Appl. 433, 1005–1014 (2010)

    MATH  Google Scholar 

  286. A. Ilić, M. Bašić, New results on the energy of integral circulant graphs. Appl. Math. Comput. 218, 3470–3482 (2011)

    MathSciNet  MATH  Google Scholar 

  287. A. Ilić, M. Bašić, I. Gutman, Triply equienergetic graphs. MATCH Commun. Math. Comput. Chem. 64, 189–200 (2010)

    MathSciNet  Google Scholar 

  288. A. Ilić, D-. Krtinić, M. Ilić, On Laplacian like energy of trees. MATCH Commun. Math. Comput. Chem. 64, 111–122 (2010)

    Google Scholar 

  289. G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs. Lin. Algebra Appl. 430, 106–113 (2009)

    MathSciNet  MATH  Google Scholar 

  290. G. Indulal, I. Gutman, D-Equienergetic self-complementary graphs. Kragujevac J. Math. 32, 123–131 (2009)

    MathSciNet  MATH  Google Scholar 

  291. G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs. MATCH Commun. Math. Comput. Chem. 60, 461–472 (2008)

    MathSciNet  MATH  Google Scholar 

  292. G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs. MATCH Commun. Math. Comput. Chem. 55, 83–90 (2006)

    MathSciNet  MATH  Google Scholar 

  293. G. Indulal, A. Vijayakumar, Energies of some non-regular graphs. J. Math. Chem. 42, 377–386 (2007)

    MathSciNet  MATH  Google Scholar 

  294. G. Indulal, A. Vijayakumar, Classes of Türker equivalent graphs. Graph Theor. Notes New York 53, 30–36 (2007)

    MathSciNet  Google Scholar 

  295. G. Indulal, A. Vijayakumar, A note on energy of some graphs. MATCH Commun. Math. Comput. Chem. 59, 269–274 (2008)

    MathSciNet  Google Scholar 

  296. G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs. Czech. Math. J. 58, 911–919 (2008)

    MathSciNet  MATH  Google Scholar 

  297. Y. Jiang, A. Tang, R. Hoffmann, Evaluation of moments and their application to Hückel molecular orbital theory. Theor. Chim. Acta 65, 255–265 (1984)

    Google Scholar 

  298. Y. Jiang, H. Zhu, H. Zhang, I. Gutman, Moment expansion of Hückel molecular energies. Chem. Phys. Lett. 159, 159–164 (1989)

    Google Scholar 

  299. M.R. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph. MATCH Commun. Math. Comput. Chem. 62, 561–572 (2009)

    MathSciNet  MATH  Google Scholar 

  300. I. Jovanović, Z. Stanić, Spectral distances of graphs. Lin. Algebra Appl. 436, 1425–1435 (2012)

    MATH  Google Scholar 

  301. H. Kharaghani, B. Tayfeh–Rezaie, On the energy of (0, 1)-matrices. Lin. Algebra Appl. 429, 2046–2051 (2008)

    Google Scholar 

  302. D. Kiani, M.M.H. Aghaei, Y. Meemark, B. Suntornpoch, Energy of unitary Cayley graphs and gcd-graphs. Lin. Algebra Appl. 435, 1336–1343 (2011)

    MathSciNet  MATH  Google Scholar 

  303. D.J. Klein, V.R. Rosenfeld, Phased graphs and graph energies. J. Math. Chem. 49, 1238–1244 (2011)

    MathSciNet  MATH  Google Scholar 

  304. D.J. Klein, V.R. Rosenfeld, Phased cycles. J. Math. Chem. 49, 1245–1255 (2011)

    MathSciNet  MATH  Google Scholar 

  305. J.H. Koolen, V. Moulton, Maximal energy graphs. Adv. Appl. Math. 26, 47–52 (2001)

    MathSciNet  MATH  Google Scholar 

  306. J.H. Koolen, V. Moulton, Maximal energy bipartite graphs. Graphs Combin. 19, 131–135 (2003)

    MathSciNet  MATH  Google Scholar 

  307. J.H. Koolen, V. Moulton, I. Gutman, Improving the McClelland inequality for total π-electron energy. Chem. Phys. Lett. 320, 213–216 (2000)

    Google Scholar 

  308. J.H. Koolen, V. Moulton, I. Gutman, D. Vidović, More hyperenergetic molecular graphs. J. Serb. Chem. Soc. 65, 571–575 (2000)

    Google Scholar 

  309. S. Lang, Algebra (Addison–Wesley, Reading, 1993)

    Google Scholar 

  310. B. Lass, Matching polynomials and duality. Combinatorica 24, 427–440 (2004)

    MathSciNet  MATH  Google Scholar 

  311. C.K. Li, W. So, Graphs equienergetic with edge-deleted subgraphs. Lin. Multilin. Algebra 57, 683–693 (2009)

    MathSciNet  MATH  Google Scholar 

  312. F. Li, B. Zhou, Minimal energy of bipartite unicyclic graphs of a given biaprtition. MATCH Commun. Math. Comput. Chem. 54, 379–388 (2005)

    MathSciNet  MATH  Google Scholar 

  313. F. Li, B. Zhou, Minimal energy of unicyclic graphs of a given diameter. J. Math. Chem. 43, 476–484 (2008)

    MathSciNet  MATH  Google Scholar 

  314. H. Li, On minimal energy ordering of acyclic conjugated molecules. J. Math. Chem. 25, 145–169 (1999)

    MathSciNet  MATH  Google Scholar 

  315. J. Li, X. Li, Note on bipartite unicyclic graphs of a given bipartition with minimal energy. MATCH Commun. Math. Comput. Chem. 64, 61–64 (2010)

    MathSciNet  Google Scholar 

  316. J. Li, X. Li, Y. Shi, On the maximal energy tree with two maximum degree vertices. Lin. Algebra Appl. 435, 2272–2284 (2011)

    MathSciNet  MATH  Google Scholar 

  317. J. Li, X. Li, On the maximal energy trees with one maximum and one second maximum degree vertex. MATCH Commun. Math. Comput. Chem. 67, 525–539 (2012)

    MathSciNet  Google Scholar 

  318. J. Li, X. Wang, Lower bound on the sum of positive eigenvalues of a graph. Acta Appl. Math. 14, 443–446 (1998)

    MATH  Google Scholar 

  319. N. Li, S. Li, On the extremal energy of trees. MATCH Commun. Math. Comput. Chem. 59, 291–314 (2008)

    MathSciNet  MATH  Google Scholar 

  320. R. Li, The spectral moments and energy of graphs. Appl. Math. Sci. 3, 2765–2773 (2009)

    MathSciNet  MATH  Google Scholar 

  321. R. Li, Energy and some Hamiltonian properties of graphs. Appl. Math. Sci. 3, 2775–2780 (2009)

    MathSciNet  MATH  Google Scholar 

  322. R. Li, Some lower bounds for Laplacian energy of graphs. Int. J. Contemp. Math. Sci. 4, 219–233 (2009)

    MathSciNet  MATH  Google Scholar 

  323. R. Li, On α-incidence energy and α-distance energy of a graph. Ars Combin. in press

    Google Scholar 

  324. S. Li, N. Li, On minimal energies of acyclic conjugated molecules. MATCH Commun. Math. Comput. Chem. 61, 341–349 (2009)

