Detecting Functional Changes in the Patient’s Vision: Visual Field Analysis

Chapter

Abstract

This chapter summarizes various techniques that are used for evaluation of the visual field in glaucoma and the psychophysical and physiological basis for this diagnostic test procedure. A description of the types of perimetry that can be utilized clinically is also presented. Additionally, relationships between structural damage and visual field sensitivity loss produced by glaucoma, methods for evaluation of visual fields for detection and monitoring progression of glaucoma, a cook book for evaluation of visual fields, advantages and disadvantages of other specialized visual field test procedures, and the role that visual field testing plays in the management of glaucoma patients are also discussed. An extensive reference list is also included for readers who are interested in pursuing more detail pertaining to a particular area of the content in this chapter, and figures are presented to highlight many of the points that are drawn in this chapter. The overall intent of this chapter is to provide a practical guide for the clinician to utilize for the management of glaucoma patients and individuals at risk of developing glaucoma.

Keywords

Fatigue Depression Attenuation Retina Coherence 

References

  1. 1.
    Guitierrez P, Wilson MR, Johnson C, Gordon M, Cioffi GA, Ritch R, Sherwood M, Meng K, Mangione CM. Influence of glaucomatous visual field loss on health-related quality of life. Arch Ophthalmol. 1997;115:777–84.Google Scholar
  2. 2.
    Parrish RK, Gedde SJ, Scott IU, Feuer WJ, Schiffman JC, Mangione CM, Montenegro-Pinella A. Visual function and quality of life among patients with glaucoma. Arch Ophthalmol. 1997;115:1447–55.PubMedGoogle Scholar
  3. 3.
    Mills RP, Janz NK, Wren PA, Guire KE. Correlation of visual field with quality-of-life measures at diagnosis in the Collaborative Initial Glaucoma Treatment Study (CIGTS). J Glaucoma. 2001;10:192–8.PubMedGoogle Scholar
  4. 4.
    Iester M, Zingirian M. Quality of life in patients with early, moderate and advanced glaucoma. Eye. 2002;16:44–9.PubMedGoogle Scholar
  5. 5.
    Nelson P, Aspinall P, Papasouliotis O, Worton B, O’Brien C. Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003;12:139–50.PubMedGoogle Scholar
  6. 6.
    Ringsdorf L, McGwin G, Owlsey C. Visual field defects and vision-specific health-related quality of life in African Americans and whites with glaucoma. J Glaucoma. 2006;15:414–8.PubMedGoogle Scholar
  7. 7.
    Freeman EE, Munoz B, West SK, Jampel HD, Friedman DS. Glaucoma and quality of life: the Salisbury Eye evaluation. Ophthalmology. 2008;115:233–8.PubMedGoogle Scholar
  8. 8.
    McKean-Cowdin R, Wang Y, Wu J, Azen SP, Varma R, Los Angeles Latino Eye Study Group. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology. 2008;115:941–8.PubMedGoogle Scholar
  9. 9.
    Piltz JR, Swindale NV, Drance SM. Vernier thresholds and alignment bias in control, suspect and glaucomatous eyes. J GAlaucoma. 1993;2:87–95.Google Scholar
  10. 10.
    McKendrick AM, Johnson CA, Anderson AJ, Fortune B. Elevated vernier acuity thresholds in glaucoma. Invest Ophthalmol Vis Sci. 2002;43:1393–9.PubMedGoogle Scholar
  11. 11.
    Sponsel WE, DePaul KL, Martone JF, Shields MB, Ollie AR, Stweart WC. Association of Vistech contrast sensitivity and visual field findings in glaucoma. Br J Ophthalmol. 1991;75:558–60.PubMedGoogle Scholar
  12. 12.
    McKendrick AM, Sampson GP, Walland MJ, Badcock DR. Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocellular pathways. Invest Ophthalmol Vis Sci. 2007;48:2115–22.PubMedGoogle Scholar
  13. 13.
    Hot A, Dul MW, Swanson WH. Development and evaluation of a contrast sensitivity perimetry test for patients with glaucoma. Invest Ophthalmol Vis Sci. 2008;49:3049–57.PubMedGoogle Scholar
  14. 14.
    Sun H, Swanson WH, Arvidson B, Dul M. Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma. Vis Res. 2008;48:2633–41.PubMedGoogle Scholar
  15. 15.
    Caprioli J. Correlation of visual function with optic nerve and nerve fiber layer structure in glaucoma. Surv Ophthalmol. 1989;33(Suppl):319–30.PubMedGoogle Scholar
  16. 16.
    Johnson CA, Cioffi GA, Liebmann JR, Sample PA, Zangwill L, Weinreb RN. The relationship between structural and functional alterations in glaucoma: a review. Semin Ophthalmol. 2000;15:221–33.PubMedGoogle Scholar
  17. 17.
    Garway-Heath D, Poinoosawmy D, Fitzke F, Hitchings R. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.PubMedGoogle Scholar
  18. 18.
    Gardiner SK, Johnson CA, Cioffi GA. Evaluation of the structure-function relationship in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3712–7.PubMedGoogle Scholar
  19. 19.
