Skip to main content

Influence of Blood Rheology and Outflow Boundary Conditions in Numerical Simulations of Cerebral Aneurysms

  • 2085 Accesses

Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)

Abstract

Disease in human physiology is often related to cardiovascular mechanics. Impressively, strokes are one of the leading causes of death in developed countries, and they might occur as a result of an aneurysm rupture, which is a sudden event in the majority of cases. On the basis of several autopsy and angiography series, it is estimated that 0.4–6 % of the general population harbors one or more intracranial aneurysms, and on average the incidence of an aneurysmal rupture is of 10 per 100,000 population per year, with tendency to increase in patients with multiple aneurysms [14, 20].

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anand, M., Rajagopal, K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)

    Google Scholar 

  2. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008)

    Article  Google Scholar 

  3. Balossino, R., Pennati, G., Migliavacca, F., Formaggia, L., Veneziani, A., Tuveri, M., Dubini, G.: Influence of boundary conditions on fluid dynamics in models of the cardiovascular system: A multiscale approach applied to the carotid bifurcation. Comput. Meth. Biomech. Biomed. Eng. 12(1) (2009)

    Google Scholar 

  4. Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C.M., Millan, D., Frangi, A.F.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Trans.Med. Imag. 24(4), 457–467 (2005)

    Article  Google Scholar 

  5. Cebral, J.R., Castro, M.A., Putman, C.M., Alperin, N.: Flow–area relationship in internal carotid and vertebral arteries. Physiol. Meas. 29, 585 (2008)

    Article  Google Scholar 

  6. Formaggia, L., Veneziani, A.: Reduced and multiscale models for the human cardiovascular system. Lecture Notes VKI Lecture Series 7 (2003)

    Google Scholar 

  7. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. Math. Model. Numer. Anal. 41(4), 743–769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gambaruto, A.M., Peiró, J., Doorly, D.J., Radaelli, A.G.: Reconstruction of shape and its effect on flow in arterial conduits. Int. J. Numer. Meth. Fluid. 57(5), 495–517 (2008)

    Article  MATH  Google Scholar 

  9. Gambaruto, A.M., Janela, J., Moura, A., Sequeira, A.: Sensitivity of hemodynamics in patient specific cerebral aneurysms to vascular geometry and blood rheology. Math. Biosci. Eng. 8(2), 409–423 (2011)

    Article  MathSciNet  Google Scholar 

  10. Goljan, E.F.: Rapid Review Pathology. Mosby/Elsevier, Philadelphia (2010)

    Google Scholar 

  11. Hassan, T., Timofeev, E.V., Saito, T., Shimizu, H., Ezura, M., Matsumoto, Y., Takayama, K., Tominaga, T., Takahashi, A.: A proposed parent vessel geometry based categorization of saccular intracranial aneurysms: Computational flow dynamics analysis of the risk factors for lesion rupture. J. Neurosurg. Pediatr. 103(4) (2005)

    Google Scholar 

  12. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluid. 22(5), 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Janela, J., Moura, A., Sequeira, A.: Absorbing boundary conditions for a 3D non-Newtonian fluid–structure interaction model for blood flow in arteries. Int. J. Eng. Sci. 48(11), 1332–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krex, D., Schackert, H.K., Schackert, G.: Genesis of cerebral aneurysms–an update. Acta Neurochir. 143(5), 429–449 (2001)

    Article  Google Scholar 

  15. Ku, D.N.: Blood flow in arteries. Annu. Rev. Fluid Mech. 29(1), 399–434 (1997)

    Article  MathSciNet  Google Scholar 

  16. Moura, A.: The geometrical multiscale modelling of the cardiovascular system: Coupling 3D and 1D FSI models. PhD thesis, Politecnico di Milano (2007)

    Google Scholar 

  17. Nunes, D., Ramalho, S.: 1D hyperbolic models for blood flow in arteries. Internal Report, CEMAT (2009)

    Google Scholar 

  18. Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  19. Ramalho, S., Moura, A., Gambaruto, A.M., Sequeira, A.: Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm. Int. J. Numer. Meth. Biomed. Eng. 28(6-7), 697–713 (2012)

    Article  Google Scholar 

  20. Rinkel, G.J.E., Djibuti, M., Algra, A., Van Gijn, J.: Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 29(1), 251 (1998)

    Article  Google Scholar 

  21. Robertson, A.M.: Review of Relevant Continuum Mechanics. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation, pp. 1–62. Birkhäuser, Boston (2008)

    Google Scholar 

  22. Robertson, A.M., Sequeira, A., Kameneva, M.V.: Hemorheology. In Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S., editors, Hemodynamical Flows: Modeling, Analysis and Simulation, pages 63–120. Birkhäuser, Boston (2008)

    Google Scholar 

  23. Sazonov, I., Yeo, S.Y., Bevan, R.L.T., Xie, X., van Loon, R., Nithiarasu, P.: Modelling pipeline for subject-specific arterial blood flow - a review. Int. J. Numer. Meth. Biomed. Eng. (2011) DOI: 10.1002/cnm.1446.

    Google Scholar 

  24. Sequeira, A., Janela, J.: An overview of some mathematical models of blood rheology. In: Pereira, M.S. (ed.) A Portrait of Research at the Technical University of Lisbon, pp. 65–87. Springer, Berlin (2007)

    Chapter  Google Scholar 

  25. Sequeira, A., Moura, A., Janela, J.: Towards a geometrical multiscale approach to non-Newtonian blood flow simulations. In: Sequeira, A., Rannacher, R. (eds.) Advances in Mathematical Fluid Mechanics - dedicated to G.P. Galdi on his 60th birthday, chapter 295–309. Springer, Berlin (2009)

    Google Scholar 

  26. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imag. 13(1), 146–165 (2004)

    Article  Google Scholar 

  27. Tu, C., Deville, M.: Pulsatile flow of non-Newtonian fluids through arterial stenosis. J. Biomech. 29(7), 899–908 (1996)

    Article  Google Scholar 

  28. Wulandana, R., Robertson, A.M.: An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechanobiol. 4(4), 235–248 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Prof. Jorge Campos and his team from the Faculty of Medicine of the University of Lisbon, for providing us the in vivo rotational CTA scans of a specific patient. This work has been partially funded by FCT (Fundação para a Ciência e a Tecnologia, Portugal) through grants SFRH/BPD/34273/2006 and SFRH/BPD/44478/2008 and through the project UT Austin/CA/0047/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélia Sequeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramalho, S., Moura, A.B., Gambaruto, A.M., Sequeira, A. (2013). Influence of Blood Rheology and Outflow Boundary Conditions in Numerical Simulations of Cerebral Aneurysms. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_6

Download citation

Publish with us

Policies and ethics