Power-Efficient Fault-Tolerant Finite Field Multiplier

  • Jimson MathewEmail author
  • A. M. Jabir
  • R. A. Shafik
  • D. K. Pradhan


As integrated circuit density increases, digital circuits characterized by high operating frequencies and low voltage levels will be increasingly susceptible to faults. Furthermore, it has recently been shown that for many digital signature and identification schemes an attacker can inject faults into the hardware and the resulting incorrect outputs may completely expose their secrets. On-chip error masking techniques such as error correction could be one of the options to mitigate the above problems. To this end, this chapter presents a framework of techniques to design error correcting circuits. Fault attacks are based on injecting some faults into a cryptosystem and observing any leak of secret information, primarily by analyzing erroneous results produced by the cryptosystem due to the faults.


Parity Prediction Parity Check Matrix Reed Solomon Code Triple Modular Redundancy Primitive Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Bayat-Sarmadi, M.A. Hasan, On concurrent detection of errors in polynomial basis multiplication. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15(4), 413–426 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Boneh, R. Demillo, R. Lipton, On the improtance of checking cryptographic protocols for faults, in International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt), Konstanz, 1997, pp. 37–51Google Scholar
  3. 3.
    D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–120 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Fenn, M. Gossel, M. Benaissa, D. Taylor, Online error dection for bitseial multipliers in GF(2m). J. Electron. Test. Theory Appl. 13, 29–40 (1998)CrossRefGoogle Scholar
  5. 5.
    R. Gallager, Low-Density Parity-Check Codes (MIT, Cambridge, 1963)Google Scholar
  6. 6.
    G. Gaubatz, B. Sunar, Robust finite field arithmetic for fault-tolerant public-key cryptography, in 2nd Workshop on Fault Tolerance and Diagnosis in Cryptography (FTDC), Edinburgh, UK, 2005, pp. 196–207Google Scholar
  7. 7.
    A. Halbutogullari, C.K. Koc, Mastrovito multiplier for general irreducible polynomials. IEEE Trans. Comput. 49(5), 503–518 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    W. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Iliev, J.E. Stine, N. Jachimiec, Parallel programmable finite field GF(2m) multipliers, in Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging Trends (ISVLSI’04), Tampa, Feb 2004, pp. 299–302Google Scholar
  10. 10.
    A. Jabir, D. Pradhan, A graph-based unified technique for computing and representing coefficients over finite fields. IEEE Trans. Comp. 56(8), 1119–1132 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mario Blaum, A course on error correcting codes. IBM Research Division IBM Corp, 1997Google Scholar
  12. 12.
    E.D. Mastrovito, VLSI architectures for computation in Galois fields. PhD thesis, Linkoping University, Linkoping, 1991Google Scholar
  13. 13.
    R.J. McEliece, Finite Fields for Computer Scientists and Engineers (Kluwer, Boston, 1987)CrossRefzbMATHGoogle Scholar
  14. 14.
    M. Nicolaidis, Y. Zorian, Online testing for VLSI a compendium of approaches. J. Electron. Test. Theory Appl. 11, 7–10 (1998)CrossRefGoogle Scholar
  15. 15.
    C.Y. Lee, C.W. Chiou, J.M. Lin, Concurrent error detection in a bitparallel systolic mulitplier for dual basis of GF(2m). J. Electron. Test. Theory Appl. 21, 539–549 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Lidl, H. Niederreiter, Finite Fields (Addison-Wesley, Reading, 1983)zbMATHGoogle Scholar
  17. 17.
    S. Lin, D.J Costello, Error Control Coding: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, 1983)Google Scholar
  18. 18.
    D.K. Pradhan, A theory of Galois switching functions. IEEE Trans. Comp. 27(3), 239–249 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    S. Reed, G. Solomon, Polynomial codes over certain finite fields. SIAM J. Appl. Math. 8, 300–304 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Reyhani-Masoleh, M.A. Hasan, Towards fault-tolerant cryptographic computations over finite fields. ACM Trans. Embed. Comput. Syst. 3(3), 593–613 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Reyhani-Masoleh, M.A. Hasan, Low complexity bit parallel architectures for polynomial basis multiplication over gf(2m). IEEE Trans. Comput. 53(8), 945–959 (2004)CrossRefGoogle Scholar
  22. 22.
    A. Reyhani-Masoleh, M.A. Hasan, Fault detection architectures for field multiplication using polynomial bases. IEEE Trans. Comput. 55(9), 1089–1103 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Vardy, Y. Beery, Bit level soft-decision decoding for reed-solomon codes. IEEE Trans. Commun. 39, 440–444 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    C. Wang, V. Singal, M. Ciesielski, BDD decomposition for efficient logic synthesis, in International Conference on Computer Aided Design Aided Design (ICCAD), San Jose, 1999, pp. 626–631Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jimson Mathew
    • 1
  • A. M. Jabir
    • 2
  • R. A. Shafik
    • 1
  • D. K. Pradhan
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK
  2. 2.Oxford Brookes UniversityOxfordUK

Personalised recommendations