    Strouthidis NG, Vinciotti V, Tucker AJ, Gardiner SK, Crabb DP, Garway-Heath DF. Structure and function in glaucoma: the relationship between a functional visual field map and an anatomic retinal map. Invest Ophthalmol Vis Sci. 2006;47:5356–62.PubMedGoogle Scholar
  20. 20.
    Racette L, Medieros FA, Bowd C, Zangwill LM, Weinreb RN, Sample PA. The impact of the perimetric measurement scale, sample composition, and statistical method on the structure-function relationship in glaucoma. J Glaucoma. 2007;16:676–84.PubMedGoogle Scholar
  21. 21.
    Harwerth RS, Charles F. Prentice Award Lecture 2006: a neuron doctrine for glaucoma. Optom Vis Sci. 2008;85:436–44.PubMedGoogle Scholar
  22. 22.
    Hood DC, Kardon RH. A framework for comparing functional and structural measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.PubMedGoogle Scholar
  23. 23.
    Greve EL. Single and multiple stimulus static perimetry in glaucoma; the two phases of perimetry. Doc Ophthalmol. 1973;36:1–355.PubMedGoogle Scholar
  24. 24.
    Anderson DR, Patella VM. Automated static perimetry. St Louis: CV Mosby; 1990.Google Scholar
  25. 25.
    Harrington DO, Drake MV. The visual fields – text and atlas of clinical perimetry. St Louis: CV Mosby; 1990.Google Scholar
  26. 26.
    Wall M, Johnson CA. Principals and techniques of the examination of the visual sensory system, Chapter 2. In: Walsh and Hoyt’s textbook of Neuro-Ophthalmology, vol. 1. Philadelphia: Lippincott, Williams and Wilkens; 2005. p. 83–149.Google Scholar
  27. 27.
    Dolderer J, Vonthein R, Johnson CA, Schiefer U, Hart W. Scotoma mapping by semi-automated kinetic perimetry – the effects of stimulus properties and the speed of subjects’ responses. Acta Ophthalmol Scand. 2006;84:338–44.PubMedGoogle Scholar
  28. 28.
    Keltner JL, Johnson CA, Cello KE, Bandermann SE, Edwards MA, Kass MA, Gordon MO, The Ocular Hypertension Treatment Study Group. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol. 2003;121:643–50.PubMedGoogle Scholar
  29. 29.
    Katz J, Sommer A. Reliability indexes of automated perimetric tests. Arch Ophthalmol. 1988;106:1252–4.PubMedGoogle Scholar
  30. 30.
    Keltner JL, Johnson CA, Beck RW, Cleary PA, Spurr JO, the Optic Neuritis Study Group. Quality control functions of the Visual Field Reading Center (VFRC) for the Optic Neuritis Treatment Trial (ONTT). Control Clin Trials. 1993;14:143–59.PubMedGoogle Scholar
  31. 31.
    Keltner JL, Johnson CA, Cello KE, Bandermann SE, Fan JJ, Levine RA, Kass MA, Gordon MO, Ocular Hypertension Study Group. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma. 2007;16:665–9.PubMedGoogle Scholar
  32. 32.
    Anderson DR. Perimetry with and without automation. St Louis: CV Mosby; 1987.Google Scholar
  33. 33.
    Artes PH, Henson DB, Marper R, McLeod D. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation. Invest Ophthalmol Vis Sci. 2003;44:2582–7.PubMedGoogle Scholar
  34. 34.
    Henson DB, Artes PH. New developments in suprathreshold perimetry. Ophthalmic Physiol Opt. 2002;22:462–8.Google Scholar
  35. 35.
    Henson DB. Visual field screening and the development of a new screening program. J Am Optom Assoc. 1989;60:893–8.PubMedGoogle Scholar
  36. 36.
    Langerhorst CT, Bakker D, Raakman MA. Usefulness of the Henson Central Field Screener for the detection of visual field defects, especially in glaucoma. Doc Ophthalmol. 1989;72:279–85.PubMedGoogle Scholar
  37. 37.
    Johnson CA, Keltner JL. Automated suprathreshold static perimetry. Am J Ophthalmol. 1980;89:731–41.PubMedGoogle Scholar
  38. 38.
    Johnson CA, Keltner JL, Balestrery FG. Suprathreshold static perimetry in glaucoma and other optic nerve disease. Ophthalmology. 1979;86:1278–86.PubMedGoogle Scholar
  39. 39.
    Araujo ML, Feuer WJ, Anderson DR. Evaluation of baseline-related suprathreshold testing for quick determination of visual field nonprogression. Arch Ophthalmol. 1993;111:365–9.PubMedGoogle Scholar
  40. 40.
    Hernandez R, Rabindranath K, Fraser C, Vale L, Blanco AA, Burr JM, OAG Screening Group. Screening for open angle glaucoma: systematic review of cost-effectiveness studies. J Glaucoma. 2008;17:159–68.PubMedGoogle Scholar
  41. 41.
    Javitt J, Lee P, Lum F. The value of regular examinations to detect glaucoma and other chronic conditions among older Americans. Ophthalmology. 2007;114:833–4.PubMedGoogle Scholar
  42. 42.
