Skip to main content

Clinical Examination of the Optic Nerve

  • Chapter
  • First Online:
Book cover Clinical Glaucoma Care

Abstract

This edition highlights the importance of the clinical exam findings with new research papers, stimulating the reader as they read the text. It also brings new pictures, tables, and figures to simplify and expedite understanding, as well as to simplify the exam comprehension. The chapter objective is to (1) explain the anatomy of the structures related to the optic disc, retinal nerve fiber layer (RNFL), optic disc, intralaminar part of the optic nerve, retrobulbar optic nerve, and the normal optic disc; (2) examine the optic disc and surrounding area, direct ophthalmoscopy, indirect ophthalmoscopy, optic disc photography, RNFL examination, RNFL, and optic disc analyzers; (3) evaluate and monitor the optic disc, 5 R’s rule, DDLS, and important optic disc characteristics; (4) other structural changes; and (5) differential diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varma RV, Spaeth GL. The optic nerve in glaucoma. Philadelphia: J.B. Lippincott Co.; 1993.

    Google Scholar 

  2. Fi Hoh ST, Lim MC, Seah SK, Lim AT, Chew SJ, Foster PJ, Aung T. Peripapillary retinal nerve fiber layer thickness variations with myopia. Ophthalmology. 2006;113(5):773–7.

    Article  Google Scholar 

  3. Park HY, Park CK. Structure-function relationship and diagnostic value of RNFL area index compared with circumpapillary RNFL thickness by spectral-domain OCT. J Glaucoma. 2013;22(2):88–97.

    Article  PubMed  Google Scholar 

  4. Hogan MJ, Alvorado JA, Weddell JE. Histology of the human eye: an atlas and textbook. Philadelphia: Saunders; 1971. p. 538–40.

    Google Scholar 

  5. Nevarez J, Rockwood EJ, Anderson DR. The configuration of peripapillary tissue in unilateral glaucoma. Arch Ophthalmol. 1988;106:901–3.

    Article  PubMed  CAS  Google Scholar 

  6. Reis AS, Sharpe GP, Yang H, Nicolela MT, Burgoyne CF, Chauhan BC. Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology. 2012;119(4):738–47.

    Article  PubMed  Google Scholar 

  7. Reis AS, O’Leary N, Yang H, Sharpe GP, Nicolela MT, Burgoyne CF, Chauhan BC. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci. 2012;53(4):1852–60.

    Article  PubMed  Google Scholar 

  8. Ritch R, Shields MB, Krupin T. The glaucomas: basic sciences. 2nd ed. St. Louis: Mosby; 1996. p. 152.

    Google Scholar 

  9. Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology. 2012;119(1):3–9.

    Article  PubMed  Google Scholar 

  10. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49.

    Article  PubMed  CAS  Google Scholar 

  11. Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95(5):673–91.

    PubMed  CAS  Google Scholar 

  12. Park HY, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119(1):10–20.

    Article  PubMed  Google Scholar 

  13. Quigley HA, Brown AE, Morrison JD, Drance SM. The size and shape of the optic disc in normal human eyes. Arch Ophthalmol. 1990;108(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  14. Caprioli J, Miller JM. Optic disc rim area is related to disc size in normal subjects. Arch Ophthalmol. 1987;105(12):1683–5.

    Article  PubMed  CAS  Google Scholar 

  15. Fingeret M, Medeiros FA, Susanna Jr R, Weinreb RN. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry. 2005;76(11): 661–8.

    Article  PubMed  Google Scholar 

  16. Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci. 1988;29(7):1151–8.

    PubMed  CAS  Google Scholar 

  17. Harizman N, Oliveira C, Chiang A, et al. The ISNT rule and differentiation of normal from glaucomatous eyes. Arch Ophthalmol. 2006;124(11):1579–83.

    Article  PubMed  Google Scholar 

  18. Law SK, Tamboli DA, Ou Y, Giaconi JA, Caprioli J. Development of a resident training module for systematic optic disc evaluation in glaucoma. J Glaucoma. 2012;21(9):601–7.