    MathSciNet  Google Scholar 

  325. S. Li, X. Li, On tetracyclic graphs with minimal energy. MATCH Commun. Math. Comput. Chem. 60, 395–414 (2008)

    MathSciNet  MATH  Google Scholar 

  326. S. Li, X. Li, On tricyclic graphs of a given diameter with minimal energy. Lin. Algebra Appl. 430, 370–385 (2009)

    MATH  Google Scholar 

  327. S. Li, X. Li, The fourth maximal energy of acyclic graphs. MATCH Commun. Math. Comput. Chem. 61, 383–394 (2009)

    MathSciNet  MATH  Google Scholar 

  328. S. Li, X. Li, H. Ma, I. Gutman, On triregular graphs whose energy exceeds the number of vertices. MATCH Commun. Math. Comput. Chem. 64, 201–216 (2010)

    MathSciNet  Google Scholar 

  329. S. Li, X. Li, Z. Zhu, On tricyclic graphs with minimal energy. MATCH Commun. Math. Comput. Chem. 59, 397–419 (2008)

    MathSciNet  MATH  Google Scholar 

  330. S. Li, X. Li, Z. Zhu, On minimal energy and Hosoya index of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 61, 325–339 (2009)

    MathSciNet  MATH  Google Scholar 

  331. X. Li, Y. Li, Note on conjugated unicyclic graphs with minimal energy. MATCH Commun. Math. Comput. Chem. 64, 141–144 (2010)

    MathSciNet  Google Scholar 

  332. X. Li, Y. Li, Y. Shi, Note on the energy of regular graphs. Lin. Algebra Appl. 432, 1144–1146 (2010)

    MathSciNet  MATH  Google Scholar 

  333. X. Li, H. Lian, Conjugated chemical trees with extremal energy. MATCH Commun. Math. Comput. Chem. 66, 891–902 (2011)

    MathSciNet  Google Scholar 

  334. X. Li, J. Liu, Note for Nikiforov’s two conjectures on the energy of trees, arXiv:0906.0827

    Google Scholar 

  335. X. Li, H. Ma, All connected graphs with maximum degree at most 3 whose energies are equal to the number of vertices. MATCH Commun. Math. Comput. Chem. 64, 7–24 (2010)

    MathSciNet  Google Scholar 

  336. X. Li, H. Ma, Hypoenergetic and strongly hypoenergetic k-cyclic graphs. MATCH Commun. Math. Comput. Chem. 64, 41–60 (2010)

    MathSciNet  Google Scholar 

  337. X. Li, H. Ma, Hypoenergetic and strongly hypoenergetic trees, arXiv:0905.3944.

    Google Scholar 

  338. X. Li, H. Ma, All hypoenergetic graphs with maximum degree at most 3. Lin. Algebra Appl. 431, 2127–2133 (2009)

    MathSciNet  MATH  Google Scholar 

  339. X. Li, X. Yao, J. Zhang, I. Gutman, Maximum energy trees with two maximum degree vertices. J. Math. Chem. 45, 962–973 (2009)

    MathSciNet  MATH  Google Scholar 

  340. X. Li, J. Zhang, On bicyclic graphs with maximal energy. Lin. Algebra Appl. 427, 87–98 (2007)

    MATH  Google Scholar 

  341. X. Li, J. Zhang, L. Wang, On bipartite graphs with minimal energy. Discr. Appl. Math. 157, 869–873 (2009)

    MathSciNet  MATH  Google Scholar 

  342. X. Li, J. Zhang, B. Zhou, On unicyclic conjugated molecules with minimal energies. J. Math. Chem. 42, 729–740 (2007)

    MathSciNet  MATH  Google Scholar 

  343. X. Lin, X. Guo, On the minimal energy of trees with a given number of vertices of degree two. MATCH Commun. Math. Comput. Chem. 62, 473–480 (2009)

    MathSciNet  MATH  Google Scholar 

  344. W. Lin, X. Guo, H. Li, On the extremal energies of trees with a given maximum degree. MATCH Commun. Math. Comput. Chem. 54, 363–378 (2005)

    MathSciNet  MATH  Google Scholar 

  345. W. Lin, W. Yan, Laplacian coefficients of trees with a given bipartition. Lin. Algebra Appl. 435, 152–162 (2011)

    MathSciNet  MATH  Google Scholar 

  346. B. Liu, Y. Huang, Z. You, A survey on the Laplacian-energy-like invariant. MATCH Commun. Math. Comput. Chem. 66, 713–730 (2011)

    MathSciNet  Google Scholar 

  347. H. Liu, M. Lu, Sharp bounds on the spectral radius and the energy of graphs. MATCH Commun. Math. Comput. Chem. 59, 279–290 (2008)

    MathSciNet  MATH  Google Scholar 

  348. H. Liu, M. Lu, F. Tian, Some upper bounds for the energy of graphs. J. Math. Chem. 41, 45–57 (2007)

    MathSciNet  MATH  Google Scholar 

  349. J. Liu, B. Liu, Note on a pair of equienergetic graphs. MATCH Commun. Math. Comput. Chem. 59, 275–278 (2008)

    MathSciNet  MATH  Google Scholar 

  350. J. Liu, B. Liu, A Laplacian–energy like invariant of a graph. MATCH Commun. Math. Comput. Chem. 59, 355–372 (2008)

    MathSciNet  MATH  Google Scholar 

  351. J. Liu, B. Liu, On relation between energy and Laplacian energy. MATCH Commun. Math. Comput. Chem. 61, 403–406 (2009)

    MathSciNet  MATH  Google Scholar 

  352. J. Liu, B. Liu, On a conjecture about the hypoenergetic trees. Appl. Math. Lett. 23, 484–486 (2010)

    MathSciNet  MATH  Google Scholar 

  353. J. Liu, B. Liu, E-L equienergetic graphs. MATCH Commun. Math. Comput. Chem. 66, 971–976 (2011)

    MathSciNet  Google Scholar 

  354. J. Liu, B. Liu, S. Radenković, I. Gutman, Minimal LEL–equienergetic graphs. MATCH Commun. Math. Comput. Chem. 61, 471–478 (2009)

    MathSciNet  MATH  Google Scholar 

  355. M. Liu, A note on D-equienergetic graphs. MATCH Commun. Math. Comput. Chem. 64, 125–140 (2010)

    Google Scholar 

  356. M. Liu, B. Liu, A note on the LEL-equienergetic graphs. Ars Comb. in press

    Google Scholar 

  357. Y. Liu, Some results on energy of unicyclic graphs with n vertices. J. Math. Chem. 47, 1–10 (2010)

    MathSciNet  Google Scholar 

  358. Z. Liu, B. Zhou, Minimal energies of bipartite bicyclic graphs. MATCH Commun. Math. Comput. Chem. 59, 381–396 (2008)

