Skip to main content

Situating Cerebral Blood Flow in the Pathotrajectory of Head Trauma

  • Chapter
  • First Online:
Cerebral Blood Flow, Metabolism, and Head Trauma

Abstract

This chapter will outline the importance of the role that cerebral blood flow (CBF) has in predicting and ultimately mediating outcome following head trauma. Particular focus will be placed on how CBF is regulated in the brain both in normal and pathological situations. Furthermore, the vasodilators and constrictors will be discussed. Finally, this chapter will discuss how CBF influences other pathologies associated with head trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52

    Article  PubMed  CAS  Google Scholar 

  • Adelson PD, Srinivas R, Chang Y, Bell M, Kochanek PM (2011) Cerebrovascular response in children following severe traumatic brain injury. Childs Nerv Syst 27(9):1465–1476

    Article  PubMed  Google Scholar 

  • Aoyagi T, Koshimizu TA, Tanoue A (2009) Vasopressin regulation of blood pressure and volume: findings from V1a receptor-deficient mice. Kidney Int 76(10):1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Armstead WM (1996) Role of endothelin in pial artery vasoconstriction and altered responses to vasopressin after brain injury. J Neurosurg 85:901–907

    Article  PubMed  CAS  Google Scholar 

  • Armstead WM, Kreipke CW (2011) Endothelin-1 is upregulated after traumatic brain injury: a cross-species, cross-models analysis. Neurol Res 33(2):133–138

    Google Scholar 

  • Asahi M, Asahi K, Jung J, del Zoppo G, Fini M, Lo E (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 12:1681–1689

    Article  Google Scholar 

  • Azad K, Gall D, Woods A, Ledent A, Ferre S, Schiffmann S (2009) Dopamine D12 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heterodimerization. Neuropsychopharmacology 34:972–986

    Article  Google Scholar 

  • Baldwin A, Fugaccia I, Brown D, Brown L, Scheff W (1996) Blood–brain barrier breach following cortical contusion in the rat. J Neurosurg 3:476–481

    Google Scholar 

  • Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997) Contribution of vasogenic and cellular edema to traumatic swelling measured by diffusion-weighted imaging. J Neurosurg 6:900–907

    Google Scholar 

  • Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occulusion in rats. Brain Res 739:88–96

    Article  PubMed  CAS  Google Scholar 

  • Bell M, Robertson C, Kockanek P, Goodman J, Gopinath S, Carcillo J, Clark R, Marion D, Mi Z, Jackson E (2001) Interstitial brain adenosine and xanthine increase during jugular venous oxygen desaturations in humans after traumatic brain injury. Crit Care Med 29:399–404

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical applications. Neurology 77(12):1198–1204

    Article  PubMed  Google Scholar 

  • Bosch OJ, Neumann ID (2012) Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 61(3):293–303

    Article  PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP (1990) Relationship between cardiac output and cerebral blood flow in patients with intact and impaired autoregulation. J Neurosurg 73:368–374

    Article  PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP (1995) Cerebral blood flow in severe clinical head injury. New Horiz 3:384–394

    PubMed  CAS  Google Scholar 

  • Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    Article  PubMed  Google Scholar 

  • Buxton RB (2002) Introduction to functional magnetic resonance imaging. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Caraglia M, De Rosa G, Salzano G, Santini D, Lamberti M, Sperlongano P, Lombardi A, Abbruzzese A, Addeo R (2012) Nanotech revolution for the anti-cancer drug delivery through blood–brain-barrier. Curr Cancer Drug Targets 12(3):186–196

    Article  PubMed  CAS  Google Scholar 

  • Chaiwat O, Sharma D, Udomphorn Y, Armstead WM, Vavilala MS (2009) Cerebral hemodynamic predictors of poor 6-month Glasgow outcome score in severe pediatric traumatic brain injury. J Neurotrauma 26(5):657–663

    Article  PubMed  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproeinases: an overview. Mol Cell Biochem 1–2:269–285