    Nelson-Quigg JM, Cello KE, Johnson CA. Predicting binocular visual field sensitivity from monocular visual field results. Invest Ophthalmol Vis Sci. 2000;41:2212–21.PubMedGoogle Scholar
  43. 43.
    Crabb DP, Viswanathan AC. Integrated visual fields: a new approach to measuring the binocular field of view and visual disability. Graefes Arch Clin Exp Ophthalmol. 2005;243:210–6.PubMedGoogle Scholar
  44. 44.
    Owen VM, Crabb DP, White ET, Viswanathan AC, Garway-Heath DF, Hitchings RA. Glaucoma and fitness to drive: using binocular visual fields to predict a milestone to blindness. Invest Ophthalmol Vis Sci. 2008;49:2449–55.PubMedGoogle Scholar
  45. 45.
    Kotecha A, O’Leary N, Melmoth D, Grant S, Crabb D. The functional consequences of glaucoma for eye-hand coordination. Invest Ophthalmol Vis Sci. 2009;50(1):203–13.PubMedGoogle Scholar
  46. 46.
    Jampel HD, Friedman DS, Quigley H, Miller R. Correlation of the binocular visual field with patient assessment of vision. Invest Ophthalmol Vis Sci. 2002;43:1059–67.PubMedGoogle Scholar
  47. 47.
    Stiles WS. Increment thresholds and the mechanisms of colour vision. Doc Ophthalmol. 1949;3:138–65.PubMedGoogle Scholar
  48. 48.
    Kitahara K, Tamaki R, Noji J, Kandatsu A, Matsuzaki H. Extrafoveal Stiles π mechanisms. Doc Ophthalmol Proc Ser. 1982;35:397–404.Google Scholar
  49. 49.
    Kranda K, King-Smith PE. What can color thresholds tell us about the nature of underlying detection mechanisms? Ophthalmic Physiol Opt. 1984;4:83–7.PubMedGoogle Scholar
  50. 50.
    Sample PA, Weinreb RN, Boynton RM. Isolating color vision loss of primary open angle glaucoma. Am J Ophthalmol. 1988;106:686–91.PubMedGoogle Scholar
  51. 51.
    Sample PA, Weinreb RN. Color perimetry for assessment of primary open angle glaucoma. Invest Ophthalmol Vis Sci. 1990;31:1869–75.PubMedGoogle Scholar
  52. 52.
    Sample RA, Weinreb RN. Progressive color visual field loss in glaucoma. Invest Ophthalmol Vis Sci. 1992;33:2068–71.PubMedGoogle Scholar
  53. 53.
    Sample PA, Martinezz GA, Weinreb RN. Short-wavelength automated perimetry without lens density testing. Am J Ophthalmol. 1994;118:632–41.PubMedGoogle Scholar
  54. 54.
    Sample PA, Johnson CA, Haegerstrom-Portnoy G, Adams AJ. Optimum parameters for short-wavelength automated perimetry. J Glaucoma. 1996;5:375–83.PubMedGoogle Scholar
  55. 55.
    Sample PA, Martinez GA, Weinreb RN. Color visual fields: a 5 year prospective study in eyes with primary open angle glaucoma. In: Mills RP, editor. Perimetry update 1992/93. New York: Kugler Publications; 1993. p. 473–6.Google Scholar
  56. 56.
    Sample PA, Taylor JD, Martinez GA, Lusky M, Weinreb RN. Short wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol. 1993;115:225–33.PubMedGoogle Scholar
  57. 57.
    Sample PA, Medieros FA, Racette L, Pascual JP, Boden C, Zangwill LM, Bowd C, Weinreb RN. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci. 2006;47:3381–9.PubMedGoogle Scholar
  58. 58.
    Racette L, Sample PA. Short-wavelength automated perimetry. Ophthalmol Clin North Am. 2003;16:227–36.PubMedGoogle Scholar
  59. 59.
    Sample PA. Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function. Prog Retin Eye Res. 2000;19:369–83.PubMedGoogle Scholar
  60. 60.
    Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol. 1993;111:645–50.PubMedGoogle Scholar
  61. 61.
    Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss for blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol. 1993;111:651–6.PubMedGoogle Scholar
  62. 62.
    Johnson CA, Brandt JD, Khong AM, Adams AJ. Short wavelength automated perimetry (SWAP) in low, medium and high risk ocular hypertensives: initial baseline findings. Arch Ophthalmol. 1995;113:70–6.PubMedGoogle Scholar
  63. 63.
    Johnson CA, Adams AJ, Casson EJ. Blue-on-yellow perimetry: a five year overview. In: Mills RP, editor. Perimetry update 1992/93. New York: Kugler Publications; 1993. p. 459–66.Google Scholar
  64. 64.
    Johnson CA. Selective vs nonselective losses in glaucoma. J Glaucoma. 1994;3:S32–44 (Feature Issue – Journal Supplement).PubMedGoogle Scholar
  65. 65.
    Demirel S, Johnson CA. Incidence and prevalence of Short Wavelength Automated Perimetry (SWAP) deficits in ocular hypertensive patients. Am J Ophthalmol. 2001;131:709–15.PubMedGoogle Scholar
  66. 66.