    MathSciNet  MATH  Google Scholar 

  359. W. López, J. Rada, Equienergetic digraphs. Indian J. Pure Appl. Math. 36, 361–372 (2007)

    MATH  Google Scholar 

  360. L. Lovász, J. Pelikán, On the eigenvalues of trees. Period. Math. Hungar. 3, 175–182 (1973)

    MathSciNet  MATH  Google Scholar 

  361. S. Majstorović, I. Gutman, A. Klobučar, Tricyclic biregular graphs whose energy exceeds the number of vertices. Math. Commun. 15, 213–222 (2010)

    MathSciNet  MATH  Google Scholar 

  362. S. Majstorović, A. Klobučar, I. Gutman, Triregular graphs whose energy exceeds the number of vertices. MATCH Commun. Math. Comput. Chem. 62, 509–524 (2009)

    MathSciNet  MATH  Google Scholar 

  363. S. Majstorović, A. Klobučar, I. Gutman, in Selected Topics from the Theory of Graph Energy: Hypoenergetic Graphs, ed. by D. Cvetković, I. Gutman. Applications of Graph Spectra (Mathematical Institute, Belgrade, 2009), pp. 65–105

    Google Scholar 

  364. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities (Dover, New York, 1992)

    Google Scholar 

  365. S. Marković, Approximating total π-electron energy of phenylenes in terms of spectral moments. Indian J. Chem. 42A, 1304–1308 (2003)

    Google Scholar 

  366. M. Mateljević, V. Božin, I. Gutman, Energy of a polynomial and the Coulson integral formula. J. Math. Chem. 48, 1062–1068 (2010)

    MathSciNet  MATH  Google Scholar 

  367. M. Mateljević, I. Gutman, Note on the Coulson and Coulson–Jacobs integral formulas. MATCH Commun. Math. Comput. Chem. 59, 257–268 (2008)

    MathSciNet  MATH  Google Scholar 

  368. B.J. McClelland, Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem. Phys. 54, 640–643 (1971)

    Google Scholar 

  369. M.L. Mehta, Random Matrices (Academic, New York, 1991)

    MATH  Google Scholar 

  370. R. Merris, The distance spectrum of a tree. J. Graph Theor. 14, 365–369 (1990)

    MathSciNet  MATH  Google Scholar 

  371. R. Merris, Laplacian matrices of graphs: A survey. Lin. Algebra Appl. 197–198, 143–176 (1994)

    MathSciNet  Google Scholar 

  372. R. Merris, An inequality for eigenvalues of symmetric matrices with applications to max–cuts and graph energy. Lin. Multilin Algebra 36, 225–229 (1994)

    MathSciNet  MATH  Google Scholar 

  373. R. Merris, A survey of graph Laplacians. Lin. Multilin. Algebra 39, 19–31 (1995)

    MathSciNet  MATH  Google Scholar 

  374. O. Miljković, B. Furtula, S. Radenković, I. Gutman, Equienergetic and almost–equienergetic trees. MATCH Commun. Math. Comput. Chem. 61, 451–461 (2009)

    MathSciNet  MATH  Google Scholar 

  375. B. Mohar, in The Laplacian Spectrum of Graphs, ed. by Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk. Graph Theory, Combinatorics, and Applications (Wiley, New York, 1991), pp. 871–898

    Google Scholar 

  376. D.A. Morales, Bounds for the total π-electron energy. Int. J. Quant. Chem. 88, 317–330 (2002)

    Google Scholar 

  377. D.A. Morales, Systematic search for bounds for total π-electron energy. Int. J. Quant. Chem. 93, 20–31 (2003)

    Google Scholar 

  378. D.A. Morales, The total π-electron energy as a problem of moments: Application of the Backus–Gilbert method. J. Math. Chem. 38, 389–397 (2005)

    MathSciNet  MATH  Google Scholar 

  379. E. Munarini, Characteristic, admittance and matching polynomial of an antiregular graph. Appl. Anal. Discr. Math. 3, 157–176 (2009)

    MathSciNet  MATH  Google Scholar 

  380. M. Muzychuk, Q. Xiang, Symmetric Bush-type Hadamard matrices of order 4m 4 exist for all odd m. Proc. Am. Math. Soc. 134, 2197–2204 (2006)

    Google Scholar 

  381. M.J. Nadjafi–Arani, Sharp bounds on the PI and vertex PI energy of graphs. MATCH Commun. Math. Chem. 65, 123–130 (2011)

    Google Scholar 

  382. V. Nikiforov, Walks and the spectral radius of graphs. Lin. Algebra Appl. 418, 257–268 (2006)

    MathSciNet  MATH  Google Scholar 

  383. V. Nikiforov, The energy of graphs and matrices. J. Math. Anal. Appl. 326, 1472–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  384. V. Nikiforov, Graphs and matrices with maximal energy. J. Math. Anal. Appl. 327, 735–738 (2007)

    MathSciNet  MATH  Google Scholar 

  385. V. Nikiforov, The energy of C 4-free graphs of bounded degree. Lin. Algebra Appl. 428, 2569–2573 (2008)

    MathSciNet  MATH  Google Scholar 

  386. V. Nikiforov, On the sum of k largest singular values of graphs and matrices. Lin. Algebra Appl. 435, 2394–2401 (2011)

    MathSciNet  MATH  Google Scholar 

  387. V. Nikiforov, Extremal norms of graphs and matrices. J. Math. Sci. 182, 164–174 (2012)

    MATH  Google Scholar 

  388. E.A. Nordhaus, B.M. Stewart, Triangles in an ordinary graph. Canad. J. Math. 15, 33–41 (1963)

    MathSciNet  MATH  Google Scholar 

  389. J. Ou, On acyclic molecular graphs with maximal Hosoya index, energy, and short diameter. J. Math. Chem. 43, 328–337 (2008)

    MathSciNet  MATH  Google Scholar 

  390. J. Ou, On ordering chemical trees by energy. MATCH Commun. Math. Comput. Chem. 64, 157–168 (2010)

    MathSciNet  Google Scholar 

  391. J. Ou, Acyclic molecules with second maximal energy. Appl. Math. Lett. 23, 343–346 (2010)

    MathSciNet  MATH  Google Scholar 

  392. I. Peña, J. Rada, Energy of digraphs. Lin. Multilin. Algebra 56, 565–579 (2008)

    MATH  Google Scholar 

  393. M. Perić, I. Gutman, J. Radić–Perić, The Hückel total π-electron energy puzzle. J. Serb. Chem. Soc. 71, 771–783 (2006)

    Google Scholar 

  394. S. Pirzada, I. Gutman, Energy of a graph is never the square root of an odd integer. Appl. Anal. Discr. Math. 2, 118–121 (2008)

