Spatial Aspects of HIV Infection

  • Frederik Graw
  • Alan S. Perelson
Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)


Human immunodeficiency virus type 1 (HIV-1) is one of the most and intensely studied viral pathogens in the history of science. However, despite the huge scientific effort, many aspects of HIV infection dynamics and disease pathogenesis within a host are still not understood. Mathematical modeling has helped to improve our understanding of the infection as well as the dynamics of the immune response. Fitting models to clinical data has provided estimates for the turnover rate of target cells [82, 83,111], the lifetime of infected cells and viral particles [104, 109], as well as for the rate of viral production by infected cells [21, 44]. Most mathematical models applied to experimental data on viral infections have been formulated as systems of ordinary differential equations (ODE) [91, 101, 104].


Infected Cell Cellular Automaton Simian Immunodeficiency Virus Ordinary Differential Equation Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Portions of this work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and supported by the Center for HIV/AIDS Vaccine Immunology and NIH grants AI028433 and OD010095.


  1. 1.
    Allen, C.D., Okada, T., Tang, H.L., Cyster, J.G.: Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007)Google Scholar
  2. 2.
    Althaus, C.L., De Vos, A.S., De Boer, R.J.: Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: Life span of infected cells, viral generation time, and basic reproductive number, R0. J. Virol. 83, 7659–7667 (2009)Google Scholar
  3. 3.
    Bajenoff, M., Egen, J.G., Koo, L.Y., Laugier, J.P., Brau, F., Glaichenhaus, N., Germain, R.N.: Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006)Google Scholar
  4. 4.
    Bajenoff, M., Glaichenhaus, N., Germain, R.N.: Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J. Immunol. 181, 3947–3954 (2008)Google Scholar
  5. 5.
    Balagopalan, L., Sherman, E., Barr, V.A., Samelson, L.E.: Imaging techniques for assaying lymphocyte activation in action. Nat. Rev. Immunol. 11, 21–33 (2011)Google Scholar
  6. 6.
    Baldazzi, V., Castiglione, F., Bernaschi, M.: An enhanced agent based model of the immune system response. Cell. Immunol. 244, 77–79 (2006)Google Scholar
  7. 7.
    Bauer, A.L., Beauchemin, C.A., Perelson, A.S.: Agent-based modeling of host-pathogen systems: The successes and challenges. Inf. Sci. 179, 1379–1389 (2009)Google Scholar
  8. 8.
    Beauchemin, C.: Probing the effects of the well-mixed assumption on viral infection dynamics. J. Theor. Biol. 242, 464–477 (2006)MathSciNetGoogle Scholar
  9. 9.
    Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for influenza A viral infections. J. Theor. Biol. 232, 223–234 (2005)MathSciNetGoogle Scholar
  10. 10.
    Beltman, J.B., Maree, A.F., Lynch, J.N., Miller, M.J., de Boer, R.J.: Lymph node topology dictates T cell migration behavior. J. Exp. Med. 204, 771–780 (2007)Google Scholar
  11. 11.
    Beltman, J.B., Maree, A.F., de Boer, R.J.: Analysing immune cell migration. Nat. Rev. Immunol. 9, 789–798 (2009)Google Scholar
  12. 12.
    Bernaschi, M., Castiglione, F.: Selection of escape mutants from immune recognition during HIV infection. Immunol. Cell Biol. 80, 307–313 (2002)Google Scholar
  13. 13.
    Betts, M.R., Nason, M.C., West, S.M., De Rosa, S.C., Migueles, S.A., Abraham, J., Lederman, M.M., Benito, J.M., Goepfert, P.A., Connors, M., Roederer, M., Koup, R.A.: HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006)Google Scholar
  14. 14.
    Bocharov, G.A., Romanyukha, A.A.: Mathematical model of antiviral immune response. III. Influenza A virus infection. J. Theor. Biol. 167, 323–360 (1994)Google Scholar
  15. 15.
    Bogle, G., Dunbar, P.R.: Simulating T-cell motility in the lymph node paracortex with a packed lattice geometry. Immunol. Cell Biol. 86, 676–687 (2008)Google Scholar
  16. 16.