    Demirel S, Johnson CA. Isolation of short wavelength sensitive mechanisms in normal and glaucomatous visual field regions. J Glaucoma. 2000;9:63–73.PubMedGoogle Scholar
  67. 67.
    Demirel S, Johnson CA. Short Wavelength Automated Perimetry (SWAP) in ophthalmic practice. J Am Optom Assoc. 1996;67:451–6.PubMedGoogle Scholar
  68. 68.
    Casson EJ, Johnson CA, Shapiro LR. A longitudinal comparison of temporal modulation perimetry to white-on-white and blue-on-yellow perimetry in ocular hypertension and early glaucoma. J Opt Soc Am. 1993;10:1792–806.Google Scholar
  69. 69.
    Lewis RA, Johnson CA, Adams AJ. Automated static visual field testing and perimetry of short-wavelength-sensitive (SWS) mechanisms in patients with asymmetric intraocular pressures. Graefe’s Arch Clin Exp Ophthalmol. 1993;231:274–8.Google Scholar
  70. 70.
    Sit AJ, Medieros FA, Weinreb RN. Short-wavelength automated perimetry can predict glaucomatous visual field loss by ten years. Semin Ophthalmol. 2004;19:122–4.PubMedGoogle Scholar
  71. 71.
    Turpin A, Johnson CA, Spry PGD. Development of a maximum likelihood procedure for Short Wavelength Automated Perimetry (SWAP). In: Wall M, Mills RP, editors. Perimetry update 2000/2001. The Hague: Kugler Publications; 2001. p. 139–47.Google Scholar
  72. 72.
    Bengtsson B. A new rapid threshold algorithm for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2003;44:1388–94.PubMedGoogle Scholar
  73. 73.
    Bengtsson B, Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci. 2003;44:5029–34.PubMedGoogle Scholar
  74. 74.
    Bengtsson B, Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Ophthalmology. 2006;113:1092–7.PubMedGoogle Scholar
  75. 75.
    Keltner JL, Johnson CA. Short Wavelength Automated Perimetry (SWAP) in neuro-ophthalmologic disorders. Arch Ophthalmol. 1995;113:475–81.PubMedGoogle Scholar
  76. 76.
    Kelly DH. Frequency doubling in visual responses. J Opt Soc Am A. 1966;56:1628–33.Google Scholar
  77. 77.
    Kelly DH. Nonlinear visual responses to flickering sinusoidal gratings. J Opt Soc Am. 1981;71:1051–5.PubMedGoogle Scholar
  78. 78.
    Richards W, Felton DB. Spatial frequency doubling: retinal or central? Vision Res. 1973;13:2129–37.PubMedGoogle Scholar
  79. 79.
    Tyler CW. Observations on spatial frequency doubling. Perception. 1974;3:81–6.PubMedGoogle Scholar
  80. 80.
    Virsu V, Nyman G, Lehtio PK. Diphasic and polyphasic temporal modulations multiply apparent spatial frequency. Perception. 1974;3:323–36.PubMedGoogle Scholar
  81. 81.
    Tolhurst DJ. Illusory shifts in spatial frequency caused by temporal modulation. Perception. 1975;4:331–5.Google Scholar
  82. 82.
    Virsu V, Laurinen P. Long-lasting afterimages caused by neural adaptation. Vision Res. 1977;17:853–60.PubMedGoogle Scholar
  83. 83.
    Maddess T, Henry H. Performance of nonlinear visual units in ocular hypertension and glaucoma. Clin Vis Sci. 1992;7:371–83.Google Scholar
  84. 84.
    Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss using the frequency-doubling contrast test. Invest Ophthalmol Vis Sci. 1997;38:413–25.PubMedGoogle Scholar
  85. 85.
    Fujimoto N, Adachi-Usami E. Frequency doubling perimetry in resolved optic neuritis. Invest Ophthalmol Vis Sci. 2000;41:2558–60.PubMedGoogle Scholar
  86. 86.
    Wall M, Neahring RK, Woodward KR. Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmic disorders: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci. 2002;43:1277–83.PubMedGoogle Scholar
  87. 87.
    Girkin CA, McGwin G, DeLeon-Ortega J. Frequency doubling technology perimetry in non-arteritic ischaemic optic neuropathy with altitudinal defects. Br J Ophthalmol. 2004;88:1274–9.PubMedGoogle Scholar
  88. 88.
    Sheu SJ, Chen YY, Lin HC, Chen HL, Lee IY, Wu TT. Frequency doubling technology perimetry in retinal disease – preliminary report. Kaohsiung J Med Sci. 2001;17:25–8.PubMedGoogle Scholar
  89. 89.
    Parikh R, Naik M, Mathai A, Kuriakose T, Muliyil J, Thomas R. Role of frequency doubling technology perimetry in screening of diabetic retinopathy. Indian J Ophthalmol. 2006;54:17–22.PubMedGoogle Scholar
  90. 90.
    White AJ, Sun H, Swanson WH, Lee BB. An examination of physiological mechanisms underlying the frequency-doubling illusion. Invest Ophthalmol Vis Sci. 2002;43:3590–9.PubMedGoogle Scholar
  91. 91.
    Zeppieri M, Demirel S, Kent K, Johnson CA. Perceived spatial frequency of sinusoidal gratings. Optom Vis Sci. 2008;85:318–29.PubMedGoogle Scholar
  92. 92.
    Anderson AJ, Johnson CA. Frequency doubling technology perimetry. Ophthalmol Clin North Am. 2003;16:213–25.PubMedGoogle Scholar
  93. 93.
    Anderson AJ, Johnson CA, Fingeret M, Keltner JL, Spry PGD, Wall M, Werner JS. Characteristics of the normative database for the Humphrey Matrix perimeter. Invest Ophthalmol Vis Sci. 2005;46:1540–8.PubMedGoogle Scholar
  94. 94.
    Clement CI, Goldberg I, Graham S, Healey PR. Humphrey matrix frequency doubling perimetry for detection of visual field defects in open-angle glaucoma. Br J Ophthalmol. 2009;93(5):582–8.PubMedGoogle Scholar
  95. 95.
    Brusini P, Salvatet ML, Zeppieri M, Parisi L. Frequency doubling technology perimetry with the Humphrey Matrix 30-2 test. J Glaucoma. 2006;15:77–83.PubMedGoogle Scholar
  96. 96.
    Spry PG, Hussin HM, Sparrow JM. Clinical evaluation of frequency doubling perimetry using the Humphrey Matrix 24-2 threshold strategy. Br J Ophthalmol. 2005;89:1031–5.PubMedGoogle Scholar
  97. 97.
    Taravati P, Woodward KR, Keltner JL, Johnson CA, Redline D, Carolan J, Huang CQ, Wall M. Sensitivity and specificity of the Humphrey Matrix to detect homonymous hemianopias. Invest Ophthalmol Vis Sci. 2008;49:924–8.PubMedGoogle Scholar
  98. 98.
    Huang CQ, Carolan J, Redline D, Taravati P, Woodward KR, Johnson CA, Wall M, Keltner JL. Humphrey Matrix perimetry in optic nerve and chiasmal disorders: comparison with Humphrey SITA standard 24-2. Invest Ophthalmol Vis Sci. 2008;49:917–23.PubMedGoogle Scholar
  99. 99.
    Johnson CA, Wall M, Fingeret M, Lalle P. A primer for frequency doubling technology perimetry. Skaneateles: Welch Allyn; 1998.Google Scholar
  100. 100.
    Spry PGD, Johnson CA, Anderson AJ, Gunvant P, Fingeret M, Keltner JL, Wall M, Werner JS. A primer for Frequency Doubling Technology (FDT) perimetry using the Humphrey Matrix. Skaneateles: Welch Allyn; 2008.Google Scholar
  101. 101.
    Artes PH, Hutchison DM, Nicolela MT, LeBlanc RP, Chauhan BC. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:2451–7.PubMedGoogle Scholar
  102. 102.
    Johnson CA, Cioffi GA, Van Buskirk EM. Evaluation of two screening tests for frequency doubling technology perimetry. In: Wall, M, Wild JM, editors, Perimetry Update 1998/1999. Amsterdam: Kugler Publications; 1999. p. 103–9.Google Scholar
  103. 103.
    Spry PG, Hussin HM, Sparrow JM. Performance of the 24-2-5 frequency doubling technology screening test: a prospective case study. Br J Ophthalmol. 2007;91:1345–9.PubMedGoogle Scholar
  104. 104.
    Gonzalez-Hernandez M, Garcia-Feijoo J, Mendez MS, de la Rosa MG. Combined spatial, contrast, and temporal functions perimetry in mild glaucoma and ocular hypertension. Eur J Ophthalmol. 2004;14:514–22.PubMedGoogle Scholar
  105. 105.
    Gonzalez-Hernandez M, de la Rosa MG, de la Vega RR, Hernandex-Vidal A. Long-term fluctuation of standard automated perimetry, pulsar perimetry and frequency doubling technology in early glaucoma diagnosis. Ophthalmic Res. 2007;39:338–43.PubMedGoogle Scholar
  106. 106.
    Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvatet ML. Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol. 2010;149:102–12.PubMedGoogle Scholar
  107. 107.
    Salvatet ML, Zeppieri M, Parisi L, Johnson CA, Sampaolesi R, Brusini P. Learning effect and test-retest variability of pulsar perimetry. J Glaucoma. 2013;22:230–7.Google Scholar
  108. 108.
    Ruben S, Fitzke F. Correlation of peripheral displacement thresholds and optic disc parameters in ocular hypertension. Br J Ophthalmol. 1994;78:291–4.PubMedGoogle Scholar
  109. 109.
    Johnson CA, Marshall D, Eng K. Displacement threshold perimetry in glaucoma using a Macintosh computer system and a 21 inch monitor. In: Mills RP, Wall M, editors. Perimetry update 1994/95. Amsterdam: Kugler Publications; 1995.p. 103–10.Google Scholar
  110. 110.
    Westcott MC, Fitzke FW, Hitchings RA. Abnormal motion displacement thresholds are associated with fine scale luminance sensitivity loss in glaucoma. Vision Res. 1998;38:3171–80.PubMedGoogle Scholar
  111. 111.