    MathSciNet  MATH  Google Scholar 

  395. J. Rada, Energy ordering of catacondensed hexagonal systems. Discr. Appl. Math. 145, 437–443 (2005)

    MathSciNet  MATH  Google Scholar 

  396. J. Rada, The McClelland inequality for the energy of digraphs. Lin. Algebra Appl. 430, 800–804 (2009)

    MathSciNet  MATH  Google Scholar 

  397. J. Rada, Lower bound for the energy of digraphs. Lin. Algebra Appl. 432, 2174–2169 (2010)

    MathSciNet  MATH  Google Scholar 

  398. J. Rada, Bounds for the energy of normal digraphs. Lin. Multilin. Algebra 60, 323–332 (2012)

    MathSciNet  MATH  Google Scholar 

  399. J. Rada, A. Tineo, Polygonal chains with minimal energy. Lin. Algebra Appl. 372, 333–344 (2003)

    MathSciNet  MATH  Google Scholar 

  400. J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs. J. Math. Anal. Appl. 289, 446–455 (2004)

    MathSciNet  MATH  Google Scholar 

  401. S. Radenković, I. Gutman, Total π-electron energy and Laplacian energy: How far the analogy goes? J. Serb. Chem. Soc. 72, 1343–1350 (2007)

    Google Scholar 

  402. H.S. Ramane, I. Gutman, D.S. Revankar, Distance equienergetic graphs. MATCH Commun. Math. Comput. Chem. 60, 473–484 (2008)

    MathSciNet  MATH  Google Scholar 

  403. H.S. Ramane, I. Gutman, H.B. Walikar, S.B. Halkarni, Another class of equienergetic graphs. Kragujevac J. Math. 26, 15–18 (2004)

    MathSciNet  MATH  Google Scholar 

  404. H.S. Ramane, I. Gutman, H.B. Walikar, S.B. Halkarni, Equienergetic complement graphs. Kragujevac J. Sci. 27, 67–74 (2005)

    Google Scholar 

  405. H.S. Ramane, D.S. Revankar, I. Gutman, S.B. Rao, B.D. Acharya, H.B. Walikar, Bounds for the distance energy of a graph. Kragujevac J. Math. 31, 59–68 (2008)

    MathSciNet  MATH  Google Scholar 

  406. H.S. Ramane, D.S. Revankar, I. Gutman, H.B. Walikar, Distance spectra and distance energies of iterated line graphs of regular graphs. Publ. Inst. Math. (Beograd) 85, 39–46 (2009)

    MathSciNet  Google Scholar 

  407. H.S. Ramane, H.B. Walikar, Construction of eqienergetic graphs. MATCH Commun. Math. Comput. Chem. 57, 203–210 (2007)

    MathSciNet  MATH  Google Scholar 

  408. H.S. Ramane, H.B. Walikar, I. Gutman, Equienergetic graphs. J. Comb. Math. Comb. Comput. 69, 165–173 (2009)

    MathSciNet  MATH  Google Scholar 

  409. H.S. Ramane, H.B. Walikar, S. Rao, B. Acharya, P. Hampiholi, S. Jog, I. Gutman, Equienergetic graphs. Kragujevac J. Math. 26, 5–13 (2004)

    MathSciNet  MATH  Google Scholar 

  410. H.S. Ramane, H.B. Walikar, S. Rao, B. Acharya, P. Hampiholi, S. Jog, I. Gutman, Spectra and energies of iterated line graphs of regular graphs. Appl. Math. Lett. 18, 679–682 (2005)

    MathSciNet  MATH  Google Scholar 

  411. H.N. Ramaswamy, C.R. Veena, On the energy of unitary Cayley graphs. El. J. Combin. 16, #N24 (2009)

    Google Scholar 

  412. S.B. Rao, Energy of a graph, preprint, 2004

    Google Scholar 

  413. H. Ren, F. Zhang, Double hexagonal chains with minimal total π-electron energy. J. Math. Chem. 42, 1041–1056 (2007)

    MathSciNet  MATH  Google Scholar 

  414. H. Ren, F. Zhang, Double hexagonal chains with maximal total energy. Int. J. Quant. Chem. 107, 1437–1445 (2007)

    Google Scholar 

  415. H. Ren, F. Zhang, Fully–angular polyhex chains with minimal π-electron energy. J. Math. Anal. Appl. 326, 1244–1253 (2007)

    MathSciNet  MATH  Google Scholar 

  416. M. Robbiano, E.A. Martins, I. Gutman, Extending a theorem by Fiedler and applications to graph energy. MATCH Commun. Math. Comput. Chem. 64, 145–156 (2010)

    MathSciNet  Google Scholar 

  417. M. Robbiano, E. Andrade Martins, R. Jiménez, B. San Martín, Upper bounds on the Laplacian energy of some graphs. MATCH Commun. Math. Comput. Chem. 64, 97–110 (2010)

    MathSciNet  Google Scholar 

  418. M. Robbiano, R. Jiménez, Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 62, 537–552 (2009)

    MathSciNet  MATH  Google Scholar 

  419. M. Robbiano, R. Jiménez, Improved bounds for the Laplacian energy of Bethe trees. Lin. Algebra Appl. 432, 2222–2229 (2010)

    MATH  Google Scholar 

  420. M. Robbiano, R. Jiménez, L. Medina, The energy and an approximation to Estrada index of some trees. MATCH Commun. Math. Comput. Chem. 61, 369–382 (2009)

    MathSciNet  MATH  Google Scholar 

  421. O. Rojo, Line graph eigenvalues and line energy of caterpillars. Lin. Algebra Appl. 435, 2077–2086 (2011)

    MathSciNet  MATH  Google Scholar 

  422. O. Rojo, R.D. Jiménez, Line graph of combinations of generalized Bethe trees: eigenvalues and energy. Lin. Algebra Appl. 435, 2402–2419 (2011)

    MATH  Google Scholar 

  423. O. Rojo, L. Medina, Constructing graphs with energy \(\sqrt{r}\,E(G)\) where G is a bipartite graph. MATCH Commun. Math. Comput. Chem. 62, 465–472 (2009)

    MathSciNet  MATH  Google Scholar 

  424. O. Rojo, L. Medina, Construction of bipartite graphs having the same Randić energy. MATCH Commun. Math. Comput. Chem. 68, 805–814 (2012)

    Google Scholar 

  425. K. Ruedenberg, Theorem on the mobile bond orders of alternant conjugated systems. J. Chem. Phys. 29, 1232–1233 (1958)

    Google Scholar 

  426. K. Ruedenberg, Quantum mechanics of mobile electrons in conjugated bond systems. III. Topological matrix as generatrix of bond orders. J. Chem. Phys. 34, 1884–1891 (1961)

    Google Scholar 

  427. E. Sampathkumar, On duplicate graphs. J. Indian Math. Soc. 37, 285–293 (1973)

    MathSciNet  Google Scholar 

  428. J.W. Sander, T. Sander, The energy of integral circulant graphs with prime power order. Appl. Anal. Discr. Math. 5, 22–36 (2011)

    MathSciNet  Google Scholar 

  429. J.W. Sander, T. Sander, Integral circulant graphs of prime order with maximal energy. Lin. Algebra Appl. 435, 3212–3232 (2011)

    MathSciNet  MATH  Google Scholar 

  430. L.J. Schaad, B.A. Hess, Hückel molecular orbital π resonance energies. The question of the σ structure. J. Am. Chem. Soc. 94, 3068–3074 (1972)

    Google Scholar 

  431. T.G. Schmalz, T. Živković, D.J. Klein, Cluster expansion of the Hückel molecular orbital energy of acyclics: Application to pi resonance theory. Stud. Phys. Theor. Chem. 54, 173–190 (1988)

    Google Scholar 

  432. H.Y. Shan, J.Y. Shao, Graph energy change due to edge grafting operations and its application. MATCH Commun. Math. Comput. Chem. 64, 25–40 (2010)

    MathSciNet  Google Scholar 

  433. H.Y. Shan, J.Y. Shao, F. Gong, Y. Liu, An edge grafting theorem on the energy of unicyclic and bipartite graphs. Lin. Algebra Appl. 433, 547–556 (2010)

    MathSciNet  MATH  Google Scholar 

  434. H.Y. Shan, J.Y. Shao, S. Li, X. Li, On a conjecture on the tree with fourth greatest energy. MATCH Commun. Math. Comput. Chem. 64, 181–188 (2010)

    MathSciNet  Google Scholar 

  435. J.Y. Shao, F. Gong, Z. Du, The extremal energies of weighted trees and forests with fixed total weight sum. MATCH Commun. Math. Comput. Chem. 66, 879–890 (2011)

    MathSciNet  Google Scholar 

  436. J.Y. Shao, F. Gong, I. Gutman, New approaches for the real and complex integral formulas of the energy of a polynomial. MATCH Commun. Math. Comput. Chem. 66, 849–861 (2011)

    MathSciNet  Google Scholar 

  437. X. Shen, Y. Hou, I. Gutman, X. Hui, Hyperenergetic graphs and cyclomatic number. Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 141, 1–8 (2010)

    Google Scholar 

  438. I. Shparlinski, On the energy of some circulant graphs. Lin. Algebra Appl. 414, 378–382 (2006)

    MathSciNet  MATH  Google Scholar 

  439. J.H. Smith, in Some Properties of the Spectrum of a Graph, ed. by R. Guy, H. Hanani, N. Sauer, J. Schönheim. Combinatorial Structures and their Applications (Gordon and Breach, New York, 1970), pp. 403–406

    Google Scholar 

  440. W. So, Remarks on some graphs with large number of edges. MATCH Commun. Math. Comput. Chem. 61, 351–359 (2009)

    MathSciNet  MATH  Google Scholar 

  441. W. So, M. Robbiano, N.M.M. de Abreu, I. Gutman, Applications of a theorem by Ky Fan in the theory of graph energy. Lin. Algebra Appl. 432, 2163–2169 (2010)

    MATH  Google Scholar 

  442. I. Stanković, M. Milošević, D. Stevanović, Small and not so small equienergetic graphs. MATCH Commun. Math. Comput. Chem. 61, 443–450 (2009)

    MathSciNet  MATH  Google Scholar 

  443. N.F. Stepanov, V.M. Tatevskii, Approximate calculation of π-electron energy of aromatic condenased molecules by the Hückel MO LCAO method. Zh. Strukt. Khim. (in Russian) 2, 452–455 (1961)

    Google Scholar 

  444. D. Stevanović, Energy and NEPS of graphs. Lin. Multilin. Algebra 53, 67–74 (2005)

    MATH  Google Scholar 

  445. D. Stevanović, Laplacian–like energy of trees. MATCH Commun. Math. Comput. Chem. 61, 407–417 (2009)

    MathSciNet  MATH  Google Scholar 

  446. D. Stevanović, Large sets of noncospectral graphs with equal Laplacian energy. MATCH Commun. Math. Comput. Chem. 61, 463–470 (2009)

    MathSciNet  MATH  Google Scholar 

  447. D. Stevanović, Approximate energy of dendrimers. MATCH Commun. Math. Comput. Chem. 64, 65–73 (2010)

    MathSciNet  Google Scholar 

  448. D. Stevanović, Oriented incidence energy and threshold graphs. Filomat 25, 1–8 (2011)

    Google Scholar 

  449. D. Stevanović, N.M.M. de Abreu, M.A.A. de Freitas, C. Vinagre, R. Del-Vecchio, On the oriented incidence energy and decomposable graphs. Filomat 23, 243–249 (2009)

    Google Scholar 

  450. D. Stevanović, A. Ilić, On the Laplacian coefficients of unicyclic graphs. Lin. Algebra Appl. 430, 2290–2300 (2009)

    MATH  Google Scholar 

  451. D. Stevanović, A. Ilić, C. Onişor, M.V. Diudea, LEL – A newly designed molecular descriptor. Acta Chim. Sloven. 56, 410–417 (2009)

    Google Scholar 

  452. D. Stevanović, G. Indulal, The distance spectrum and energy of the composition of regular graphs. Appl. Math. Lett. 22, 1136–1140 (2009)

    MathSciNet  MATH  Google Scholar 

  453. D. Stevanović, I. Stanković, Remarks on hyperenergetic circulant graphs. Lin. Algebra Appl. 400, 345–348 (2005)

    MATH  Google Scholar 

  454. D. Stevanović, I. Stanković, M. Milošević, More on the relation between energy and Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 61, 395–401 (2009)

    MathSciNet  MATH  Google Scholar 

  455. S. Strunkov, S. Sánchez, Energy spectral specifications for the graph reconstruction. Commun. Algebra 36, 309–314 (2008)

    MATH  Google Scholar 

  456. S. Tan, T. Song, On the Laplacian coefficients of trees with a perfect matching. Lin. Algebra Appl. 436, 595–617 (2012)

    MathSciNet  MATH  Google Scholar 

  457. Z. Tang, Y. Hou, On incidence energy of trees. MATCH Commun. Math. Comput. Chem. 66, 977–984 (2011)

    MathSciNet  Google Scholar 

  458. R.C. Thompson, Singular value inequalities for matrix sums and minors. Lin. Algebra Appl. 11, 251–269 (1975)

    MATH  Google Scholar 

  459. R.C. Thompson, Convex and concave functions of singular values of matrix sums. Pacific J. Math. 66, 285–290 (1976)

    MathSciNet  MATH  Google Scholar 

  460. G.X. Tian, On the skew energy of orientations of hypercubes. Lin. Algebra Appl. 435, 2140–2149 (2011)

    MATH  Google Scholar 

  461. G.X. Tian, T.Z. Huang, B. Zhou, A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Lin. Algebra Appl. 430, 2503–2510 (2009)

    MathSciNet  MATH  Google Scholar 

  462. A. Torgašev, Graphs whose energy does not exceed 3. Czech. Math. J. 36, 167–171 (1986)

    Google Scholar 

  463. V. Trevisan, J.B. Carvalho, R. Del-Vecchio, C. Vinagre, Laplacian energy of diameter 3 trees. Appl. Math. Lett. 24, 918–923 (2011)

    MathSciNet  MATH  Google Scholar 

  464. L. Türker, An upper bound for total π-electron energy of alternant hydrocarbons. MATCH Commun. Math. Chem. 16, 83–94 (1984)

    Google Scholar 

  465. L. Türker, An approximate method for the estimation of total π-electron energies of alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 28, 261–276 (1992)

    Google Scholar 

  466. L. Türker, An approximate Hückel total π-electron energy formula for benzenoid aromatics. Polyc. Arom. Comp. 4, 107–114 (1994)