    Article  PubMed  Google Scholar 

  19. Milani BY, Majdi M, Green W, Mehralian A, Moarefi M, Oh FS, Riddle JM, Djalilian AR. The use of peer optic nerve photographs for teaching direct ophthalmoscopy. Ophthalmology. 2013;120:761–5.

    Article  PubMed  Google Scholar 

  20. Gross PG, Drance SM. Comparison of a simple ophthalmoscopic and planimetric measurement of glaucomatous neuroretinal rim areas. J Glaucoma. 1995;4:314–16.

    Article  PubMed  CAS  Google Scholar 

  21. Choplin NT, Lundy DC, editors. Atlas of glaucoma. London: Martin Dunitz, Ltd.; 1998. p. 68.

    Google Scholar 

  22. Sharma P, Sample PA, Zangwill LM, Schuman JS. Diagnostic tools for glaucoma detection and management. Surv Ophthalmol. 2008;53(Suppl1):S17.

    Article  PubMed  Google Scholar 

  23. Varma R, Steinmann WC, Scott IU. Expert agreement in evaluating the optic disc for glaucoma. Ophthalmology. 1992;99(2):215–21.

    Article  PubMed  CAS  Google Scholar 

  24. Vessani RM, Moritz R, Batis L, Zagui RB, Bernardoni S, Susanna R. Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma. 2009;18(3):253–61.

    Article  PubMed  Google Scholar 

  25. Deleón-Ortega JE, Arthur SN, McGwin Jr G, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Invest Ophthalmol Vis Sci. 2006;47(8):3374–80.

    Article  PubMed  Google Scholar 

  26. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.

    Article  PubMed  CAS  Google Scholar 

  27. Ritch R, Shields MB, Krupin T, editors. The glaucomas: basic sciences. 2nd ed. St. Louis: Mosby; 1996. p. 626–7.

    Google Scholar 

  28. Lin SC, Singh K, Jampel HD, et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology. 2007;114(10):1937–49.

    Article  PubMed  Google Scholar 

  29. Menke MN, Knecht P, Sturm V, Dabov S, Funk J. Reproducibility of nerve fiber layer thickness measurements using 3D Fourier-domain OCT. Invest Ophthalmol Vis Sci. 2008;49(12):5386–91.

    Article  PubMed  Google Scholar 

  30. Jonas JB, Budde WM. Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects. Prog Retin Eye Res. 2000;19(1):1–40.

    Article  PubMed  CAS  Google Scholar 

  31. Armaly MF, Sayegh RE. The cup-disc ratio. The findings of tonometry and tonography in the normal eye. Arch Ophthalmol. 1969;82(2):191–6.

    Article  PubMed  CAS  Google Scholar 

  32. Carpel EF, Engstrom PF. The normal cup-disk ratio. Am J Ophthalmol. 1981;91(5):588–97.

    PubMed  CAS  Google Scholar 

  33. Armaly MF. The correlation between appearance of the optic cup and visual function. Trans Am Acad Ophthalmol Otolaryngol. 1969;78:898.

    Google Scholar 

  34. Spaeth GL, Henderer J, Liu C, et al. The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. Trans Am Ophthalmol Soc. 2002;100:181–5. discussion 5–6.

    PubMed  Google Scholar 

  35. Danesh-Meyer HV, Ku JY, Papchenko TL, Jayasundera T, Hsiang JC, Gamble GD. Regional correlation of structure and function in glaucoma, using the Disc Damage Likelihood Scale, Heidelberg Retina Tomograph, and visual fields. Ophthalmology. 2006;113(4):603–11.

    Article  PubMed  Google Scholar 

  36. Henderer JD, Liu C, Kesen M, Altangerel U, Bayer A, Steinmann WC, Spaeth GL. Reliability of the disk damage likelihood scale. Am J Ophthalmol. 2003;135(1):44–8.

    Article  PubMed  Google Scholar 

  37. Danesh-Meyer HV, Gaskin BJ, Jayusundera T, Donaldson M, Gamble GD. Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma. Br J Ophthalmol. 2006;90(4):437–41.