    Article  Google Scholar 

  • Chatfield DA, Brahmbhatt DH, Sharp T, Perkes IE, Outrim JG, Menon DK (2011) Juguloarterial endothelin-1 gradients after severe traumatic brain injury. Neurocrit Care 14(1):55–60

    Article  PubMed  CAS  Google Scholar 

  • Chestnut RM, Marshall SB, Piek J, Blunt BA, Klauber MR, Marshall LF et al (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the traumatic coma data bank. Acta Neurochir Suppl (Wein) 59:121–125

    Google Scholar 

  • Cheung DC, Gill RS, Liu JQ, Manouchehri N, Sergi C, Bigam D, Ceung PY, Dicken BJ (2012) Vasopressin improves systemic hemodynamics without compromising mesenteric perfusion in the resuscitation of asphyxiated newborn piglets: a dose–response study. Intensive Care Med 38(3):491–498

    Article  PubMed  CAS  Google Scholar 

  • Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    Article  PubMed  CAS  Google Scholar 

  • Chung BH, Kim S, Kim JD, Lee JJ, Baek YY, Jeoung D, Lee H, Choe J, Ha KS, Won MH, Kwon YG, Kim YM (2012) Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase. Exp Mol Med 44(3):191–201

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casado V, Rodrigues R, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg S, Mallol J, Cortes A, Canela E, Lopez-Gimenez J, Milligan G, Lluis C, Cunha R, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  PubMed  CAS  Google Scholar 

  • Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, Menon DK (2004) Defining ischemic burden after traumatic brain injury using 150 PET imaging of cerebral physiology. J Cereb Blood Flow Metab 24:17–23

    PubMed  Google Scholar 

  • Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD (2001) Cerebral autoregulation following head injury. J Neurosurg 95:756–763

    Article  PubMed  CAS  Google Scholar 

  • Dore-Duffy P, Wang S, Mehedi A, Katyshev V, Cleary K, Tapper A, Reynolds C, Ding Y, Zhan P, Rafols J, Kreipke C (2011) Pericyte-mediated vasoconstriction underlies TBI-induced hypoperfusion. Neurol Res 33(2):176–184

    Article  PubMed  CAS  Google Scholar 

  • Ferre S, Quiroz C, Woods A, Cunha R, Popoli P, Ciruela F, Lluis C, Franco R, Azdad K, Schiffmann S (2008) An update on adenosine A2A dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 14:1468–1474

    Article  PubMed  CAS  Google Scholar 

  • Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: morphological characterization. J Neurosurg 80:301–313

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Tanno H, Okimura Y, Makamura M, Yamaura A (1995) The blood brain barrier disruption to circulating proteins in the early period after fluid percussion brain injury in rats. J Neurotrauma 3:315–324

    Article  Google Scholar 

  • Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L, Toietta G, Mcburney MW, Schutz G, Riccio A, Grassi C, Galeotti T, Pani G (2012) A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci USA 109(2):621–626

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Hoz C, Sanchez-Fernandez G, Garcia-Escudero R, Fernandez-Velasco M, Palacios-Garcia J, Ruiz-Meana M, Diaz-Meco MT, Leitges M, Moscat J, Garcia-Dorado D, Bosca L, Mayor F, Ribas C (2012) PKCζ-mediated Gαq stimulation of the ERK5 pathway in cardiomyocytes and cardiac fibroblasts. J Biol Chem 287(10):7792–7802

    Article  PubMed  CAS  Google Scholar 

  • Golding EM, Robertson CS, Bryan RM Jr (1999) The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens 21:299–332

    Article  PubMed  CAS  Google Scholar 

  • Graham DI, Adams JH, Doyle D (1978) Ischemic brain damage in fatal non-missile head injuries. J Neurol Sci 39:213–234

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC (1977) Basic human physiology: normal function and mechanisms of disease, 2nd edn. W.B. Saunders Company, Philadelphia

