Skip to main content

Residue

  • Chapter
  • First Online:
Understanding Pottery Function

Part of the book series: Manuals in Archaeological Method, Theory and Technique ((MATT))

  • 1779 Accesses

Abstract

Of the three use-alteration traces discussed in this book, the analysis of organic residue has received by far the most attention. There have been many applications, publications, research grants, and now even commercial labs performing the analysis. When I began the study of organic residues only a handful of researchers had attempted it with pottery (e.g., Condamin et al. 1976; Deal 1990; Deal and Silk 1988; Heron et al. 1991a, b; Hill and Evans 1989; Marchbanks 1989; Patrick et al. 1985; Rottländer 1990) with only moderate degrees of success. The many unanswered questions about the technique precluded it from becoming routine in ceramic analysis. How do organic residues survive in the depositional environment? Do organics in the soil migrate into buried pots and contaminate the sample? For cooking pots, how does heat alter the deposited residues? Which residues should be analyzed? Once residues are identified, are comparative collections available that would make accurate identifications possible? And finally, what are the best methods of extraction and analysis?

The field of organic residue analysis archaeology has witnessed spectacular developments in recent years, and there is now a well-developed understanding of where residues survive at archaeological sites and an appreciation of the major classes of biomarker likely to be encountered. (Evershed 2008, p. 915)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderton, J. B. (2004). The geoarchaeological context of Grand Island. Midcontinental Journal of Archaeology, 29(2), 113–132.

    Google Scholar 

  • Ball, J. (1993). Ethnobotany, land use patterns and historic landscape evaluation: Grand Island, Michigan. Heritage Program Monograph 2, Hiawatha National Forest, Escanaba, Michigan.

    Google Scholar 

  • Barnard, H., & Eerkens, J. W. (Eds.). (2007). Theory and practice of archaeological residue analysis. Oxford: Archaeopress.

    Google Scholar 

  • Barnard, H., Ambrose, S. H., Beehr, D. E., Forster, M. D., Lanehart, R. E., Malainey, M. E., Parr, R. E., Rider, M., Solazzo, C., & Yohe, R. M. (2007a). Results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice of archaeological residue analysis (pp. 200–215). Oxford: Archaeopress.

    Google Scholar 

  • Barnard, H., Dooley, A. N., & Faull, K. F. (2007b). An introduction to archaeological lipid analysis by GC/MS. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice of archaeological residue analysis (pp. 42–60). Oxford: Archaeopress.

    Google Scholar 

  • Benchley, E., Marcucci, D., Yuen, C., Griffin K. L. (1988). Final report of archaeological investigation and data recovery at the trout point 1 site, Alger County, Michigan. University of Wisconsin- Milwaukee Archaeological Research Laboratory, Report of Investigations No. 89.

    Google Scholar 

  • Charters, S., Evershed, R. P., Goad, L. J., Leyden, A., Blinkhorn, P. W., & Denham, V. (1993). Quantification and distribution of lipid in archaeological ceramics: Implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry, 35(2), 211–223.

    Article  Google Scholar 

  • Condamin, J., Formenti, F., Metais, M. O., Michel, M., & Blond, P. (1976). The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry, 18(2), 195–201.

    Article  Google Scholar 

  • Copley, M. S., Rose, P. J., Clapham, A., Edwards, D. N., Horton, M. C., & Evershed, R. P. (2001). Processing palm fruits in the Nile Valley–biomolecular evidence from Qasr Ibrim. Antiquity, 75, 538–542.

    Google Scholar 

  • Copley, M. S., Bland, H. A., Rose, P., Horton, M., & Evershed, R. P. (2005). Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst, 130, 860–871.

    Article  Google Scholar 

  • Davies, G. R., & Pollard, A. M. (1988). Organic residues in an Anglo-Saxon grave. In E. A. Slater & J. O. Tate (Eds.), Science and archaeology Glasgow 1987. Proceedings at a conference of the application of scientific techniques to archaeology (Vol. 196, pp. 391–402). Oxford: Archaeopress.

    Google Scholar 

  • Deal, M., & Silk, P. (1988). Absorbtion residues and vessel function: A case study from the Maine-Maritimes region. In C. C. Kolb & L. M. Lackey (Eds.), Ceramic ecology revisited (pp. 105–125). Philadelphia: Laboratory of Anthropology, Temple University.

    Google Scholar 

  • Deal, M. (1990). Exploratory analysis of food residues from prehistoric pottery and other artifacts from eastern Canada. Society for Archaeological Sciences Bulletin, 13(1), 6–12.