    Bogle, G., Dunbar, P.R.: Agent-based simulation of T-cell activation and proliferation within a lymph node. Immunol. Cell Biol. 88, 172–179 (2010)Google Scholar
  17. 17.
    Bousso, P., Bhakta, N.R., Lewis, R.S., Robey, E.: Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002)Google Scholar
  18. 18.
    Burkhead, E.G., Hawkins, J.M., Molinek, D.K.: A dynamical study of a cellular automata model of the spread of HIV in a lymph node. Bull. Math. Biol. 71, 25–74 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Castiglione, F., Poccia, F., D’Offizi, G., Bernaschi, M.: Mutation, fitness, viral diversity, and predictive markers of disease progression in a computational model of HIV type 1 infection. AIDS Res. Hum. Retroviruses 20, 1314–1323 (2004)Google Scholar
  20. 20.
    Castiglione, F., Pappalardo, F., Bernaschi, M., Motta, S.: Optimization of HAART with genetic algorithms and agent-based models of HIV infection. Bioinformatics 23, 3350–3355 (2007)Google Scholar
  21. 21.
    Chen, H.Y., Di Mascio, M., Perelson, A.S., Ho, D.D., Zhang, L.: Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques. Proc. Natl. Acad. Sci. U.S.A. 104, 19079–19084 (2007)Google Scholar
  22. 22.
    Chen, P., Hubner, W., Spinelli, M.A., Chen, B.K.: Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J. Virol. 81, 12582–12595 (2007)Google Scholar
  23. 23.
    Cheynier, R., Henrichwark, S., Hadida, F., Pelletier, E., Oksenhendler, E., Autran, B., Wain-Hobson, S.: HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 78, 373–387 (1994)Google Scholar
  24. 24.
    Coombes, J.L., Robey, E.A.: Dynamic imaging of host-pathogen interactions in vivo. Nat. Rev. Immunol. 10, 353–364 (2010)Google Scholar
  25. 25.
    Danielson, C.M., Hope, T.J.: Imaging of HIV/host protein interactions. Curr. Top. Microbiol. Immunol. 339, 103–123 (2009)Google Scholar
  26. 26.
    Davenport, M.P., Ribeiro, R.M., Perelson, A.S.: Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection. J. Virol. 78, 10096–10103 (2004)Google Scholar
  27. 27.
    De Boer, R.J., Ribeiro, R.M., Perelson, A.S.: Current estimates for HIV-1 production imply rapid viral clearance in lymphoid tissues. PLoS Comput. Biol. 6, e1000906 (2010)Google Scholar
  28. 28.
    Dieckmann, U., Law, R., Metz, J. (eds.): The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge (2000)Google Scholar
  29. 29.
    Dimitrov, D.S., Hillman, K., Manischewitz, J., Blumenthal, R., Golding, H.: Kinetics of soluble CD4 binding to cells expressing human immunodeficiency virus type 1 envelope glycoprotein. J. Virol. 66, 132–138 (1992)Google Scholar
  30. 30.
    Durrett, R.: Stochastic spatial models. SIAM Rev. 41, 677–718 (1999)MathSciNetMATHGoogle Scholar
  31. 31.
    Emery, V.C., Cope, A.V., Bowen, E.F., Gor, D., Griffiths, P.D.: The dynamics of human cytomegalovirus replication in vivo. J. Exp. Med. 190, 177–182 (1999)Google Scholar
  32. 32.
    Frank, S.A.: Within-host spatial dynamics of viruses and defective interfering particles. J. Theor. Biol. 206, 279–290 (2000)Google Scholar
  33. 33.
    Fraser, C., Hollingsworth, T.D., Chapman, R., de Wolf, F., Hanage, W.P.: Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis. Proc. Natl. Acad. Sci. U.S.A. 104, 17441–17446 (2007)Google Scholar
  34. 34.
    Funk, G.A., Jansen, V.A., Bonhoeffer, S., Killingback, T.: Spatial models of virus-immune dynamics. J. Theor. Biol. 233, 221–236 (2005)MathSciNetGoogle Scholar
  35. 35.