    Google Scholar 

  • Haubrich C, Czosnyka Z, Lavinio A, Smielewski P, Diehl RR, Pickard JD, Czosnyka M (2007) Is there a direct link between cerebrovascular activity and cerebrospinal fluid pressure-volume compensation. Stroke 38(10):2677–2680

    Article  PubMed  Google Scholar 

  • Haznedaroqlu IC, Beyazit Y (2010) Pathobiological aspects of the local bone marrow renin-angiotensin system: a review. J Renin Angiotensin Aldosterone Syst 11(4):205–213

    Article  Google Scholar 

  • Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D 3rd, Li X, Guthikonda M, Rossi NF, Ding Y (2011) The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood–brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114(1):92–101

    Article  PubMed  CAS  Google Scholar 

  • Hovda DA, Yoshino A, Kawamata T, Katayama Y, Becker DP (1991) Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res 567:1–10

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Savary K, Gasc JM, Corvol P (2003) The hematopoietic system; a niche for the renin-angiotensin system. Int J Biochem Cell Biol 35:867–880

    Article  Google Scholar 

  • Inoue Y, Shiozaki T, Tasaki O, Hayakata T, Ikegawa H, Yoshiya K, Fujinaka T, Tanaka H, Shimazu T, Sugimoto H (2005) Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma 22:1411–1418

    Article  PubMed  Google Scholar 

  • Islam MS, Matsumoto M, Hidaka R, Miyoshi N, Yasuda N (2012) Expression of NOS and VEGF in feline mammary tumours and their correlation with angiogenesis. Vet J (2011 Dec 9, Epub ahead of print)

    Google Scholar 

  • Jeter C, Hergenroeder G, Ward N, Moore A, Dash P (2012) Human traumatic brain injury alters circulating L-arginine and its metabolite levels: possible link to cerebral blood flow, extracellular matrix remodeling and energy status. J Neurotrauma 29(1):119–127

    Article  PubMed  Google Scholar 

  • Jo SM, Ryu HJ, Kim JE, Yeo SI, Kim MJ, Choi HC, Song HK, Kang TC (2011) Up-regulation of endothelial endothelin-1 expression prior to vasogenic edema formation in the rat piriform cortex following status epilepticus. Neurosci Lett 501(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Kallakuri S, Kreipke CW, Schafer PC, Schafer SM, Rafols JA (2010) Brain cellular localization of endothelin receptors A and B in a rodent model of diffuse traumatic brain injury. Neuroscience 168(3):820–830

    Article  PubMed  CAS  Google Scholar 

  • Kasemsri T, Armstead WM (1997) Endothelin impairs ATP-sensitive K channel function after brain injury. Am J Physiol Heart Circ Physiol 273:H2639–H2647

    CAS  Google Scholar 

  • Katada R, Nishitani Y, Honmou O, Mizuo K, Okazaki S, Tateda K, Watanabe S, Matsumoto H (2012) Expression of aquaporin-4 augments cytotoxic brain edema after traumatic brain injury during acute ethanol exposure. Am J Pathol 180(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Kawai N, Kawanishi M, Okada M, Matsumoto Y, Nagao S (2003) Treatment of cold injury-induced brain edema with onspecific matrix metalloproteinase inhibitor MMI270 in rats. J Neurotrauma 7:649–657

    Article  Google Scholar 

  • Kenny D, Polson JW, Martin RP, Caputo M, Wilson DG, Cockcroft JR, Paton JF, Wolf AR (2011) Relationship of aortic pulse wave velocity and baroreceptor reflex sensitivity to blood pressure control in patients with repaired coarctation of the aorta. Am Heart J 162(2):398–404

    Article  PubMed  Google Scholar 

  • Kleeberg J, Petzold G, Major S, Dirnagl U, Dreier J (2004) ET-1 induces cortical spreading depression via activation of the ETA receptor/phospholipase C pathway in vivo. Am J Physiol Heart Circ Physiol 286:H1339–H1346