    Google Scholar 

  • deMan, J. M. (1992). Chemical and physical properties of fatty acids. In C. K. Chow (Ed.), Fatty acids in foods and their health implication (pp. 17–39). New York: Marcel Dekker.

    Google Scholar 

  • Densmore, F. (1928) Uses of plants by the Chippewa Indians. Bureau of American Ethnology Annual Report 44, 275–397.

    Google Scholar 

  • Densmore, F. (1979). Chippewa customs. St. Paul: Minnesota Historical Society Press.

    Google Scholar 

  • Drake, E. C., Franzen, J. G., & Skibo, J. M. (2009). Chronological patterns of lithic raw material choice in the Grand Island-Munising Bay locality of Michigan’s Upper Peninsula: Archaeological implications for inter- and intra-site comparisons. Wisconsin Archaeologist, 90, 131–148.

    Google Scholar 

  • Drapalik, S., J. M. Skibo, and E. C. Drake. Understanding the Late Archaic: An Experimental Study on the Formation of Fire Cracked Rock. Paper presented a the 2010 Midwest Archaeological Conference.

    Article  Google Scholar 

  • Dudd, S. N., & Evershed, R. P. (1999). Evidence for varying patterns of exploitation of animal products in different prehistoric pottery traditions based on lipids preserved in surface and absorbed residues. Journal of Archaeological Science, 26(12), 1473–1482.

    Article  Google Scholar 

  • Dunham, S. B. (2009). Nuts about acorns: A pilot study on acorn use in Woodland period subsistence in the eastern Upper Peninsula of Michigan. Wisconsin Archaeologist, 90, 113–130.

    Google Scholar 

  • Edwards, H. G. M., Sibley, M. G., & Heron, C. (1997). FT-Raman spectroscopic study of organic residues from 2300-year-old Vietnamese burial jars. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53(13), 2373–2382.

    Article  Google Scholar 

  • Eerkens, J. W. (2007). Organic residue analysis and the decomposition of fatty acids in ancient potsherds. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice of archaeological residue analysis (pp. 90–98). Oxford: Archaeopress.

    Google Scholar 

  • Eerkens, J. W., & Barnard, H. (2007). Introduction. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice of archaeological residue analysis (pp. 1–7). Oxford: Archaeopress.

    Google Scholar 

  • Evershed, R. P. (1993). Biomolecular archaeology and lipids. World Archaeology, 25(1), 74–93.

    Article  Google Scholar 

  • Evershed, R. P. (2008). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 50(6), 895–924.

    Article  Google Scholar 

  • Evershed, R. P., Heron, C., & Goad, L. J. (1990). Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography–mass spectrometry. Analyst, 115, 1339–1342.

    Article  Google Scholar 

  • Evershed, R. P., Heron, C., Charters, S., & Goad, L. J. (1992). The survival of food residues: New methods of analysis, interpretation and application. Proceedings of the British Academy, 77, 187–208.

    Google Scholar 

  • Evershed, R. P., Mottram, H. R., Dudd, S. N., Charters, S., Stott, A. W., Lawrence, G. J., Gibson, A. M., Conner, A., Blinkhorn, P. W., & Reeves, V. (1997). New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften, 84(9), 402–406.

    Article  Google Scholar 

  • Evershed, R. P., Dudd, S. N., Lockheart, M. J., & Jim, S. (2001). Lipids in archaeology. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of archaeological sciences (pp. 331–350). Chichester: Wiley.

    Google Scholar 

  • Evershed, R. P., Copley, M. S., Dickson, L., & Hansel, F. A. (2008). Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry, 50(1), 101–113.

    Article  Google Scholar 

  • Frankel, E. N. (1991). Recent advances in lipid oxidation. Journal of the Science of Food and Agriculture, 54(4), 495–511.

    Article  Google Scholar 

  • Frink, L., & Harry, K. G. (2008). The beauty of “Ugly” Eskimo cooking pots. American Antiquity, 73(1), 103–120.

    Google Scholar 

  • Garraty, C. P. (2011). The origins of pottery as a practical domestic technology: Evidence from the middle Queen Creek area, Arizona. Journal of Anthropological Archaeology, 30, 220–234.

    Article  Google Scholar 

  • Gerhardt, K. O., Searles, S., & Biers, W. R. (1990). Corinthian figure vases: Non-destructive extraction and gas chromatography–mass spectrometry. MASCA Research Papers in Science and Archaeology, 7, 41–50.

    Google Scholar 

  • Hansel, F. A., Copley, M. S., Madureira, L. A. S., & Evershed, R. P. (2004). Thermally produced w (o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters, 45, 2999–3002.