    Germain, R.N., Bajenoff, M., Castellino, F., Chieppa, M., Egen, J.G., Huang, A.Y., Ishii, M., Koo, L.Y., Qi, H.: Making friends in out-of-the-way places: How cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol. Rev. 221, 163–181 (2008)Google Scholar
  36. 36.
    Gratton, S., Cheynier, R., Dumaurier, M.J., Oksenhendler, E., Wain-Hobson, S.: Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc. Natl. Acad. Sci. U.S.A. 97, 14566–14571 (2000)Google Scholar
  37. 37.
    Graw, F., Regoes, R.R.: Investigating CTL mediated killing with a 3D cellular automaton. PLoS Comput. Biol. 5, e1000466 (2009)Google Scholar
  38. 38.
    Graziano, F.M., Kettoola, S.Y., Munshower, J.M., Stapleton, J.T., Towfic, G.J.: Effect of spatial distribution of T-Cells and HIV load on HIV progression. Bioinformatics 24, 855–860 (2008)Google Scholar
  39. 39.
    Grenfell, B.T., Bolker, B.M., Kleczkowski, A.: Seasonality and extinction in chaotic metapopulations. Proc. Sci. Bio 259, 97–103 (1995)Google Scholar
  40. 40.
    Grossman, Z., Meier-Schellersheim, M., Paul, W.E., Picker, L.J.: Pathogenesis of HIV infection: What the virus spares is as important as what it destroys. Nat. Med. 12, 289–295 (2006)Google Scholar
  41. 41.
    Groux, H., Torpier, G., Monte, D., Mouton, Y., Capron, A., Ameisen, J.C.: Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J. Exp. Med. 175, 331–340 (1992)Google Scholar
  42. 42.
    Haase, A.T.: Perils at mucosal front lines for HIV and SIV and their hosts. Nat. Rev. Immunol. 5, 783–792 (2005)Google Scholar
  43. 43.
    Haase, A.T.: Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464, 217–223 (2010)Google Scholar
  44. 44.
    Haase, A.T., Henry, K., Zupancic, M., Sedgewick, G., Faust, R.A., Melroe, H., Cavert, W., Gebhard, K., Staskus, K., Zhang, Z.Q., Dailey, P.J., Balfour, H.H., Erice, A., Perelson, A.S.: Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989 (1996)Google Scholar
  45. 45.
    Halling-Brown, M., Pappalardo, F., Rapin, N., Zhang, P., Alemani, D., Emerson, A., Castiglione, F., Duroux, P., Pennisi, M., Miotto, O., Churchill, D., Rossi, E., Moss, D.S., Sansom, C.E., Bernaschi, M., Lefranc, M.P., Brunak, S., Lund, O., Motta, S., Lollini, P.L., Murgo, A., Palladini, A., Basford, K.E., Brusic, V., Shepherd, A.J.: ImmunoGrid: Towards agent-based simulations of the human immune system at a natural scale. Philos. Transact. A Math. Phys. Eng. Sci. 368, 2799–2815 (2010)Google Scholar
  46. 46.
    Heath, S.L., Tew, J.G., Tew, J.G., Szakal, A.K., Burton, G.F.: Follicular dendritic cells and human immunodeficiency virus infectivity. Nature 377, 740–744 (1995)Google Scholar
  47. 47.
    Hladik, F., McElrath, M.J.: Setting the stage: Host invasion by HIV. Nat. Rev. Immunol. 8, 447–457 (2008)Google Scholar
  48. 48.
    Hlavacek, W.S., Wofsy, C., Perelson, A.S.: Dissociation of HIV-1 from follicular dendritic cells during HAART: Mathematical analysis. Proc. Natl. Acad. Sci. U.S.A. 96, 14681–14686 (1999)Google Scholar
  49. 49.
    Hlavacek, W.S., Stilianakis, N.I., Notermans, D.W., Danner, S.A., Perelson, A.S.: Influence of follicular dendritic cells on decay of HIV during antiretroviral therapy. Proc. Natl. Acad. Sci. U.S.A. 97, 10966–10971 (2000)Google Scholar
  50. 50.
    Hlavacek, W.S., Stilianakis, N.I., Perelson, A.S.: Influence of follicular dendritic cells on HIV dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1051–1058 (2000)Google Scholar
  51. 51.
    Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)Google Scholar
  52. 52.
    Hübner, W., McNerney, G.P., Chen, P., Dale, B.M., Gordon, R.E., Chuang, F.Y., Li, X.D., Asmuth, D.M., Huser, T., Chen, B.K.: Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009)Google Scholar
  53. 53.
    Jolly, C., Kashefi, K., Hollinshead, M., Sattentau, Q.J.: HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004)Google Scholar
  54. 54.
    Joo, J., Lebowitz, J.L.: Pair approximation of the stochastic susceptible-infected-recovered-susceptible epidemic model on the hypercubic lattice. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 036114 (2004)Google Scholar
  55. 55.
    Kaul, R., Plummer, F.A., Kimani, J., Dong, T., Kiama, P., Rostron, T., Njagi, E., MacDonald, K.S., Bwayo, J.J., McMichael, A.J., Rowland-Jones, S.L.: HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J. Immunol. 164, 1602–1611 (2000)Google Scholar
  56. 56.
    Keele, B.F., Li, H., Learn, G.H., Hraber, P., Giorgi, E.E., Grayson, T., Sun, C., Chen, Y., Yeh, W.W., Letvin, N.L., Mascola, J.R., Nabel, G.J., Haynes, B.F., Bhattacharya, T., Perelson, A.S., Korber, B.T., Hahn, B.H., Shaw, G.M.: Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. J. Exp. Med. 206, 1117–1134 (2009)Google Scholar
  57. 57.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  58. 58.
    Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. Biol. Sci. 264, 1149–1156 (1997)Google Scholar
  59. 59.
    Keeling, M.J., Woolhouse, M.E., May, R.M., Davies, G., Grenfell, B.T.: Modelling vaccination strategies against foot-and-mouth disease. Nature 421, 136–142 (2003)Google Scholar
  60. 60.
    Kepler, T.B., Perelson, A.S.: Drug concentration heterogeneity facilitates the evolution of drug resistance. Proc. Natl. Acad. Sci. U.S.A. 95, 11514–11519 (1998)MATHGoogle Scholar
  61. 61.
    Kirschner, D., Webb, G.F.: A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58, 376–390 (1996)Google Scholar
  62. 62.
    Korber, B.T., Letvin, N.L., Haynes, B.F.: T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J. Virol. 83, 8300–8314 (2009)Google Scholar
  63. 63.
    Ladi, E., Herzmark, P., Robey, E.: In situ imaging of the mouse thymus using 2-photon microscopy. J. Vis. Exp.11 e652. doi:10.3791/652 (2008)Google Scholar
  64. 64.
    Levin, S.A., Durrett, R.: From individuals to epidemics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1615–1621 (1996)Google Scholar
  65. 65.
    Lin, H., Shuai, J.W.: A stochastic spatial model of HIV dynamics with an asymmetric battle between the virus and the immune system. New J. Phy. 12, 043051 (2010)Google Scholar
  66. 66.
    Linderman, J.J., Riggs, T., Pande, M., Miller, M., Marino, S., Kirschner, D.E.: Characterizing the dynamics of CD4+ T cell priming within a lymph node. J. Immunol. 184, 2873–2885 (2010)Google Scholar
  67. 67.
    Lindquist, R.L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M.L., Nussenzweig, M.C.: Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004)Google Scholar
  68. 68.
    Louzoun, Y., Solomon, S., Atlan, H., Cohen, I.R.: Modeling complexity in biology. Physica A. 297, 242–252 (2001)MATHGoogle Scholar
  69. 69.
    Markowitz, M., Louie, M., Hurley, A., Sun, E., Di Mascio, M., Perelson, A.S., Ho, D.D.: A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J. Virol. 77, 5037–5038 (2003)Google Scholar
  70. 70.
    Martin, N., Welsch, S., Jolly, C., Briggs, J.A., Vaux, D., Sattentau, Q.J.: Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J. Virol. 84, 3516–3527 (2010)Google Scholar
  71. 71.
    McDonald, D., Vodicka, M.A., Lucero, G., Svitkina, T.M., Borisy, G.G., Emerman, M., Hope, T.J.: Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002)Google Scholar
  72. 72.
    McDonald, D., Wu, L., Bohks, S.M., KewalRamani, V.N., Unutmaz, D., Hope, T.J.: Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300, 1295–1297 (2003)Google Scholar
  73. 73.
    Mempel, T.R., Henrickson, S.E., Von Andrian, U.H.: T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004)Google Scholar
  74. 74.
    Meyers, L.A., Pourbohloul, B., Newman, M.E., Skowronski, D.M., Brunham, R.C.: Network theory and SARS: Predicting outbreak diversity. J. Theor. Biol. 232, 71–81 (2005)MathSciNetGoogle Scholar
  75. 75.
    Mielke, A., Pandey, R.B.: A computer simulation study of cell population in a fuzzy interaction model for mutating HIV. Physica A 251, 430–438 (1998)Google Scholar
  76. 76.
    Miller, S.E., Levenson, R.M., Aldridge, C., Hester, S., Kenan, D.J., Howell, D.N.: Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis. Ultrastruct. Pathol. 21, 183–193 (1997)Google Scholar
  77. 77.
    Miller, M.J., Wei, S.H., Parker, I., Cahalan, M.D.: Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002)Google Scholar
  78. 78.
    Miller, M.J., Wei, S.H., Cahalan, M.D., Parker, I.: Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci. U.S.A. 100, 2604–2609 (2003)Google Scholar
  79. 79.
    Miller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D., Parker, I.: T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. U.S.A. 101, 998–1003 (2004)Google Scholar
  80. 80.
    Miller, M.J., Safrina, O., Parker, I., Cahalan, M.D.: Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004)Google Scholar
  81. 81.
    Miller, C.J., Li, Q., Abel, K., Kim, E.Y., Ma, Z.M., Wietgrefe, S., La Franco-Scheuch, L., Compton, L., Duan, L., Shore, M.D., Zupancic, M., Busch, M., Carlis, J., Wolinsky, S., Wolinksy, S., Haase, A.T.: Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J. Virol. 79, 9217–9227 (2005)Google Scholar
  82. 82.
    Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A.S., Ho, D.D.: Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998)Google Scholar
  83. 83.
    Mohri, H., Perelson, A.S., Tung, K., Ribeiro, R.M., Ramratnam, B., Markowitz, M., Kost, R., Hurley, A., Weinberger, L., Cesar, D., Hellerstein, M.K., Ho, D.D.: Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001)Google Scholar
  84. 84.
    Mueller, S.N., Germain, R.N.: Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009)Google Scholar
  85. 85.
    Müller, V., Maree, A.F., De Boer, R.J.: Release of virus from lymphoid tissue affects human immunodeficiency virus type 1 and hepatitis C virus kinetics in the blood. J. Virol. 75, 2597–2603 (2001)Google Scholar
  86. 86.
    Nelson, P.W., Gilchrist, M.A., Coombs, D., Hyman, J.M., Perelson, A.S.: An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 1, 267–288 (2004)MathSciNetMATHGoogle Scholar
  87. 87.
    Neumann, A.U., Lam, N.P., Dahari, H., Gretch, D.R., Wiley, T.E., Layden, T.J., Perelson, A.S.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103–107 (1998)Google Scholar
  88. 88.
    Newman, M.E.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95, 108701 (2005)Google Scholar
  89. 89.
    Nowak, M.A., Bangham, C.R.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)Google Scholar
  90. 90.
    Nowak, M.A., May, R.M.: Mathematical biology of HIV infections: Antigenic variation and diversity threshold. Math. Biosci. 106, 1–21 (1991)MATHGoogle Scholar
  91. 91.
    Nowak, M.A., May, R.M.: Virus dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  92. 92.
    Nowak, M.A., Anderson, R.M., McLean, A.R., Wolfs, T.F., Goudsmit, J., May, R.M.: Antigenic diversity thresholds and the development of AIDS. Science 254, 963–969 (1991)Google Scholar
  93. 93.
    Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. U.S.A. 93, 4398–4402 (1996)Google Scholar
  94. 94.
    Ostrowski, M.A., Krakauer, D.C., Li, Y., Justement, S.J., Learn, G., Ehler, L.A., Stanley, S.K., Nowak, M., Fauci, A.S.: Effect of immune activation on the dynamics of human immunodeficiency virus replication and on the distribution of viral quasispecies. J. Virol. 72, 7772–7784 (1998)Google Scholar
  95. 95.