    Article  PubMed  CAS  Google Scholar 

  • Kreipke CW, Morgan R, Roberts G, Bagchi M, Rafols JA (2007) Calponin phosphorylation in cerebral cortex microvessel mediates sustained vasoconstriction after brain trauma. Neurol Res 29:369–374

    Article  PubMed  CAS  Google Scholar 

  • Kreipke C, Schafer P, Rossi N, Rafols J (2010) Differential effects of endothelin receptor A and B antagonism on cerebral hypoperfusion following traumatic brain injury. Neurol Res 32:209–214

    Article  PubMed  CAS  Google Scholar 

  • Kreipke C, Rafols J, Reynolds C, Schafer S, Marinica A, Bedford C, Fronczak M, Kuhn D, Armstead W (2011) Clazosentan a novel endothelin A antagonist improves cerebral blood flow and behavior after traumatic brain injury. Neurol Res 33:208–213

    Article  PubMed  CAS  Google Scholar 

  • Lapointe TK, Buret AG (2012) Interleukin-18 facilitates neutrophil transmigration via myosin light chain kinase-dependent disruption of occluding, without altering epithelial permeability. Am J Physiol Gastrointest Liver Physiol 302(3):G343–G351

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Martin NA, Alsina G, McArthur DL, Zaucha K, Hovda DA, Becker DP (1997) Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg 87:221–233

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Kim J, Williams R, Sandhir R, Gregory E, Brooks WM, Berman NE (2012) Effects of aging on blood brain barrier and matrix metalloproteases following controlled cortical impact in mice. Exp Neurol 234(1):50–61

    Article  PubMed  CAS  Google Scholar 

  • Liantonio A, Ramegna G, Camerino GM, Dinardo MM, Scaramuzzi A, Potenza MA, Montagnani M, Procino G, Lasorsa DR, Mastrofrancesco L, Laghezza A, Fracchiolla G, Loiodoce F, Perrone MG, Lopedota A, Conte S, Penza R, Valenti G, Svelto M, Camerino DC (2012) In-vivo administration of CLC-K kidney chloride channels inhibitors increase water diuresis in rats: a new drug target for hypertension? J Hypertens 30(1):153–167

    Article  PubMed  CAS  Google Scholar 

  • Lim M, Young L (2004) Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 125:35–45

    Article  PubMed  CAS  Google Scholar 

  • Liu TT, Brown GG (2007) Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods. J Int Neuropsychol Soc 13:517–525

    Article  PubMed  Google Scholar 

  • Luh C, Kuhlmann C, Ackermann B, Timaru-Kast R, Luhmann H, Behl C, Werner C, Engelhard K, Thal S (2010) Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J Neurochem 112:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Mandell DM, Matouk CC, Farb RI, Krings T, Agid R, Terbrugge K, Willinsky RA, Swartz RH, Silver FL, Mikulis DJ (2012) Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke 43(3):860–862

    Article  PubMed  Google Scholar 

  • Marshall LF (2000) Head injury: recent past, present, and future. Neurosurgery 47(3):546–561

    PubMed  CAS  Google Scholar 

  • Martinez-Lemus LA, Galinanes EL (2011) Matrix metalloproteinases and small artery remodeling. Drug Discov Today Dis Models 8(1):21–28

    Article  PubMed  CAS  Google Scholar 

  • Matavel A, Lopes CM (2009) PKC activation and PIP(2) depletion underlie biphasic regulation of IKs by Gq-coupled receptors. J Mol Cell Cardiol 46(5):704–712

    Article  PubMed  CAS  Google Scholar 

  • Mayo JN, Beard RS Jr, Price TO, Chen CH, Erickson MA, Ercal N, Banks WA, Bearden SE (2012) Nitrative stress in cerebral endothelium is mediated by mGluR5 in hyperhomocysteinemia. J Cereb Blood Flow Metab 32(5):825–834

    Google Scholar 

  • Moldes O, Sobrino T, Millan M (2008) High serum levels of endothelin-1 predict severe cerebral edema in patients with acute ischemic stroke treated with t-PA. Stroke 39:2006–2010

    Article  PubMed  CAS  Google Scholar 

  • Morgado M, Cairrão E, Santos-Silva AJ, Verde I (2012) Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 69(2):247–266

    Article  PubMed  CAS  Google Scholar 

  • Mostarda C, Moraes-Silva IC, Moreira ED, Medeiros A, Piratello AC, Consolim-Colombo FM, Caldini EG, Brum PC, Krieger EM, Irigoyen MC (2011) Baroreflex sensitivity impairment is associated with cardiac diastolic dysfunction in rats. J Card Fail 17(6):519–525

    Article  PubMed  Google Scholar 

  • Odland RM, Venuqopal S, Borgos J, Coppes V, McKinney AM, Rockwold G, Shi J, Panter S (2012) Efficacy of reductive ventricular osmotherapy in swine model of traumatic brain injury. Neurosurgery 70(2):445–455

    Article  PubMed  Google Scholar 

  • Oertel M, Boscardin WJ, Obrist WD, Glen TC, McArthur DL, Gravori T, Lee JH, Martin NA (2005) Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 229 patients. J Neurosurg 103:812–824

    Article  PubMed  Google Scholar 

  • Overgaard J, Tweed WA (1974) Cerebral circulation after head injury. 1. Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 41:531–541

    Article  PubMed  CAS  Google Scholar 

  • Peppiat CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  Google Scholar 

  • Pereira HJ, Souza LL, Costa-neto CM, Salgado MC, Oliveira EB (2012) Carboxypeptidases A1 and A2 from the perfusate of rat mesenteric arterial bed differentially process angiotensin peptides. Peptides 33(1):67–76

    Article  PubMed  CAS  Google Scholar 

  • Petrov T, Page A, Owen C, Rafols J (2000) Expression of the inducible nitric oxide synthase in distinct cellular types after traumatic brain injury: an in situ hybridization and immunocytochemical study. Acta Neuropathol 100:196–204

    Article  PubMed  CAS  Google Scholar 

  • Petrov T, Kreipke C, Alilain W, Nantwi K (2007) Differential expression of adenosine A1 and A2A receptors after cervical (C2) spinal cord hemisection in adult rats. J Spinal Cord Med 30:331–337

    PubMed  Google Scholar 

  • Rafols J, Morgan R, Kallakuri S, Kreipke C (2007) Extent of nerve cell injury in Marmarou’s model compared to other brain trauma models. Neurol Res 29:348–355

    Article  PubMed  Google Scholar 

  • Reynolds C, Schafer S, Pirooz R, Marinica A, Chbib A, Bedford C, Fronczak M, Rafols J, Kuhn D, Kreipke C (2011) Differential effects of endothelin receptor A and B antagonism on behavioral outcome following traumatic brain injury. Neurol Res 33:197–200

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues R, Alfaro T, Rebola N, Oliveria C, Cunha R (2005) Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92:433–441

    Article  PubMed  Google Scholar 

  • Rodriguez-Baeza A, Reina-De La Torre F, Poca A, Marti M, Garnacho A (2003) Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat Rec A Discov Mol Cell Evol Biol 273(1):583–593

    Article  PubMed  Google Scholar 

  • Rossi N, Zhang F, Chen H (2011) Effect of chronic central endothelin-1 on hemodynamics and plasma vasopressin in conscious rats. Neurol Res 33(2):169–175

    Article  PubMed  CAS  Google Scholar 

  • Salehpoor F, Bazzazi A, Estakhri R, Zaheri M, Asghari B (2010) Correlation between catecholamine levels and outcome in patients with severe head trauma. Pak J Biol Sci 13:738–742

    Article  PubMed  CAS  Google Scholar 

  • Shahid IZ, Rahman AA, Pilowsky PM (2012) Orexin a in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. Br J Pharmacol 165(7):2292–2303