    Article  Google Scholar 

  • Heidke, J. M. (1999). Cienega phase incipient plainware from Southeastern Arizona. Kiva, 64(3), 311–338.

    Google Scholar 

  • Heron, C. (1989). The analysis of organic residues from archaeological ceramics. Unpublished Ph.D. dissertation, University of Wales, Cardiff.

    Google Scholar 

  • Heron, C., & Evershed, R. P. (1993). The analysis of organic residues and the study of pottery use. Archaeological Method and Theory, 5, 247–284.

    Google Scholar 

  • Heron, C., Evershed, R. P., Goad, J., & Denham, V. (1991a). New approaches to the analysis of organic residues from archaeological remains. In P. Budd, B. Chapman, C. Jackson, R. Janaway, & B. Ottaway (Eds.), Proceedings of a conference on the application of scientific techniques to archaeology (Vol. 9, pp. 332–339). Oxford: Oxbow.

    Google Scholar 

  • Heron, C., Evershed, R. P., & Goad, L. J. (1991b). Effects of migration of soil lipids on organic residues associated with buried potsherds. Journal of Archaeological Science, 18(6), 641–659.

    Article  Google Scholar 

  • Hill, H. E., & Evans, J. (1989). Crops of the Pacific: New evidence from chemical analysis of organic residues in pottery. In D. R. Harris & C. Hilliman (Eds.), The evolution of plant exploitation (pp. 418–425). London: Unwin Hyman.

    Google Scholar 

  • Loy, T. (1994). Residue analysis of artifacts and burned rock from the Mustang Branch and Barton sites (41HY209 and 41HY202). In M. B. Ricklis & M. B. Collins (Eds.), Archaic and late prehistoric human ecology in the Middle Onion Creek Valley, Hays County (Vol. 2, pp. 607–627). Austin: University of Texas.

    Google Scholar 

  • Mabry, J. B. (2000). The Red Mountain Phase and origins of Hokokam villages. In D. E. Doyel, S. K. Fish, & P. R. Fish (Eds.), The Hohokam village revisited (pp. 38–63). Glenwood Springs: American Association for the Advancement of Science.

    Google Scholar 

  • Malainey, M. E. (1997). The reconstruction and testing of subsistence and settlement strategies for the plains, Parkland and Southern Boreal Forest. Unpublished Ph.D. dissertation, University of Manitoba, Winnipeg.

    Google Scholar 

  • Malainey, M. E. (2007). Fatty acid analysis of archaeological residues: Procedures and possibilities. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice of archaeological residue analysis (British archaeological reports international series 1650, pp. 77–89). Oxford: Archaeopress.

    Google Scholar 

  • Malainey, M. E. (2011). A consumer’s guide to archaeological science. New York: Springer.

    Book  Google Scholar 

  • Malainey, M. E., Przybylski, R., & Sherriff, B. L. (1999a). The effects of thermal and oxidative degradation on the fatty acid composition of food plants and animals of Western Canada: Implications for the identification of archaeological vessel residues. Journal of Archaeological Science, 26(1), 95–103.

    Article  Google Scholar 

  • Malainey, M. E., Przybylski, R., & Sherriff, B. L. (1999b). The fatty acid composition of native food plants and animals of Western Canada. Journal of Archaeological Science, 26(1), 83–94.

    Article  Google Scholar 

  • Malainey, M. E., Przybylski, R., & Sherriff, B. L. (1999c). Identifying the former contents of late precontact period pottery vessels from Western Canada using gas chromatography. Journal of Archaeological Science, 26(4), 425–438.

    Article  Google Scholar 

  • Malainey, M. E., Przybylski, R., & Sherriff, B. L. (2001). One person’s food: How and why fish avoidance may affect the settlement and subsistence patterns of hunter-gatherers. American Antiquity, 66(1), 141–161.

    Article  Google Scholar 

  • Marchbanks, M. L. (1989). Lipid analysis in archaeology: An initial study of ceramics and subsistence at the George C. Davis site. Unpublished Master’s Thesis, University of Texas, Austin.

    Google Scholar 

  • Morton, J. D. (1989) An investigation of the use of stable isotopic analysis of encrustations on prehistoric Ontario ceramics and paleodietary possibilities. Unpublished Ph.D. dissertation, McMaster University, Hamilton.

    Google Scholar 

  • Mukherjee, A. J., Gibson, A. M., & Evershed, R. P. (2008). Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds. Journal of Archaeological Science, 37(7), 2059–2073.