    Ovaskainen, O., Cornell, S.J.: Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theor. Popul. Biol. 69, 13–33 (2006)MATHGoogle Scholar
  96. 96.
    Pandey, R.B.: Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection. Physica A 179, 442–470 (1991)Google Scholar
  97. 97.
    Pandey, R.B., Stauffer, D.: Metastability with probabilistic cellular automata in an HIV infection. J. Stat. Phys. 61, 235–240 (1990)Google Scholar
  98. 98.
    Pantaleo, G., Graziosi, C., Fauci, A.S.: The role of lymphoid organs in the pathogenesis of HIV infection. Semin. Immunol. 5, 157–163 (1993)Google Scholar
  99. 99.
    Pappalardo, F., Halling-Brown, M.D., Rapin, N., Zhang, P., Alemani, D., Emerson, A., Paci, P., Duroux, P., Pennisi, M., Palladini, A., Miotto, O., Churchill, D., Rossi, E., Shepherd, A.J., Moss, D.S., Castiglione, F., Bernaschi, M., Lefranc, M.P., Brunak, S., Motta, S., Lollini, P.L., Basford, K.E., Brusic, V.: ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief. Bioinformatics 10, 330–340 (2009)Google Scholar
  100. 100.
    Pearson, J.E., Krapivsky, P., Perelson, A.S.: Stochastic theory of early viral infection: Continuous versus burst production of virions. PLoS Comput. Biol. 7, e1001058 (2011)MathSciNetGoogle Scholar
  101. 101.
    Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002)Google Scholar
  102. 102.
    Perelson, A.S., Ribeiro, R.M.: Estimating drug efficacy and viral dynamic parameters: HIV and HCV. Stat. Med. 27, 4647–4657 (2008)MathSciNetGoogle Scholar
  103. 103.
    Perelson, A.S., Kirschner, D.E., De Boer, R.: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81–125 (1993)MATHGoogle Scholar
  104. 104.
    Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)Google Scholar
  105. 105.
    Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)Google Scholar
  106. 106.
    Phee, H., Dzhagalov, I., Mollenauer, M., Wang, Y., Irvine, D.J., Robey, E., Weiss, A.: Regulation of thymocyte positive selection and motility by GIT2. Nat. Immunol. 11, 503–511 (2010)Google Scholar
  107. 107.
    Picker, L.J., Watkins, D.I.: HIV pathogenesis: The first cut is the deepest. Nat. Immunol. 6, 430–432 (2005)Google Scholar
  108. 108.
    Pope, M., Haase, A.T.: Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat. Med. 9, 847–852 (2003)Google Scholar
  109. 109.
    Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J.E., Markowitz, M., Moore, J.P., Perelson, A.S., Ho, D.D.: Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785 (1999)Google Scholar
  110. 110.
    Reilly, C., Wietgrefe, S., Sedgewick, G., Haase, A.: Determination of simian immunodeficiency virus production by infected activated and resting cells. AIDS 21, 163–168 (2007)Google Scholar
  111. 111.
    Ribeiro, R.M., Mohri, H., Ho, D.D., Perelson, A.S.: In vivo dynamics of T cell activation, proliferation and death in HIV-1 infection: Why are CD4+ but not CD8+ T cells depleted? Proc. Natl. Acad. Sci. U.S.A. 99, 15572–15577 (2002)Google Scholar
  112. 112.
    Salazar-Gonzalez, J.F., Salazar, M.G., Keele, B.F., Learn, G.H., Giorgi, E.E., Li, H., Decker, J.M., Wang, S., Baalwa, J., Kraus, M.H., Parrish, N.F., Shaw, K.S., Guffey, M.B., Bar, K.J., Davis, K.L., Ochsenbauer-Jambor, C., Kappes, J.C., Saag, M.S., Cohen, M.S., Mulenga, J., Derdeyn, C.A., Allen, S., Hunter, E., Markowitz, M., Hraber, P., Perelson, A.S., Bhattacharya, T., Haynes, B.F., Korber, B.T., Hahn, B.H., Shaw, G.M.: Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 206, 1273–1289 (2009)Google Scholar
  113. 113.