    Article  PubMed  CAS  Google Scholar 

  • Stevenson EL, Caldwell HK (2012) The vasopressin 1b receptor and the neural regulation of social behavior. Horm Behav 61(3):277–282

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Park HK, Melger MA, Alcocer L, Pinto J, Lenzi T, Diaz FG, Raofls JA (1997) Cerebral cortex blood flow and vascular smooth muscle contractility in rat model of ischemia: a correlative laser Doppler flowmetric and scanning electron microscopy study. Acta Neuropathol 93:354–368

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Makita N, Manaka K, Hisano M, Akioka Y, Miura K, Takubo N, Iida A, Ueda N, Hashimoto M, Fujita T, Igarashi T, Sekine T, Iiri T (2012) V2 Vasopressin receptor (V2R) mutations in partial nephrogenic diabetes insipidus highlights protean agonism of V2R antagonists. J Biol Chem 287(3):2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Tebano M, Martire A, Rebola N, Pepponi R, Domenici M, Gro M, Schwarzchild M, Chen J, Cunha R, Popoli P (2005) Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-d-aspartate effects. J Neurochem 95:1188–1200

    Article  PubMed  CAS  Google Scholar 

  • Timaru-Kast R, Wyschkon S, Luh C, Schaible E, Lehmann F, Merk P, Werner C, Engelhard K, Thal S (2012) Delayed inhibition of angiotensin II receptor subtype 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma. Crit Care Med 40(3):935–944

    Article  PubMed  CAS  Google Scholar 

  • Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Ushiwata I, Ushiki T (1990) Cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels. A scanning electron microscopic study. J Neurosurg 73:82–90

    Article  PubMed  CAS  Google Scholar 

  • Van Putten HP, Bouwhuis MG, Muizelaar JP, Lyeth BG, Berman RF (2005) Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia. J Neurotrauma 22(8):857–872

    Article  PubMed  Google Scholar 

  • Velero MS, Pereboom D, Barcelo-Batllory S, Brines S, Garay RP, Alda JO (2011) Protein kinase a signaling is involved in the relaxant responses to the selective β-oestrogen receptor agonist diarylpropionitrile in rate aortic smooth muscle in vitro. J Pharm Pharmacol 63(2):222–229

    Article  Google Scholar 

  • Von Websky K, Heiden S, Pfab T, Hocher B (2009) Pathophysiology of the endothelin system- lessons from genetically manipulated animal models. Eur J Med Res 14(1):1–6

    Google Scholar 

  • Walcott BP, Kahle KT, Simard JM (2012) Novel treatment targets for cerebral edema. Neurotherapeutics 9(1):65–72

    Article  PubMed  Google Scholar 

  • Wei CJ, Li W, Chen JF (2011) Normal and abnormal functions of adenosine receptors in the ­central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 1808(5): 1358–1379

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Rosenberg GA (2011) MMP-mediated disruption of claudin-5 in the blood–brain barrier of rat brain after ischemia. Methods Mol Biol 762:333–345

    Article  PubMed  CAS  Google Scholar 

  • Yang GY, Gong C, Qin Z, Liu XH, Lorris-Betz A (1999) Tumor necrosis factor alpha expression produces increased blood–brain barrier permeability following temporary focal cerebral ischemia in mice. Brain Res Mol Brain Res 69:135–143

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Wang H, Dawson T, Dawson V (2003) Poly(ADP-ribose) polymerase-1 and apoptosis including factor in neurotoxicity. Neurobiol Dis 3:303–317

    Article  Google Scholar 

  • Zambidis ET, Soon Park T, Yu W et al (2008) Expression of angiotensins-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112:3601–3614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Rafols PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Graves, J., Betrus, C., Rafols, J.A. (2013). Situating Cerebral Blood Flow in the Pathotrajectory of Head Trauma. In: Kreipke, C., Rafols, J. (eds) Cerebral Blood Flow, Metabolism, and Head Trauma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4148-9_2

Download citation

Publish with us

Policies and ethics