The Steady State of Multicellular Tumour Spheroids: A Modelling Challenge

Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)


Cells from different tumour cell lines can be grown in vitro to form spheroidal masses, called multicellular tumour spheroids, currently considered valuable experimental models of avascular tumours [35, 37, 50, 51, 58]. Multicellular tumour spheroids have been extensively investigated in that they provide a useful model to assess the effects of oxygenation and nutrition on growth, as well as the effects of treatments with drugs and radiation.


Necrotic Core Liquid Core Necrotic Region Multicellular Spheroid Multicellular Tumour Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was partially supported by the PRIN (2008): “Modelli matematici per sistemi a molte componenti nelle scienze mediche ed ambientali” (MIUR).


  1. 1.
    Adam, J.A.: A mathematical model of tumour growth. iii. Comparison with experiment. Math. Biosci. 86, 213–227 (1987)Google Scholar
  2. 2.
    Adam, J.A., Maggelakis, S.A.: Mathematical models of tumour growth. iv. Effects of a necrotic core. Math. Biosci. 97, 121–136 (1989)Google Scholar
  3. 3.
    Adam, J.A., Maggelakis, S.A.: Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582 (1990)MATHGoogle Scholar
  4. 4.
    Ambrosi, D., Preziosi, L.: On the closure of mass balance for tumour growth. Math. Mod. Meth. Appl. Sci. 12, 737–754 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ambrosi, D., Preziosi, L.: Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. MechanoBiol. 8, 397–413 (2009)CrossRefGoogle Scholar
  6. 6.
    Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol. 66, 1039–1091 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Astanin, S., Preziosi, L.: Mathematical modelling of the Warburg effect in tumour cords, J. Theor. Biol. 258, 578–590 (2009).CrossRefGoogle Scholar
  8. 8.
    Astanin, S., Tosin, A.: Mathematical model of tumour cord growth along the source of nutrient, Math. Model. Nat. Phenom. 2, 153–177 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bertuzzi, A., Fasano, A., Gandolfi, A.: A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents. SIAM J. Math. Analysis 36, 882–915 (2004).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: ATP production and necrosis formation in a tumour spheroid model. Math. Model. Nat. Phenom. 2, 30–46 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bertuzzi, A., Fasano, A., Gandolfi, A., Sinisgalli, C.: Necrotic core in EMT6/Ro tumor spheroids: Is it caused by an ATP deficit?. J. Theor. Biol. 262, 142–150 (2010)CrossRefGoogle Scholar
  12. 12.
    Bertuzzi, A., Bruni, C., Fasano, A., Gandolfi, A., Papa, F., Sinisgalli, C.: Response of tumor spheroids to radiation: Modeling and parameter identification. Bull. Math. Biol. 72, 1069–1091 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bianchini, L., Fasano, A.: A model combining acid-mediated tumour invasion and nutrient dynamics. Nonlin. Anal. Real World Appl. 10, 1955–1975 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bredel-Geissler, A., Karbach, U., Walenta, S., Vollrath, L., Mueller-Klieser, W.: Proliferation-associated oxygen consumption and morphology of tumour cells in monolayer and spheroid culture. J. Cell. Physiol. 153, 44–52 (1992)CrossRefGoogle Scholar
  15. 15.
    Breward, C.J., Byrne, H.M., Lewis, C.E.: The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Burton, A.C.: Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176 (1966)Google Scholar
  17. 17.
    Byrne, H.M., Chaplain, M.A.J.: Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Byrne, H., Preziosi, L.: Modeling solid tumor growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Byrne, H.M., King, J.R., McElwain, D.L.S., Preziosi, L.: A two-phase model of solid tumour growth. Appl. Math. Lett. 16 567–573 (2003)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Variation in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151, 386–394 (1992)CrossRefGoogle Scholar
  21. 21.
    Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Prolif. 25, 1–22 (1992)CrossRefGoogle Scholar
  22. 22.
    Chaplain, M., Graziano, L., Preziosi, L.: Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math. Med. Biol. 23, 197–229 (2006)MATHCrossRefGoogle Scholar
  23. 23.
    Cui, S., Friedman, A.: Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255, 636–677 (2001)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Cui, S., Friedman, A.: A hyperbolic free boundary problem modeling tumor growth. Interf. Free Bound. 5, 159–182 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723–763 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Deakin, A.S.: Model for the growth of a solid in vitro tumour. Growth 39, 159–165 (1975)Google Scholar
  27. 27.
    Durand, R.E.: Cell cycle kinetics in an in vitro tumor model. Cell Tissue Kinet. 9, 403–412 (1976)Google Scholar
  28. 28.
    Fasano, A., Gandolfi, A., Gabrielli, M.: The energy balance in stationary multicellular spheroids. Far East J. Math. Sci. 39, 105–128 (2010)MathSciNetMATHGoogle Scholar
  29. 29.
    Fasano, A., Gabrielli, M., Gandolfi, A.: Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 8, 239–252 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Folkman, J., Hochberg, M.: Self-regulation of growth in three dimensions. J. Exp. Med. 138 745–753 (1973)CrossRefGoogle Scholar
  31. 31.
    Freyer, J.P., Sutherland, R.M.: A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J. Cell. Physiol. 124, 516–524 (1985)CrossRefGoogle Scholar
  32. 32.
    Freyer, J.P., Sutherland, R.M.: Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504–3512 (1986)Google Scholar
  33. 33.
    Gerlee, P., Anderson, A.R.: A hybrid cellular automaton model of clonal evolution in cancer: The emergence of the glycolytic phenotype. J. Theor. Biol. 250, 705–722 (2008)CrossRefGoogle Scholar
  34. 34.
    Greenspan, P.: Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51, 317–340 (1972)MATHGoogle Scholar
  35. 35.
    Hamilton, G.: Multicellular spheroids as an in vitro tumor model. Cancer Lett. 131, 29–34 (1998)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Helmlingen, G., Netti, P.A., Lichtembeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotech. 15, 778–783 (1997)CrossRefGoogle Scholar
  37. 37.
    Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., Kunz-Schugart, L.A.: Multicellular tumor spheroids: An underestimated tool is catching up again. J. Biotech. 148, 3–15 (2010)CrossRefGoogle Scholar
  38. 38.
    Iordan, A., Duperray, A., Verdier, C.: A fractal approach to the rheology of concentrated cell suspensions. Phis. Rev. E 77, 011911 (2008)CrossRefGoogle Scholar
  39. 39.
    Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., Freyer, J.P.: A multiscale model for avascular tumor growth. Biophys. J. 89, 3884–3894 (2005)CrossRefGoogle Scholar
  40. 40.
    Kang, M., Fedkiw, R.P., Liu, X.: A boundary condition capturing method for multiphase incompressible flow. J. Scient. Comput. 15, 323–360 (2000)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Landman, K.A., Please, C.P.: Tumour dynamics and necrosis: Surface tension and stability. IMA J. Math. Appl. Med. Biol. 18, 131–158 (2001)MATHCrossRefGoogle Scholar
  42. 42.
    Landman, K.A., White L.R.: Solid/liquid separation of flocculated suspension. Adv. Colloids Interface Sci. 51, 175–246 (1994)CrossRefGoogle Scholar
  43. 43.
    Lowengrub, J.S, Frieboes, H.B., Jin, F., Chuang, Y-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: Bridging the gap between cells and tumours. Nonlinearity 23, 1–91 (2010)Google Scholar
  44. 44.
    Maggelakis, S.A., Adam, J.A.: Mathematical model of prevascular growth of a spherical carcinoma. Math. Comput. Modelling 13, 23–38 (1990)MATHCrossRefGoogle Scholar
  45. 45.
    Majno, G., La Gattuta, M., Thompson, T.E.: Cellular death and necrosis: Chemical, physical and morphologic chenges in rat liver. Virchows Arch. path. Anat. 333, 421–465 (1960)Google Scholar
  46. 46.
    Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S.: Analysis of growth of multicellular tumor spheroids by mathematical models. Cell. Prolif. 27, 73–94 (1994)CrossRefGoogle Scholar
  47. 47.
    McElwain, D.L.S., Ponzo, P.J.: A model for the growth of a solid tumor with non-uniform oxygen consumption. Math. Biosci. 35, 267–279 (1977)MATHCrossRefGoogle Scholar
  48. 48.
    McElwain, D.L.S., Morris, L.E.: Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39, 147–157 (1978)CrossRefGoogle Scholar
  49. 49.
    Mueller-Klieser, W.: Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids. Biophys. J. 46, 343–348 (1984)CrossRefGoogle Scholar
  50. 50.
    Mueller-Klieser, W.: Three dimensional cell cultures: From molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–1123 (1997)Google Scholar
  51. 51.
    Mueller-Klieser, W.: Tumor biology and experimental therapeutics. Crit. Rev. Hematol. Oncol. 36, 123–139 (2000)CrossRefGoogle Scholar
  52. 52.
    Neeman, M., Jarrett, K.A., Sillerud, L.O., Freyer, J.P.: Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Cancer Res. 51, 4072–4079 (1991)Google Scholar
  53. 53.
    Netti, P.A., Jain, R.K.: Interstitial transport in solid tumours. In: Preziosi, L. (ed.) Cancer Modelling and Simulation. Chapman&Hall/CRC, Boca Raton (2003)Google Scholar
  54. 54.
    Please, C.P., Pettet, C.J., McElwain, D.L.S.: A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11, 89–94 (1998)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Schaller, G., Meyer-Hermann, M.: Continuum versus discrete model: A comparison for multicellular tumour spheroids. Phil. Trans. R. Soc. A 364, 1443–1464 (2006)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Simeoni, M., Magni, P., Cammia, C., De Nicolao, G., Croci, V., Pesenti, E., Germani, M., Poggesi, I., Rocchetti, M.: Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004)CrossRefGoogle Scholar
  57. 57.
    Smallbone, K., Gatenby, R.A., Gillies, R.J., Maini, P.K., Gavaghan, D.J.: Metabolic changes during carcinogenesis: Potential impact on invasiveness. J. Theor. Biol. 244, 703–713 (2007)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)CrossRefGoogle Scholar
  59. 59.
    Sutherland, R.M., Durand, R.E.: Hypoxic cells in an in vitro tumour model. Int. J. Radiat. Biol. 23, 235–246 (1973)CrossRefGoogle Scholar
  60. 60.
    Tindall, M.J., Please, C.P., Peddle, M.J.: Modelling the formation of necrotic regions in avascular tumours. Math. Biosci. 211, 34–55 (2008)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Venkatasubramanian, R., Henson, M.A., Forbes, N.S.: Incorporating energy metabolism into a growth model of multicellular tumor spheroids. J. Theor. Biol. 242, 440–453 (2006)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Ward, J.P., King, J.R.: Mathematical modelling of avascular tumor growth II. Modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211 (1999)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Matematica “U. Dini”Universita’ di FirenzeFirenzeItaly
  2. 2.Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNRRomaItaly

Personalised recommendations