    Article  Google Scholar 

  • Oudemans, T. F. M., & Boon, J. J. (1991). Molecular archaeology: Analysis of charred (food) remains from prehistoric pottery by pyrolysis – gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 20, 197–227.

    Article  Google Scholar 

  • Patrick, M., de Koning, A. J., & Smith, A. B. (1985). Gas liquid chromatographic analysis of fatty acids in food residues from ceramic in the southwestern Cape, South Africa. Archaeometry, 27, 231–236.

    Article  Google Scholar 

  • Quigg, J. M., Malainey, M. E., Przybylski, R., & Monks, G. (2001). No bones about it: Using lipid analysis of burned rock and groundstone residues to examine late. Plains Anthropologist, 46(177), 283.

    Google Scholar 

  • Raven, A. M., van Bergen, P. F., Stott, A. W., Dudd, S. N., & Evershed, R. P. (1997). Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis, 40–41, 267–285.

    Article  Google Scholar 

  • Reber, E. A. (2006). A hard row to hoe: Changing maize use in the American bottom and surrounding areas. In J. Staller, R. Tykot, & B. Benz (Eds.), Histories of maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize (pp. 235–248). Boston: Elsevier Academic.

    Google Scholar 

  • Reber, E. A., & Evershed, R. P. (2004a). Identification of maize in absorbed organic residues: A cautionary tale. Journal of Archaeological Science, 31(4), 399–410.

    Article  Google Scholar 

  • Reber, E. A., & Evershed, R. P. (2004b). How did Mississippians prepare maize? The application of compound specific carbon isotopic analysis to absorbed pottery residues from several Mississippi Valley sites. Archaeometry, 46, 19–33.

    Article  Google Scholar 

  • Reber, E. A., Dudd, S. N., van der Merwe, N. J., & Evershed, R. P. (2004). Direct detection of maize processing in archaeological pottery through compound-specific stable isotope analysis of n-dotriacontanol in absorbed organic residues. Antiquity, 78, 682–691.

    Google Scholar 

  • Regert, M. (2007). Elucidating pottery function using a multi-step analytical methodology combining infrared spectroscopy, chromatographic procedures and mass spectrometry. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice of archaeological residue analysis (Vol. 1650, pp. 60–76). Oxford: Archaeopress.

    Google Scholar 

  • Reid, K. C. (1989). A materials science perspective on hunter-gatherer pottery. In G. Bronits (Ed.), Pottery technology: Ideas and approaches (pp. 167–180). Boulder: Westview.

    Google Scholar 

  • Reid, K. C. (1990). Simmering down: A second look at Ralph Linton’s ‘North American cooking pots’. In J. M. Mack (Ed.), Hunter-gatherer pottery from the far west (Vol. Nevada State museum anthropological papers no. 23, pp. 8–17). Carson City: Nevada State Museum.

    Google Scholar 

  • Rottländer, R. C. A. (1990). Lipid analysis in the identification of vessel contents. In W. R. Biers & P. E. McGovern (Eds.), MASCA research papers in science and archaeology (Vol. 7, pp. 37–40). Philadelphia: University of Pennsylvania.

    Google Scholar 

  • Sassaman, K. E. (2010). The Eastern Archaic, historicized. Lanham: Altamira.

    Google Scholar 

  • Shillito, L. M., Almond, M. J., Wicks, K., Marshall, L., & Matthews, W. (2009). The use of FT-IR as a screening technique for organic residue analysis of archaeological samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72(1), 120–125.

    Article  Google Scholar 

  • Skibo, J. M. (1992). Pottery function: A use-alteration perspective. New York: Plenum.

    Google Scholar 

  • Skibo, J. M., Malainey, M. E., & Drake, E. C. (2009). Stone boiling, fire-cracked rock and nut oil: Exploring the origins of pottery making on Grand Island. Wisconsin Archeologist, 90(1–2), 47–64.

    Google Scholar 

  • Solomons, T. W. G. (1980). Organic chemistry (2nd ed.). New York: Wiley.

    Google Scholar 

  • Tzvelev, N. N. (1989). The system of grasses (Poaceae) and their evolution. The Botanical Review, 55(3), 141–204.

    Article  Google Scholar 

  • Yarnell, R. A. (1964). Aboriginal relationships between culture and plant life in the Upper Great Lakes Region. University of Michigan Anthropological Papers, No. 23, Museum of Anthropology, University of Michigan, Ann Arbor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skibo, J.M., Malainey, M. (2013). Residue. In: Understanding Pottery Function. Manuals in Archaeological Method, Theory and Technique. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4199-1_5

Download citation

Publish with us

Policies and ethics