    Article  PubMed  CAS  Google Scholar 

  38. Susanna Jr R, Vessani RM. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr Opin Ophthalmol. 2007;18(2):122–8.

    Article  PubMed  Google Scholar 

  39. Jonas JB. Optic disk size correlated with refractive error. Am J Ophthalmol. 2005;139(2):346–8.

    Article  PubMed  Google Scholar 

  40. Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations. Trans Am Acad Ophthalmol Otolaryngol. 1974;78(2):OP255-74.

    PubMed  Google Scholar 

  41. Deokule SP, Doshi A, Vizzeri G, Medeiros FA, Liu JH, Bowd C, Zangwill L, Weinreb RN. Relationship of the 24-hour pattern of intraocular pressure with optic disc appearance in primary open-angle glaucoma. Ophthalmology. 2009;116(5):833–9.

    Article  PubMed  Google Scholar 

  42. Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations. Ophthalmology. 1996;103(4):640–9.

    Article  PubMed  CAS  Google Scholar 

  43. Broadway DC, Nicolela MT, Drance SM. Optic disk appearances in primary open-angle glaucoma. Surv Ophthalmol. 1999;43 Suppl 1:S223–43. Review.

    Article  PubMed  Google Scholar 

  44. Geijssen HC, Greve EL. The spectrum of primary open angle glaucoma. I: Senile sclerotic glaucoma versus high tension glaucoma. Ophthalmic Surg. 1987;3:207–13.

    Google Scholar 

  45. Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol. 1998;82(8):862–70.

    Article  PubMed  CAS  Google Scholar 

  46. Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012;119(1):21-6.e1-3.

    Article  PubMed  Google Scholar 

  47. Kumar RS, Baskaran M, Singh K, Aung T. Clinical characterization of young Chinese myopes with optic nerve and visual field changes resembling glaucoma. J Glaucoma. 2012;21(5):281–6.

    Article  PubMed  Google Scholar 

  48. Balazsi AG, Drance SM, Schulzer M, Douglas GR. Neuroretinal rim area in suspected glaucoma and early chronic open-angle glaucoma. Correlation with parameters of visual function. Arch Ophthalmol. 1984;102(7):1011–14.

    Article  PubMed  CAS  Google Scholar 

  49. Caprioli J, Miller JM, Sears M. Quantitative evaluation of the optic nerve head in patients with unilateral visual field loss from primary open angle glaucoma. Ophthalmology. 1987;94:1484–7.

    Article  PubMed  CAS  Google Scholar 

  50. Reis AS, Artes PH, Belliveau AC, Leblanc RP, Shuba LM, Chauhan BC, Nicolela MT. Rates of change in the visual field and optic disc in patients with distinct patterns of glaucomatous optic disc damage. Ophthalmology. 2012;119(2):294–303.

    Article  PubMed  Google Scholar 

  51. Spaeth GL, Jatla KK, Ichhpujani P. Do optic discs get “thinner” or “narrower?”. J Glaucoma. 2010;19(5):288–92.

    PubMed  Google Scholar 

  52. Trobe JD, Glaser JS, Cassady J, et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046–50.

    Article  PubMed  CAS  Google Scholar 

  53. Armaly MF. Genetic determination of cup/disc ratio of the optic nerve. Arch Ophthalmol. 1967;78(1): 35–43.

    Article  PubMed  CAS  Google Scholar 

  54. Drance S, Anderson DR, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131(6):699–708.

    Article  PubMed  CAS  Google Scholar 

  55. Gazzard G, Morgan W, Devereux J, Foster P, Oen F, Seah S, Khaw PT, Chew P. Optic disc hemorrhage in Asian glaucoma patients. J Glaucoma. 2003;12(3):226–31.

    Article  PubMed  Google Scholar 

  56. Healey PR, Mitchell P, Smith W, Wang JJ. Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology. 1998;105(2):216–23.

    Article  PubMed  CAS  Google Scholar 

  57. Yamamoto T, Iwase A, Kawase K, Sawada A, Ishida K. Optic disc hemorrhages detected in a large-scale eye disease screening project. J Glaucoma. 2004;13(5):356–60.

    Article  PubMed  Google Scholar 

  58. Lan YW, Wang IJ, Hsiao YC, Sun FJ, Hsieh JW. Characteristics of disc hemorrhage in primary angle-closure glaucoma. Ophthalmology. 2008;115(8):1328–33.