    Wall M, Ketoff KM. Random dot motion perimetry in patients with glaucoma and in normal subjects. Am J Ophthalmol. 1995;120:587–96.PubMedGoogle Scholar
  112. 112.
    Wall M, Jennisch CS, Munden PM. Motion perimetry identifies nerve fiber bundlelike defects in ocular hypertension. Arch Ophthalmol. 1997;115:26–33.PubMedGoogle Scholar
  113. 113.
    Wall M, Jennisch CS. Random dot motion stimuli are more sensitive than light stimuli for detection of visual field loss in ocular hypertension patients. Optom Vis Sci. 1999;76:550–7.PubMedGoogle Scholar
  114. 114.
    Joffe KM, Raymond JE, Chrichton A. Motion coherence perimetry in glaucoma and suspected glaucoma. Vision Res. 1997;37:955–64.PubMedGoogle Scholar
  115. 115.
    Bosworth CF, Sample PA, Weinreb RN. Perimetric motion thresholds are elevated in glaucoma suspects and glaucoma patients. Vision Res. 1997;37:1989–97.PubMedGoogle Scholar
  116. 116.
    Bosworth CF, Sample PA, Gupta N, Bathija R, Weinreb RN. Motion automated perimetry identifies early glaucomatous field defects. Arch Ophthalmol. 1998;116:1153–8.PubMedGoogle Scholar
  117. 117.
    Silverman SE, Trick GL, Hart WM. Motion perception is abnormal in primary open angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1990;31:722–9.PubMedGoogle Scholar
  118. 118.
    Bullimore MA, Wood JA, Swenson K. Motion perception in glaucoma. Invest Ophthalmol Vis Sci. 1993;34:3526–33.PubMedGoogle Scholar
  119. 119.
    Bosworth CF, Sample PA, Williams JM, Zangwill L, Kee B, Weinreb RN. Spatial relationships of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy. J Glaucoma. 1999;8:281–9.PubMedGoogle Scholar
  120. 120.
    Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci. 2000;41:1783–90.PubMedGoogle Scholar
  121. 121.
    Shabana N, Cornilleau PV, Carkeet A, Chew PT. Motion perception in glaucoma patients: a review. Surv Ophthalmol. 2003;48:92–106.PubMedGoogle Scholar
  122. 122.
    Johnson CA, Scobey RP. Foveal and peripheral displacement thresholds as a function of stimulus luminance, line length and duration of movement. Vision Res. 1980;20:709–15.PubMedGoogle Scholar
  123. 123.
    Yoshiyama KK, Johnson CA. Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss ? Invest Ophthalmol Vis Sci. 1997;38:2270–7.PubMedGoogle Scholar
  124. 124.
    McKendrick AM, Johnson CA. Temporal properties of vision, Adler’s physiology of the eye. 10th ed. In: Alm A, Kaufmann P, editors. Section 9: visual perception, Chapter 20. St. Louis: C.V. Mosby; 2002. p. 511–30.Google Scholar
  125. 125.
    Tyler CW. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1981;100:135–46.Google Scholar
  126. 126.
    Lachenmayr BJ, Drance SM, Douglas GR, Mikelberg FS. Light-sense, flicker and resolution perimetry in glaucoma: a comparative study. Graefes Arch Clin Exp Ophthalmol. 1991;229:246–51.PubMedGoogle Scholar
  127. 127.
    Lachenmayr BJ, Drance SM, Chauhan BC, House PH, Lalani S. Diffuse and localized glaucomatous field loss in light-sense, flicker and resolution perimetry. Graefes Arch Clin Exp Ophthalmol. 1991;229:267–73.PubMedGoogle Scholar
  128. 128.
    Casson EJ, Johnson CA. Temporal modulation perimetry in glaucoma and ocular hypertension. In: Mills RP, editor. Perimetry update 1992/93. New York: Kugler Publications; 1993. p. 443–50.Google Scholar
  129. 129.
    Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S, Shimomura Y. Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Acta Ophthalmol Scand. 2006;84:866–72.Google Scholar
  130. 130.
    Swanson WH, Ueno T, Smith VC, Pokorny J. Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations. J Opt Soc Am A. 1987;4:1992–2005.PubMedGoogle Scholar
  131. 131.
    Anderson AJ, Vingrys AJ. Interactions between flicker thresholds and luminance pedestals. Vision Res. 2000;40:2579–88.PubMedGoogle Scholar
  132. 132.
    Anderson AJ, Vingrys AJ. Effect of eccentricity on luminance-pedestal flicker thresholds. Vision Res. 2002;42:1149–56.PubMedGoogle Scholar
  133. 133.
    Anderson AJ, Vingrys AJ. Multiple processes mediate flicker sensitivity. Vision Res. 2001;41:2449–55.PubMedGoogle Scholar
  134. 134.
    Quaid PT, Flanagan JG. Defining the limits of flicker defined form: effect of stimulus size, eccentricity and number of random dots. Vision Res. 2005;45:1075–84.PubMedGoogle Scholar
  135. 135.
    Goren D, Flanagan JG. Is flicker-defined form (FDF) dependent on the contour? J Vis. 2008;22(8):15.1–15.11.Google Scholar
  136. 136.
    Frisen L. Acuity perimetry: estimation of neural channels. Int Ophthalmol. 1988;12:169–74.PubMedGoogle Scholar
  137. 137.
    Wall M, Lefante J, Conway M. Variability of high-pass resolution perimetry in normals and patients with idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci. 1991;32:3091–5.PubMedGoogle Scholar
  138. 138.
    Wall M, Conway MD, House PH, Allely R. Evaluation of sensitivity and specificity of spatial resolution and Humphrey automated perimetry in pseudotumor cerebri patients and normal subjects. Invest Ophthalmol Vis Sci. 1991;32:3306–12.PubMedGoogle Scholar
  139. 139.
    Sample PA, Ahn DS, Lee PC, Weinreb RN. High-pass resolution perimetry in eyes with ocular hypertension and primary open-angle glaucoma. Am J Ophthalmol. 1992;113:309–16.PubMedGoogle Scholar
  140. 140.
    Frisen L. High-pass resolution perimetry: a clinical review. Doc Ophthalmol. 1993;83:1–25.PubMedGoogle Scholar
  141. 141.
    Chauhan BC, LeBlanc RP, McCormick TA, Mohandas RN, Wijsman K. Correlation between the optic disc and results obtained with conventional, high-pass resolution and pattern discrimination perimetry in glaucoma. Can J Ophthalmol. 1993;28:312–6.PubMedGoogle Scholar
  142. 142.
    Chauhan BC, House PH, McCormick TA, LeBlanc RP. Comparison of conventional and high-pass resolution perimetry in a prospective study of patients with glaucoma and healthy controls. Arch Ophthalmol. 1999;117:24–33.PubMedGoogle Scholar
  143. 143.
    Chauhan BC. The value of high-pass resolution perimetry in glaucoma. Curr Opin Ophthalmol. 2000;11:85–9.PubMedGoogle Scholar
  144. 144.
    Ennis FA, Johnson CA. Are high-pass resolution perimetry thresholds sampling limited or optically limited? Optom Vis Sci. 2002;79:506–11.PubMedGoogle Scholar
  145. 145.
    Wall M, Chauhan B, Frisen L, House PH, Brito C. Visual field of high-pass resolution perimetry in normal subjects. J Glaucoma. 2004;13:15–21.PubMedGoogle Scholar
  146. 146.
    Frisen L. New, sensitive window on abnormal spatial vision: rarebit probing. Vision Res. 2002;42:1931–9.PubMedGoogle Scholar
  147. 147.
    Martin L, Wanger P. New perimetric techniques: a comparison between rarebit and frequency doubling technology perimetry in normal subjects and glaucoma patients. J Glaucoma. 2004;13:268–72.PubMedGoogle Scholar
  148. 148.
    Brusini P, Salvatet ML, Parisi L, Zeppieri M. Probing glaucoma visual damage by rarebit perimetry. Br J Ophthalmol. 2005;89:180–4.PubMedGoogle Scholar
  149. 149.
    Salvatet ML, Zeppieri M, Parisi L, Brusini P. Rarebit perimetry in normal subjects: test-retest variability, learning effect, normative range, influence of optical defocus, and cataract extraction. Invest Ophthalmol Vis Sci. 2007;48:5320–31.Google Scholar
  150. 150.
    Yavas GF, Kusbeci T, Eser O, Ermis SS, Cosar M, Ozturk F. A new visual field test in empty sella syndrome: rarebit perimetry. Eur J Ophthalmol. 2008;18:628–32.PubMedGoogle Scholar
  151. 151.
    Bearse Jr MA, Sutter EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A. 1996;13:634–40.Google Scholar
  152. 152.
    Chan HL, Brown B. Multifocal ERG changes in glaucoma. Ophthalmic Physiol Opt. 1999;19:306–16.PubMedGoogle Scholar
  153. 153.
    Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol. 2000;100:115–37.PubMedGoogle Scholar
  154. 154.
    Fortune B, Bearse MA, Cioffi GA, Johnson CA. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci. 2002;43:2638–47.PubMedGoogle Scholar
  155. 155.
    Chan HH. Detection of glaucomatous damage using multifocal ERG. Clin Exp Optom. 2005;88:410–4.PubMedGoogle Scholar
  156. 156.
    Graham SL, Klistorner AL, Grigg JR, Billson FA. Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma. 2000;9:10–9.PubMedGoogle Scholar
  157. 157.
    Klistorner A, Graham SL. Objective perimetry in glaucoma. Ophthalmology. 2000;107:2283–99.PubMedGoogle Scholar
  158. 158.
    Hood DC, Greenstein VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res. 2003;22:201–51.PubMedGoogle Scholar
  159. 159.
    Graham SL, Klistorner AL, Goldberg I. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol. 2005;123:729–39.PubMedGoogle Scholar
  160. 160.
    Grippo TM, Hood DC, Kandani FN, Greenstein VC, Liebmann JM, Ritch R. A comparison between multifocal and conventional VEP latency changes secondary to glaucomatous damage. Invest Ophthalmol Vis Sci. 2006;47:5331–6.PubMedGoogle Scholar
  161. 161.
    Fortune B, Demirel S, Zhang X, Hood DC, Patterson E, Jamil A, Mansberger SL, Cioffi GA, Johnson CA. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertensives and early glaucoma. Invest Ophthalmol Vis Sci. 2007;48:1173–80.PubMedGoogle Scholar
  162. 162.
    Klistorner A, Graham SL, Martins A, Grigg JR, Arvind H, Kumar RS, James AC, Billson FA. Multifocal blue-on-yellow visual evoked potentials in early glaucoma. Ophthalmology. 2007;114:1613–21.PubMedGoogle Scholar
  163. 163.
    Johnson CA, Keltner JL. Principals and techniques of the examination of the visual sensory system. Chapter 7. In: Miller N, Newman N, editors. Walsh and Hoyt’s textbook of neuro-ophthalmology. Baltimore: Williams and Wilkens; 1998. p. 153–235.Google Scholar
  164. 164.
    Frisen L. Clinical tests of vision. New York: Raven; 1990.Google Scholar
  165. 165.
    Lachenmayr BJ, Vivell PMO. Perimetry and its clinical correlations. New York: Thieme; 1993.Google Scholar
  166. 166.
    Spry PGD, Johnson CA. Identification of progressive glaucomatous visual field loss. Surv Ophthalmol. 2002;47:158–73.PubMedGoogle Scholar
  167. 167.
    Vesti E, Johnson CA, Chauhan BC. Comparison of different methods for detecting glaucomatous visual field progression. Invest Ophthalmol Vis Sci. 2003;44:3873–9.PubMedGoogle Scholar
  168. 168.
    Gardiner SK, Crabb DP. Frequency of testing for detecting visual field progression. Br J Ophthalmol. 2002;86:560–4.PubMedGoogle Scholar
  169. 169.
    Smith SD, Katz J, Quigley HA. Analysis of progressive change in automated visual fields in glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1419–28.PubMedGoogle Scholar
  170. 170.
    Åsman P, Heijl A. Glaucoma Hemifield Test: automated visual field evaluation. Arch Ophthalmol. 1992;110:812–9.PubMedGoogle Scholar
  171. 171.
    Heijl A, Lindgren G, Lindgren A, Olsson J, Åsman P, Myers S, Patella M. Extended empirical statistical package for evaluation of single and multiple fields in glaucoma. Statpak 2. In: Mills RP, Heijl A, editors. Perimetry update 1990/91. Amsterdam: Kugler and Ghedini; 1991. p. 303–15.Google Scholar
  172. 172.
    Mayama C, Araie M, Suzuki Y, Ishida K, Yamamoto T, Kitazawa Y, Shirakashi M, Abe H, Tsukamoto H, Mishima HK, Yoshimura K, Ohashi Y. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma. Ophthalmology. 2004;111:2117–25.PubMedGoogle Scholar
  173. 173.
    Katz J, Congdon N, Friedman DS. Methodological variations in estimating apparent progressive visual field loss in clinical trials of glaucoma treatment. Arch Ophthalmol. 1999;117:1137–42.PubMedGoogle Scholar
  174. 174.
    Nouri-Mahdavi K, Hoffman D, Ralli M, Caprioli J. Comparison of methods to predict visual field progression in glaucoma. Arch Ophthalmol. 2007;125:1176–81.PubMedGoogle Scholar
  175. 175.
    Boden C, Blumenthal EZ, Pascual J, McEwan G, Weinreb RN, Medeiros F, Sample PA. Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol. 2004;138:1029–36.PubMedGoogle Scholar
  176. 176.
    AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 14. Distinguishing progression of glaucoma from visual field fluctuations. Ophthalmology. 2004;111:2109–16.Google Scholar
  177. 177.
    Schulzer M. Errors in the diagnosis of visual field progression in normal-tension glaucoma. Ophthalmology. 1994;101:1589–94.PubMedGoogle Scholar
  178. 178.
    Heijl A, Bengtsson B, Chauhan BC, Lieberman MF, Cunliffe I, Hyman L, Leske MC. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. Ophthalmology. 2008;115:1557–65.PubMedGoogle Scholar
  179. 179.
    Broman AT, Quigley HA, West SK, Katz J, Munoz B, Bandeen-Roche K, Tielsch JM, Friedman DS, Crowston J, Taylor HR, Varma R, Leske MC, Bengtsson B, Heijl A, He M, Foster PJ. Estimating the rate of progressive visual field damage in those with open-angle glaucoma, from cross-sectional data. Invest Ophthalmol Vis Sci. 2008;49:66–76.PubMedGoogle Scholar
  180. 180.
    Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol. 2008;145:343–53.PubMedGoogle Scholar
  181. 181.
    Keltner JL, Johnson CA, Spurr JO, Kass MA, Gordon MO, The Ocular Hypertension Study Group. Confirmation of visual field abnormalities in the Ocular Hypertension Treatment Study (OHTS). Arch Ophthalmol. 2000;118:1187–94.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Iowa Hospitals and ClinicsIowa CityUSA

Personalised recommendations