    Google Scholar 

  467. L. Türker, A novel total π-electron energy formula for alternant hydrocarbons – Angle of total π-electron energy. MATCH Commun. Math. Comput. Chem. 30, 243–252 (1994)

    MATH  Google Scholar 

  468. L. Türker, A novel approach to the estimation of total π-electron energies of cyclic alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 30, 253–268 (1994)

    MATH  Google Scholar 

  469. L. Türker, A novel formula for the total π-electron energy of alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 32, 175–184 (1995)

    Google Scholar 

  470. L. Türker, Contemplation on the total π-electron energies of alternant hydrocarbons. MATCH Commun. Math. Comput. Chem. 32, 185–192 (1995)

    Google Scholar 

  471. L. Türker, Approximation of Hückel total π-electron energies of benzenoid hydrocarbons. ACH – Models Chem. 133, 407–414 (1996)

    Google Scholar 

  472. L. Türker, I. Gutman, Iterative estimation of total π-electron energy. J. Serb. Chem. Soc. 70, 1193–1197 (2005)

    Google Scholar 

  473. P. van Mieghem, Graph Spectra for Complex Networks (Cambridge University Press, Cambridge, 2011), Section 7.8.2

    Google Scholar 

  474. S. Wagner, Energy bounds for graphs with fixed cyclomatic number. MATCH Commun. Math. Comput. Chem. 68, 661–674 (2012)

    Google Scholar 

  475. H.B. Walikar, I. Gutman, P.R. Hampiholi, H.S. Ramane, Non-hyperenergetic graphs. Graph Theor. Notes New York 41, 14–16 (2001)

    MathSciNet  Google Scholar 

  476. H.B. Walikar, H.S. Ramane, Energy of some cluster graphs. Kragujevac J. Sci. 23, 51–62 (2001)

    Google Scholar 

  477. H.B. Walikar, H.S. Ramane, Energy of some bipartite cluster graphs. Kragujevac J. Sci. 23, 63–74 (2001)

    Google Scholar 

  478. H.B. Walikar, H.S. Ramane, P.R. Hampiholi, in On the Energy of a Graph, ed. by R. Balakrishnan, H.M. Mulder, A. Vijayakumar. Graph Connections (Allied, New Delhi, 1999), pp. 120–123

    Google Scholar 

  479. H.B. Walikar, H.S. Ramane, P.R. Hampiholi, in Energy of Trees with Edge Independence Number Three, ed. by R. Nadarajan, P.R. Kandasamy. Mathematical and Computational Models (Allied Publishers, New Delhi, 2001), pp. 306–312

    Google Scholar 

  480. D. Wang, H. Hua, Minimality considerations for graph energy over a class of graphs. Comput. Math. Appl. 56, 3181–3187 (2008)

    MathSciNet  MATH  Google Scholar 

  481. H. Wang, H. Hua, Note on Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 59, 373–380 (2008)

    MathSciNet  MATH  Google Scholar 

  482. M. Wang, H. Hua, D. Wang, Minimal energy on a class of graphs. J. Math. Chem. 44, 1389–1402 (2008)

    MathSciNet  Google Scholar 

  483. W. Wang, Ordering of Hückel trees according to minimal energies. Lin. Algebra Appl. 430, 703–717 (2009)

    MATH  Google Scholar 

  484. W.H. Wang, Ordering of unicyclic graphs with perfect matching by minimal energies. MATCH Commun. Math. Comput. Chem. 66, 927–942 (2011)

    MathSciNet  Google Scholar 

  485. W. Wang, A. Chang, D. Lu, Unicyclic graphs possessing Kekulé structures with minimal energy. J. Math. Chem. 42, 311–320 (2007)

    MathSciNet  MATH  Google Scholar 

  486. W. Wang, A. Chang, L. Zhang, D. Lu, Unicyclic Hückel molecular graphs with minimal energy. J. Math. Chem. 39, 231–241 (2006)

    MathSciNet  MATH  Google Scholar 

  487. W. Wang, L. Kang, Ordering of the trees with a perfect matching by minimal energies. Lin. Algebra Appl. 431, 946–961 (2009)

    MathSciNet  MATH  Google Scholar 

  488. W. Wang, L. Kang, Ordering of the trees by minimal energy. J. Math. Chem. 47, 937–958 (2010)

    MathSciNet  MATH  Google Scholar 

  489. W.H. Wang, L. Kang, Ordering of unicyclic graphs by minimal energies and Hosoya indices. Util. Math., in press

    Google Scholar 

  490. F. Wei, B. Zhou, N. Trinajstić, Minimal spectrum-sums of bipartite graphs with exactly two vertex-disjoint cycles. Croat. Chem. Acta 81, 363–367 (2008)

    Google Scholar 

  491. E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimmensions. Ann. Math. 62, 548–564 (1955)

    MathSciNet  MATH  Google Scholar 

  492. E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    MathSciNet  MATH  Google Scholar 

  493. J. Wishart, The generalized product moment distribution in samples from a normal multivariate population. Biometrika 20A, 32–52 (1928)

    Google Scholar 

  494. L. Xu, On biregular graphs whose energy exceeds the number of vertices. MATCH Commun. Math. Comput. Chem. 66, 959–970 (2011)

    MathSciNet  Google Scholar 

  495. K. Xu, L. Feng, Extremal energies of trees with a given domination number. Lin. Algebra Appl. 435, 2382–2393 (2011)

    MathSciNet  MATH  Google Scholar 

  496. L. Xu, Y. Hou, Equienergetic bipartite graphs. MATCH Commun. Math. Comput. Chem. 57, 363–370 (2007)

    MathSciNet  MATH  Google Scholar 

  497. W. Yan, L. Ye, On the minimal energy of trees with a given diameter. Appl. Math. Lett. 18, 1046–1052 (2005)

    MathSciNet  MATH  Google Scholar 

  498. W. Yan, L. Ye, On the maximal energy and the Hosoya index of a type of trees with many pendent vertices. MATCH Commun. Math. Comput. Chem. 53, 449–459 (2005)

    MathSciNet  MATH  Google Scholar 

  499. W. Yan, Z. Zhang, Asymptotic energy of lattices. Physica A388, 1463–1471 (2009)

    MathSciNet  Google Scholar 

  500. Y. Yang, B. Zhou, Minimal energy of bicyclic graphs of a given diameter. MATCH Commun. Math. Comput. Chem. 59, 321–342 (2008)

    MathSciNet  MATH  Google Scholar 

  501. Y. Yang, B. Zhou, Bipartite bicyclic graphs with large energies. MATCH Commun. Math. Comput. Chem. 61, 419–442 (2009)

    MathSciNet  MATH  Google Scholar 

  502. X. Yao, Maximum energy trees with one maximum and one second maximum degree vertex. MATCH Commun. Math. Comput. Chem. 64, 217–230 (2010)

    MathSciNet  Google Scholar 

  503. K. Yates, Hückel Molecular Orbital Theory (Academic, New York, 1978)

    Google Scholar 

  504. L. Ye, The energy of a type of lattices. Appl. Math. Lett. 24, 145–148 (2011)

    MathSciNet  MATH  Google Scholar 

  505. L. Ye, R. Chen, Ordering of trees with given bipartition by their energies and Hosoya indices. MATCH Commun. Math. Comput. Chem. 52, 193–208 (2004)

    MATH  Google Scholar 

  506. L. Ye, X. Yuan, On the minimal energy of trees with a given number of pendant vertices. MATCH Commun. Math. Comput. Chem. 57, 193–201 (2007)

    MathSciNet  MATH  Google Scholar 

  507. Z. You, B. Liu, On hypoenergetic unicyclic and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 61, 479–486 (2009)

    MathSciNet  MATH  Google Scholar 

  508. Z. You, B. Liu, I. Gutman, Note on hypoenergetic graphs. MATCH Commun. Math. Comput. Chem. 62, 491–498 (2009)

    MathSciNet  MATH  Google Scholar 

  509. A. Yu, M. Lu, F. Tian, On the spectral radius of graphs. Lin. Algebra Appl. 387, 41–49 (2004)

    MathSciNet  MATH  Google Scholar 

  510. A. Yu, M. Lu, F. Tian, New upper bounds for the energy of graphs. MATCH Commun. Math. Comput. Chem. 53, 441–448 (2005)

    MathSciNet  MATH  Google Scholar 

  511. A. Yu, X. Lv, Minimal energy on trees with k pendent vertices. Lin. Algebra Appl. 418, 625–633 (2006)

    MathSciNet  MATH  Google Scholar 

  512. A. Yu, F. Tian, On the spectral radius of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 51, 97–109 (2004)

    MathSciNet  MATH  Google Scholar 

  513. G. Yu, The energy and spanning trees of the Aztec diamonds. Discr. Math. 311, 38–44 (2011)

    MATH  Google Scholar 

  514. B. Zhang, Remarks on minimal energies of unicyclic bipartite graphs. MATCH Commun. Math. Comput. Chem. 61, 487–494 (2009)

    MathSciNet  Google Scholar 

  515. F. Zhang, Two theorems of comparison of bipartite graphs by their energy. Kexue Tongbao 28, 726–730 (1983)

    MATH  Google Scholar 

  516. F. Zhang, Z. Lai, Three theorems of comparison of trees by their energy. Sci. Explor. 3, 12–19 (1983)

    MathSciNet  Google Scholar 

  517. F. Zhang, H. Li, On acyclic conjugated molecules with minimal energies. Discr. Appl. Math. 92, 71–84 (1999)

    MATH  Google Scholar 

  518. F. Zhang, H. Li, On Maximal Energy Ordering of Acyclic Conjugated Molecules, ed. by P. Hansen, P. Fowler, M. Zheng. Discrete Mathematical Chemistry (American Mathematical Society, Providence, 2000), pp. 385–392

    Google Scholar 

  519. F. Zhang, Z. Li, L. Wang, Hexagonal chain with minimal total π-electron energy. Chem. Phys. Lett. 37, 125–130 (2001)

    Google Scholar 

  520. F. Zhang, Z. Li, L. Wang, Hexagonal chain with maximal total π-electron energy. Chem. Phys. Lett. 37, 131–137 (2001)

    Google Scholar 

  521. J. Zhang, On tricyclic graphs with minimal energies. preprint, 2006

    Google Scholar 

  522. J. Zhang, B. Zhou, Energy of bipartite graphs with exactly two cycles. Appl. Math. J. Chinese Univ., Ser. A 20, 233–238 (in Chinese) (2005)

    Google Scholar 

  523. J. Zhang, B. Zhou, On bicyclic graphs with minimal energies. J. Math. Chem. 37, 423–431 (2005)

    MathSciNet  MATH  Google Scholar 

  524. J. Zhang, B. Zhou, On minimal energies of non-starlike trees with given number of pendent vertices. MATCH Commun. Math. Comput. Chem. 62, 481–490 (2009)

    MathSciNet  MATH  Google Scholar 

  525. Y. Zhang, F. Zhang I. Gutman, On the ordering of bipartite graphs with respect to their characteristic polynomials. Coll. Sci. Pap. Fac. Sci. Kragugevac 9, 9–20 (1988)

    MathSciNet  MATH  Google Scholar 

  526. P. Zhao, B. Zhao, X. Chen, Y. Bai, Two classes of chains with maximal and minimal total π-electron energy. MATCH Commun. Math. Comput. Chem. 62, 525–536 (2009)

    MathSciNet  MATH  Google Scholar 

  527. B. Zhou, On spectral radius of nonnegative matrics. Australas. J. Combin. 22, 301–306 (2000)

    MathSciNet  MATH  Google Scholar 

  528. B. Zhou, Energy of graphs. MATCH Commun. Math. Comput. Chem. 51, 111–118 (2004)

    MATH  Google Scholar 

  529. B. Zhou, On the energy of a graph. Kragujevac J. Sci. 26, 5–12 (2004)

    Google Scholar 

  530. B. Zhou, Lower bounds for energy of quadrangle-free graphs. MATCH Commun. Math. Comput. Chem. 55, 91–94 (2006)

    MathSciNet  MATH  Google Scholar 

  531. B. Zhou, On the sum of powers of the Laplacian eigenvalues of graphs. Lin. Algebra Appl. 429, 2239–2246 (2008)

    MATH  Google Scholar 

  532. B. Zhou, New upper bounds for Laplacian energy. MATCH Commun. Math. Comput. Chem. 62, 553–560 (2009)

    MathSciNet  MATH  Google Scholar 

  533. B. Zhou, More on energy and Laplacian energy. MATCH Commun. Math. Comput. Chem. 64, 75–84 (2010)

    MathSciNet  Google Scholar 

  534. B. Zhou, More upper bounds for the incidence energy. MATCH Commun. Math. Comput. Chem. 64, 123–128 (2010)

    MathSciNet  Google Scholar 

  535. B. Zhou, I. Gutman, Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233–239 (2005)

    MathSciNet  MATH  Google Scholar 

  536. B. Zhou, I. Gutman, On Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 57, 211–220 (2007)

    MathSciNet  MATH  Google Scholar 

  537. B. Zhou, I. Gutman, Nordhaus–Gaddum-type relations for the energy and Laplacian energy of graphs. Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 134, 1–11 (2007)

    Google Scholar 

  538. B. Zhou, I. Gutman, A connection between ordinary and Laplacian spectra of bipartite graphs. Lin. Multilin. Algebra 56, 305–310 (2008)

    MathSciNet  MATH  Google Scholar 

  539. B. Zhou, I. Gutman, T. Aleksić, A note on Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 60, 441–446 (2008)

    MathSciNet  MATH  Google Scholar 

  540. B. Zhou, I. Gutman, J.A. de la Peña, J. Rada, L. Mendoza, On the spectral moments and energy of graphs. MATCH Commun. Math. Comput. Chem. 57, 183–191 (2007)

    MathSciNet  Google Scholar 

  541. B. Zhou, A. Ilić, On distance spectral radius and distance energy of graphs. MATCH Commun. Math. Comput. Chem. 64, 261–280 (2010)