    Article  PubMed  Google Scholar 

  59. Jonas JB, Martus P, Budde WM. Inter-eye differences in chronic open-angle glaucoma patients with unilateral disc hemorrhages. Ophthalmology. 2002;109(11):2078–83.

    Article  PubMed  Google Scholar 

  60. Kim SH, Park KH. The relationship between recurrent optic disc hemorrhage and glaucoma progression. Ophthalmology. 2006;113(4):598–602. Epub 2006 Feb 17.

    Article  PubMed  Google Scholar 

  61. Nitta K, Sugiyama K, Higashide T, Ohkubo S, Tanahashi T, Kitazawa Y. Does the enlargement of retinal nerve fiber layer defects relate to disc hemorrhage or progressive visual field loss in normal-tension glaucoma? J Glaucoma. 2011;20(3):189–95.

    Article  PubMed  Google Scholar 

  62. Wang YX, Hu LN, Yang H, Jonas JB, Xu L. Frequency and associated factors of structural progression of open-angle glaucoma in the Beijing Eye Study. Br J Ophthalmol. 2012;96(6):811–15.

    Article  PubMed  Google Scholar 

  63. Suh MH, Park KH, Kim H, Kim TW, Kim SW, Kim SY, Kim DM. Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography. J Glaucoma. 2012;21(6):358–66.

    Article  PubMed  Google Scholar 

  64. Tezel G, Kolker AE, Wax MB, et al. Parapapillary chorioretinal atrophy in patients with ocular hypertension. II. An evaluation of progressive changes. Arch Ophthalmol. 1997;115:1509–14.

    Article  PubMed  CAS  Google Scholar 

  65. Uchida H, Ugurlu S, Caprioli J. Increasing peripapillary atrophy is associated with progressive glaucoma. Ophthalmology. 1998;96:16.

    Google Scholar 

  66. Roberts KF, Artes PH, O’Leary N, Reis AS, Sharpe GP, Hutchison DM, Chauhan BC, Nicolela MT. Peripapillary choroidal thickness in healthy controls and patients with focal, diffuse, and sclerotic glaucomatous optic disc damage. Arch Ophthalmol. 2012;130(8):980–6.

    Article  PubMed  Google Scholar 

  67. Morrison JC, Pollack IP. Glaucoma: a clinical guide. China: Thieme; 2003. p. 99.

    Google Scholar 

  68. Healey PR, Mitchell P. The prevalence of optic disc pits and their relationship to glaucoma. J Glaucoma. 2008;17(1):11–4.

    Article  PubMed  Google Scholar 

  69. Levin LA, Arnold AC. Neuro-ophthalmology: the practical guide. China: Thieme; 2005. p. 110.

    Google Scholar 

  70. Doro S, Lessell S. Cup-disc ratio and ischemic optic neuropathy. Arch Ophthalmol. 1985;103(8):1143–4.

    Article  PubMed  CAS  Google Scholar 

  71. Aumiller MS. Optic disc drusen: complications and management. Optometry. 2007;78(1):10–6.

    Article  PubMed  Google Scholar 

  72. Miller NR, Walsh FB, Hoyt WF, Newman NJ, Biousse V, Kerrison JB. Walsh and Hoyt’s clinical neuro-ophthalmology: the essentials. Baltimore: Lippincott Williams & Wilkins; 2007. p. 91.

    Google Scholar 

  73. Susanna R, Drance S, Medeiros FA. The optic nerve in glaucoma. Amsterdam: Kugler Publications; 1995. p. 130.

    Google Scholar 

  74. Spaeth GL. The disc damage likelihood scale. Glaucoma Today. 2005. Bryn Mawr Publishing.

    Google Scholar 

  75. Zangalli C, Gupta SR, Spaeth GL. The disc as the basis of treatment for glaucoma. Saudi J Ophthalmol. 2011;25:381–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jay Katz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fudemberg, S.J., Cvintal, V., Myers, J.S., Wizov, S.S., Katz, L.J. (2014). Clinical Examination of the Optic Nerve. In: Samples, J., Schacknow, P. (eds) Clinical Glaucoma Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4172-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4172-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4171-7

  • Online ISBN: 978-1-4614-4172-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics