Skip to main content

The Steady State of Multicellular Tumour Spheroids: A Modelling Challenge

  • Chapter
  • First Online:

Abstract

Cells from different tumour cell lines can be grown in vitro to form spheroidal masses, called multicellular tumour spheroids, currently considered valuable experimental models of avascular tumours [35, 37, 50, 51, 58]. Multicellular tumour spheroids have been extensively investigated in that they provide a useful model to assess the effects of oxygenation and nutrition on growth, as well as the effects of treatments with drugs and radiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adam, J.A.: A mathematical model of tumour growth. iii. Comparison with experiment. Math. Biosci. 86, 213–227 (1987)

    Google Scholar 

  2. Adam, J.A., Maggelakis, S.A.: Mathematical models of tumour growth. iv. Effects of a necrotic core. Math. Biosci. 97, 121–136 (1989)

    Google Scholar 

  3. Adam, J.A., Maggelakis, S.A.: Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582 (1990)

    MATH  Google Scholar 

  4. Ambrosi, D., Preziosi, L.: On the closure of mass balance for tumour growth. Math. Mod. Meth. Appl. Sci. 12, 737–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosi, D., Preziosi, L.: Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. MechanoBiol. 8, 397–413 (2009)

    Article  Google Scholar 

  6. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  MathSciNet  Google Scholar 

  7. Astanin, S., Preziosi, L.: Mathematical modelling of the Warburg effect in tumour cords, J. Theor. Biol. 258, 578–590 (2009).

    Article  Google Scholar 

  8. Astanin, S., Tosin, A.: Mathematical model of tumour cord growth along the source of nutrient, Math. Model. Nat. Phenom. 2, 153–177 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bertuzzi, A., Fasano, A., Gandolfi, A.: A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents. SIAM J. Math. Analysis 36, 882–915 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: ATP production and necrosis formation in a tumour spheroid model. Math. Model. Nat. Phenom. 2, 30–46 (2007)

    Article  MathSciNet  Google Scholar 

  11. Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: Necrotic core in EMT6/Ro tumor spheroids: Is it caused by an ATP deficit?. J. Theor. Biol. 262, 142–150 (2010)

    Article  Google Scholar 

  12. Bertuzzi, A., Bruni, C., Fasano, A., Gandolfi, A., Papa, F., Sinisgalli, C.: Response of tumor spheroids to radiation: Modeling and parameter identification. Bull. Math. Biol. 72, 1069–1091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bianchini, L., Fasano, A.: A model combining acid-mediated tumour invasion and nutrient dynamics. Nonlin. Anal. Real World Appl. 10, 1955–1975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bredel-Geissler, A., Karbach, U., Walenta, S., Vollrath, L., Mueller-Klieser, W.: Proliferation-associated oxygen consumption and morphology of tumour cells in monolayer and spheroid culture. J. Cell. Physiol. 153, 44–52 (1992)

    Article  Google Scholar 

  15. Breward, C.J., Byrne, H.M., Lewis, C.E.: The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burton, A.C.: Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176 (1966)

    Google Scholar 

  17. Byrne, H.M., Chaplain, M.A.J.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216 (1996)

    Article  MATH  Google Scholar 

  18. Byrne, H., Preziosi, L.: Modeling solid tumor growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)

    Article  MATH  Google Scholar 

  19. Byrne, H.M., King, J.R., McElwain, D.L.S., Preziosi, L.: A two-phase model of solid tumour growth. Appl. Math. Lett. 16 567–573 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Variation in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151, 386–394 (1992)

    Article  Google Scholar 

  21. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Prolif. 25, 1–22 (1992)

    Article  Google Scholar 

  22. Chaplain, M., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23, 197–229 (2006)

    Article  MATH  Google Scholar 

  23. Cui, S., Friedman, A.: Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255, 636–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cui, S., Friedman, A.: A hyperbolic free boundary problem modeling tumor growth. Interf. Free Bound. 5, 159–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    Article  MathSciNet  Google Scholar 

  26. Deakin, A.S.: Model for the growth of a solid in vitro tumour. Growth 39, 159–165 (1975)

    Google Scholar 

  27. Durand, R.E.: Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet. 9, 403–412 (1976)

    Google Scholar 

  28. Fasano, A., Gandolfi, A., Gabrielli, M.: The energy balance in stationary multicellular spheroids. Far East J. Math. Sci. 39, 105–128 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Fasano, A., Gabrielli, M., Gandolfi, A.: Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 8, 239–252 (2011)

    Article  MathSciNet  Google Scholar 

  30. Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. J. Exp. Med. 138 745–753 (1973)

    Article  Google Scholar 

  31. Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J. Cell. Physiol. 124, 516–524 (1985)

    Article  Google Scholar 

  32. Freyer, J.P., Sutherland, R.M.: Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504–3512 (1986)

    Google Scholar 

  33. Gerlee, P., Anderson, A.R.: A hybrid cellular automaton model of clonal evolution in cancer: The emergence of the glycolytic phenotype. J. Theor. Biol. 250, 705–722 (2008)

    Article  Google Scholar 

  34. Greenspan, P.: Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51, 317–340 (1972)

    MATH  Google Scholar 

  35. Hamilton, G.: Multicellular spheroids as an in vitro tumor model. Cancer Lett. 131, 29–34 (1998)

    Article  MathSciNet  Google Scholar 

  36. Helmlingen, G., Netti, P.A., Lichtembeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotech. 15, 778–783 (1997)

    Article  Google Scholar 

  37. Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., Kunz-Schugart, L.A.: Multicellular tumor spheroids: An underestimated tool is catching up again. J. Biotech. 148, 3–15 (2010)

    Article  Google Scholar 

  38. Iordan, A., Duperray, A., Verdier, C.: A fractal approach to the rheology of concentrated cell suspensions. Phis. Rev. E 77, 011911 (2008)

    Article  Google Scholar 

  39. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., Freyer, J.P.: A multiscale model for avascular tumor growth. Biophys. J. 89, 3884–3894 (2005)

    Article  Google Scholar 

  40. Kang, M., Fedkiw, R.P., Liu, X.: A boundary condition capturing method for multiphase incompressible flow. J. Scient. Comput. 15, 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Landman, K.A., Please, C.P.: Tumour dynamics and necrosis: Surface tension and stability. IMA J. Math. Appl. Med. Biol. 18, 131–158 (2001)

    Article  MATH  Google Scholar 

  42. Landman, K.A., White L.R.: Solid/liquid separation of flocculated suspension. Adv. Colloids Interface Sci. 51, 175–246 (1994)

    Article  Google Scholar 

  43. Lowengrub, J.S, Frieboes, H.B., Jin, F., Chuang, Y-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: Bridging the gap between cells and tumours. Nonlinearity 23, 1–91 (2010)

    Google Scholar 

  44. Maggelakis, S.A., Adam, J.A.: Mathematical model of prevascular growth of a spherical carcinoma. Math. Comput. Modelling 13, 23–38 (1990)

    Article  MATH  Google Scholar 

  45. Majno, G., La Gattuta, M., Thompson, T.E.: Cellular death and necrosis: Chemical, physical and morphologic chenges in rat liver. Virchows Arch. path. Anat. 333, 421–465 (1960)

    Google Scholar 

  46. Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S.: Analysis of growth of multicellular tumor spheroids by mathematical models. Cell. Prolif. 27, 73–94 (1994)

    Article  Google Scholar 

  47. McElwain, D.L.S., Ponzo, P.J.: A model for the growth of a solid tumor with non-uniform oxygen consumption. Math. Biosci. 35, 267–279 (1977)

    Article  MATH  Google Scholar 

  48. McElwain, D.L.S., Morris, L.E.: Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39, 147–157 (1978)

    Article  Google Scholar 

  49. Mueller-Klieser, W.: Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids. Biophys. J. 46, 343–348 (1984)

    Article  Google Scholar 

  50. Mueller-Klieser, W.: Three dimensional cell cultures: From molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–1123 (1997)

    Google Scholar 

  51. Mueller-Klieser, W.: Tumor biology and experimental therapeutics. Crit. Rev. Hematol. Oncol. 36, 123–139 (2000)

    Article  Google Scholar 

  52. Neeman, M., Jarrett, K.A., Sillerud, L.O., Freyer, J.P.: Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Cancer Res. 51, 4072–4079 (1991)

    Google Scholar 

  53. Netti, P.A., Jain, R.K.: Interstitial transport in solid tumours. In: Preziosi, L. (ed.) Cancer Modelling and Simulation. Chapman&Hall/CRC, Boca Raton (2003)

    Google Scholar 

  54. Please, C.P., Pettet, C.J., McElwain, D.L.S.: A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11, 89–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. Schaller, G., Meyer-Hermann, M.: Continuum versus discrete model: A comparison for multicellular tumour spheroids. Phil. Trans. R. Soc. A 364, 1443–1464 (2006)

    Article  MathSciNet  Google Scholar 

  56. Simeoni, M., Magni, P., Cammia, C., De Nicolao, G., Croci, V., Pesenti, E., Germani, M., Poggesi, I., Rocchetti, M.: Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004)

    Article  Google Scholar 

  57. Smallbone, K., Gatenby, R.A., Gillies, R.J., Maini, P.K., Gavaghan, D.J.: Metabolic changes during carcinogenesis: Potential impact on invasiveness. J. Theor. Biol. 244, 703–713 (2007)

    Article  MathSciNet  Google Scholar 

  58. Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)

    Article  Google Scholar 

  59. Sutherland, R.M., Durand, R.E.: Hypoxic cells in an in vitro tumour model. Int. J. Radiat. Biol. 23, 235–246 (1973)

    Article  Google Scholar 

  60. Tindall, M.J., Please, C.P., Peddle, M.J.: Modelling the formation of necrotic regions in avascular tumours. Math. Biosci. 211, 34–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Venkatasubramanian, R., Henson, M.A., Forbes, N.S.: Incorporating energy metabolism into a growth model of multicellular tumor spheroids. J. Theor. Biol. 242, 440–453 (2006)

    Article  MathSciNet  Google Scholar 

  62. Ward, J.P., King, J.R.: Mathematical modelling of avascular tumor growth II. Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211 (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by the PRIN (2008): “Modelli matematici per sistemi a molte componenti nelle scienze mediche ed ambientali” (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fasano, A., Gandolfi, A. (2013). The Steady State of Multicellular Tumour Spheroids: A Modelling Challenge. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_7

Download citation

Publish with us

Policies and ethics