    MathSciNet  Google Scholar 

  542. B. Zhou, A. Ilić, On the sum of powers of Laplacian eigenvalues of bipartite graphs. Czech. Math. J. 60, 1161–1169 (2010)

    MATH  Google Scholar 

  543. B. Zhou, F. Li, On minimal energies of trees of a prescribed diameter. J. Math. Chem. 39, 465–473 (2006)

    MathSciNet  MATH  Google Scholar 

  544. B. Zhou, H.S. Ramane, On upper bounds for energy of bipartite graphs. Indian J. Pure Appl. Chem. 39, 483–490 (2008)

    MathSciNet  MATH  Google Scholar 

  545. B. Zhou, N. Trinajstić, On the sum–connectivity matrix and sum-connectivity energy of (molecular) graphs. Acta Chim. Slov. 57, 513–517 (2010)

    Google Scholar 

  546. B.X. Zhu, The Laplacian-energy like of graphs. Appl. Math. Lett. 24, 1604–1607 (2011)

    MathSciNet  MATH  Google Scholar 

  547. J. Zhu, Minimal energies of trees with given parameters. Lin. Algebra Appl. 436, 3120–3131 (2012)

    MATH  Google Scholar 

  548. B. D. Acharya, S. B. Rao, T. Singh, The minimum robust domination energy of a connected graph. AKCE Int. J. Graphs Combin. 4, 139–143 (2007)

    MathSciNet  MATH  Google Scholar 

  549. B. D. Acharya, S. B. Rao, P. Sumathi, V. Swaminathan, Energy of a set of vertices in a graph. AKCE Int. J. Graphs Combin. 4, 145–152 (2007)

    MathSciNet  MATH  Google Scholar 

  550. C. Adiga, A. Bayad, I. Gutman, A. S. Shrikanth, The minimum covering energy of a graph. Kragujevac J. Sci. 34, 39–56 (2012)

    Google Scholar 

  551. M. R. Ahmadi, R. Jahano–Nezhad, Energy and Wiener index of zero–divisor graphs. Iran. J. Math. Chem. 2, 45–51 (2011)

    Google Scholar 

  552. S. Alikhani, M. A. Iranmanesh. Energy of graphs, matroids and Fibonacci numbers. Iran. J. Math. Sci. Inf. 5(2), 55–60 (2010)

    MathSciNet  Google Scholar 

  553. Ş. B. Bozkurt, C. Adiga, D. Bozkurt, On the energy and Estrada index of strongly quotient graphs. Indian J. Pure Appl. Math. 43, 25–36 (2012)

    MathSciNet  Google Scholar 

  554. Ş. B. Bozkurt, D. Bozkurt, Randić energy and Randić Estrada index of a graph. Europ. J. Pure Appl. Math. 5, 88–96 (2012)

    MathSciNet  Google Scholar 

  555. A. Chang, B. Deng, On the Laplacian energy of trees with perfect matchings. MATCH Commun. Math. Comput. Chem. 68, 767–776 (2012)

    Google Scholar 

  556. K. C. Das, K. Xu, I. Gutman, Comparison between Kirchhoff index and the Laplacian–energy–like invariant. Lin. Algebra Appl. 436 3661–3671 (2012)

    MathSciNet  MATH  Google Scholar 

  557. I. Gutman, Bounds for all graph energies. Chem. Phys. Lett. 528, 72–74 (2012)

    Google Scholar 

  558. I. Gutman, Estimating the Laplacian–energy–like molecular structure descriptor. Z. Naturforsch. 67a, 403–406 (2012)

    Google Scholar 

  559. I. Gutman, B. Furtula, E. O. D. Andriantiana, M. Cvetić, More trees with large energy and small size. MATCH Commun. Math. Comput. Chem. 68, 697–702 (2012)

    Google Scholar 

  560. W. H. Haemers, Seidel switching and graph energy. MATCH Commun. Math. Comput. Chem. 68, 653–659 (2012)

    Google Scholar 

  561. H. B. Hua, On maximal energy and Hosoya index of trees without perfect matching. Bull. Austral. Math. Soc. 81, 47–57 (2010)

    MATH  Google Scholar 

  562. S. Ji, J. Li, An approach to the problem of the maximal energy of bicyclic graphs. MATCH Commun. Math. Comput. Chem. 68, 741–762 (2012)

    Google Scholar 

  563. T. A. Le, J. W. Sander, Extremal energies of integral circulant graphs via multiplicativity. Lin. Algebra Appl. 437, 1408–1421 (2012)

    MathSciNet  MATH  Google Scholar 

  564. J. Liu, B. Liu, Generalization for Laplacian energy. Appl. Math. J. Chinese Univ. 24, 443–450 (2009)

    MATH  Google Scholar 

  565. Z. Liu, Energy, Laplacian energy and Zagreb index of line graph, middle graph and total graph. Int. J. Contemp. Math. Sci. 5, 895–900 (2010)

    MathSciNet  MATH  Google Scholar 

  566. B. Lv, K. Wang, The energy of Kneser graphs. MATCH Commun. Math. Comput. Chem. 68, 763–765 (2012)

    Google Scholar 

  567. J. Rada, Bounds for the energy of normal digraphs. Lin. Multilin. Algebra 60 323–332 (2012)

    MathSciNet  MATH  Google Scholar 

  568. J. W. Sander, T. Sander, The maximal energy of classes of integral circulant graphs. Discr. Appl. Math. 160, 2015–2029 (2012)

    MathSciNet  MATH  Google Scholar 

  569. H. Y. Shan, J. Y. Shao, L. Zhang, C. X. He, Proof of a conjecture on trees with large energy. MATCH Commun. Math. Comput. Chem. 68, 703–720 (2012)

    Google Scholar 

  570. H. Y. Shan, J. Y. Shao, L. Zhang, C. X. He, A new method of comparing the energies of subdivision bipartite graphs. MATCH Commun. Math. Comput. Chem. 68, 721–740 (2012)

    Google Scholar 

  571. Y. Z. Song, P. Arbelaez, P. Hall, C. Li, A. Balikai, in Finding Semantic Structures in Image Hierarchies Using Laplacian Graph Fnergy, ed by K. Daniilidis, P. Maragos, N. Paragios, Computer Vision – CECV 2010 (European Conference on Computer Vision, 2010), Part IV, (Springer, Berlin, 2010), pp. 694–707

    Google Scholar 

  572. T. Tamizh Chelvam, S. Raja, I. Gutman, Strongly regular integral circulant graphs and their energies. Bull. Int. Math. Virt. Inst. 2, 9–16 (2012)

    Google Scholar 

  573. J. Zhang, J. Li, New results on the incidence energy of graphs. MATCH Commun. Math. Comput. Chem. 68, 777–803 (2012)

    Google Scholar 

  574. J. Zhu, Minimal energies of trees with given parameters. Lin. Algebra Appl. 436, 3120–3131 (2012).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, X., Shi, Y., Gutman, I. (2012). The Energy of Random Graphs. In: Graph Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4220-2_6

Download citation

Publish with us

Policies and ethics