    Sato, H., Orenstein, J., Dimitrov, D., Martin, M.: Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186, 712–724 (1992)Google Scholar
  114. 114.
    Sattentau, Q.: Avoiding the void: Cell-to-cell spread of human viruses. Nat. Rev. Microbiol. 6, 815–826 (2008)Google Scholar
  115. 115.
    Schacker, T., Little, S., Connick, E., Gebhard-Mitchell, K., Zhang, Z.Q., Krieger, J., Pryor, J., Havlir, D., Wong, J.K., Richman, D., Corey, L., Haase, A.T.: Rapid accumulation of human immunodeficiency virus (HIV) in lymphatic tissue reservoirs during acute and early HIV infection: Implications for timing of antiretroviral therapy. J. Infect. Dis. 181, 354–357 (2000)Google Scholar
  116. 116.
    Schacker, T., Little, S., Connick, E., Gebhard, K., Zhang, Z.Q., Krieger, J., Pryor, J., Havlir, D., Wong, J.K., Schooley, R.T., Richman, D., Corey, L., Haase, A.T.: Productive infection of T cells in lymphoid tissues during primary and early human immunodeficiency virus infection. J. Infect. Dis. 183, 555–562 (2001)Google Scholar
  117. 117.
    Sourisseau, M., Sol-Foulon, N., Porrot, F., Blanchet, F., Schwartz, O.: Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81, 1000–1012 (2007)Google Scholar
  118. 118.
    Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M.A., Chauveau, A., Kohler, K., Oddos, S., Eissmann, P., Brodsky, F.M., Hopkins, C., Onfelt, B., Sattentau, Q., Davis, D.M.: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219 (2008)Google Scholar
  119. 119.
    Stoll, S., Delon, J., Brotz, T.M., Germain, R.N.: Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002)Google Scholar
  120. 120.
    Strain, M.C., Richman, D.D., Wong, J.K., Levine, H.: Spatiotemporal dynamics of HIV propagation. J. Theor. Biol. 218, 85–96 (2002)MathSciNetGoogle Scholar
  121. 121.
    Tilman, D., Kareiva, P.: Spatial Ecology. Princeton University Press, Princeton, NJ (1997)Google Scholar
  122. 122.
    Virgin, H.W., Walker, B.D.: Immunology and the elusive AIDS vaccine. Nature 464, 224–231 (2010)Google Scholar
  123. 123.
    von Neumann, J., Burks, A.W.: Theory of Self Reproducing Cellular Automata. University of Illinois Press, Urbana and London (1966)Google Scholar
  124. 124.
    Webb, S.D., Keeling, M.J., Boots, M.: Host-parasite interactions between the local and the mean-field: How and when does spatial population structure matter? J. Theor. Biol. 249, 140–152 (2007)MathSciNetGoogle Scholar
  125. 125.
    Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995)Google Scholar
  126. 126.
    Wolfram, S.: Theory and applications of cellular automata. Advanced Series on Complex Systems. World Scientific Publication, Singapore (1986)MATHGoogle Scholar
  127. 127.
    Zhang, L., Dailey, P.J., He, T., Gettie, A., Bonhoeffer, S., Perelson, A.S., Ho, D.D.: Rapid clearance of simian immunodeficiency virus particles from plasma of rhesus macaques. J. Virol. 73, 855–860 (1999)Google Scholar
  128. 128.
    Zhang, L., Dailey, P.J., Gettie, A., Blanchard, J., Ho, D.D.: The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J. Virol. 76, 5271–5273 (2002)Google Scholar
  129. 129.
    Zhu, P., Chertova, E., Bess, J., Lifson, J.D., Arthur, L.O., Liu, J., Taylor, K.A., Roux, K.H.: Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc. Natl. Acad. Sci. U.S.A. 100, 15812–15817 (2003)Google Scholar
  130. 130.
    Zorzenon dos Santos, R.M., Coutinho, S.: Dynamics of HIV infection: A cellular automata approach. Phys. Rev. Lett. 87, 168102 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Theoretical Biology and Biophysics, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations