Generalized Sampling in \({L}^{2}({\mathbb{R}}^{d})\)Shift-Invariant Subspaces with Multiple Stable Generators

  • H. R. Fernández-Morales
  • A. G. García
  • G. Pérez-Villalón


In order to avoid most of the problems associated with classical Shannon’s sampling theory, nowadays, signals are assumed to belong to some shift-invariant subspace. In this work we consider a general shift-invariant space V Φ 2 of L 2(ℝ d ) with a set Φ of r stable generators. Besides, in many common situations, the available data of a signal are samples of some filtered versions of the signal itself taken at a sub-lattice of ℤ d . This leads to the problem of generalized sampling in shift-invariant spaces. Assuming that the 2-norm of the generalized samples of any fV Φ 2 is stable with respect to the L 2(ℝ d )-norm of the signal f, we derive frame expansions in the shift-invariant subspace allowing the recovery of the signals in V Φ 2 from the available data. The mathematical technique used here mimics the Fourier duality technique which works for classical Paley–Wiener spaces.


Filter Bank Separable Hilbert Space Riesz Basis Wiener Space Reconstruction Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very pleased to dedicate this work to Professor Gilbert. G.Walter on the occasion of his 80th birthday. Professor Walter’s research andmentorship have, over the years, inspired and influenced many mathematiciansthroughout the world; we are fortunate to be three of these mathematicians.

This work has been supported by the grant MTM2009–08345 from the Spanish Ministerio de Ciencia e Innovación (MICINN).


  1. 1.
    Acosta-Reyes E, Aldroubi A, Krishtal I (2009) On stability of sampling-reconstruction models. Adv Comput Math 31:5–34MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Adams RA, Fournier JJF (2003) Sobolev spaces. Academic Press, AmsterdamMATHGoogle Scholar
  3. 3.
    Aldroubi A (2002) Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelets spaces. Appl Comput Harmon Anal 13:151–161MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Aldroubi A, Gröchenig K (2001) Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Rev 43:585–620MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aldroubi A, Sun Q, Tang W-S (2005) Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J Fourier Anal Appl 11:215–244MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Aldroubi A, Unser M (1994) Sampling procedure in function spaces and asymptotic equivalence with Shannon’s sampling theorem. Numer Funct Anal Optim 15:1–21MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Aldroubi A, Unser M, Eden M (1992) Cardinal spline filters: stability and convergence to the ideal sinc interpolator. Signal Process 28:127–138MATHCrossRefGoogle Scholar
  8. 8.
    Boor C, DeVore R, Ron A (1994) Approximation from shift-invariant subspaces in L 2(ℝ d). Trans Am Math Soc 341:787–806MATHGoogle Scholar
  9. 9.
    Boor C, DeVore R, Ron A (1994) The structure of finitely generated shift-invariant spaces in L 2(ℝ d). J Funct Anal 119:37–78MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chen W, Itoh S, Shiki J (2002) On sampling in shift invariant spaces. IEEE Trans Signal Process 48:2802–2810MathSciNetMATHGoogle Scholar
  11. 11.
    Christensen O (2003) An introduction to frames and Riesz bases. Birkhäuser, BostonMATHGoogle Scholar
  12. 12.
    Dahmen W, Han B, Jia RQ, Kunoth A (2000) Biorthogonal multiwavelets on the interval: cubic Hermite spline. Constr Approx 16:221–259MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    DeVore R, Lorentz G (1993) Constructive approximation. Springer, BerlinMATHCrossRefGoogle Scholar
  14. 14.
    García AG, Pérez-Villalón G (2006) Dual frames in L 2(0, 1) connected with generalized sampling in shift-invariant spaces. Appl Comput Harmon Anal 20:422–433MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    García AG, Pérez-Villalón G (2008) Approximation from shift-invariant spaces by generalized sampling formulas. Appl Comput Harmon Anal 24:58–69MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    García AG, Pérez-Villalón G (2009) Multivariate generalized sampling in shift-invariant spaces and its approximation properties. J Math Anal Appl 355:397–413MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    García AG, Hernández-Medina MA, Pérez-Villalón G (2008) Generalized sampling in shift-invariant spaces with multiple stable generators. J Math Anal Appl 337:69–84MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    García AG, Muñoz-Bouzo MJ, Pérez-Villalón G (2011) Regular multivariate sampling and approximation in L p shift-invariant spaces. J Math Anal Appl 380:607–627MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    García AG, Pérez-Villalón G, Portal A (2005) Riesz bases in L 2(0, 1) related to sampling in shift invariant spaces. J Math Anal Appl 308:703–713MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    García AG, Kim JM, Kwon KH, Pérez-Villalón G (2008) Aliasing error of sampling series in wavelets subspaces. Numer Funct Anal Optim 29:126–144MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    García AG, Kim JM, Kwon KH, Yoon GJ (2012) Multi-channel sampling on shift-invariant spaces with frame generators. Int J Wavelets Multiresolut Inform Process 10(1):41–60Google Scholar
  22. 22.
    Gröchenig K (2001) Foundations of time-frequency analysis. Birkhäuser, BostonMATHGoogle Scholar
  23. 23.
    Higgins JR (1996) Sampling theory in fourier and signal analysis: foundations. Oxford University Press, OxfordMATHGoogle Scholar
  24. 24.
    Hogan JA, Lakey JD (2005) Sampling in principal shif-invariant spaces. In: Time-frequency and time-scale methods. Birkhäuser, BostonGoogle Scholar
  25. 25.
    Hong YM, Kim JM, Kwon KH, Lee EM (2007) Channeled sampling in shift-invariant spaces. Int J Wavelets Multiresolut Inform Process 5:753–767MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Horn RA, Johnson CR (1999) Matrix analysis. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Jia RQ, Micchelli CA (1991) Using the refinement equations for the construction of pre-wavelets II: Powers of two. In: Laurent PJ, Le Méhauté A, Schumaker LL (eds) Curves and surfaces. Academic Press, New York, pp 209–246Google Scholar
  28. 28.
    Jia RQ, Shen Z (1994) Multiresolution and wavelets. Proc Edinbur Math Soc 37:271–300MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Keinert F (2004) Wavelets and multiwavelets. Chapman & Hall/CRC, Boca Raton FLMATHGoogle Scholar
  30. 30.
    Kang S, Kwon KH (2011) Generalized average sampling in shift-invariant spaces. J Math Anal Appl 377:70–78MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Kang S, Kim JM, Kwon KH (2010) Asymmetric multi-channel sampling in shift-invariant spaces. J Math Anal Appl 367:20–28MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Kim KH, Kwon KH (2008) Sampling expansions in shift-invariant spaces. Int J Wavelets Multiresolut Inform Process 6:223–248MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Lei JJ, Jia RQ, Cheney EW (1997) Approximation from shift-invariant spaces by integral operators. SIAM J Math Anal 28:481–498MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Nashed MZ, Sun Q, Tang W-S (2009) Average sampling in L 2. Compt Rend Acad Sci Paris, Ser I 347:1007–1010MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Papoulis A (1977) Generalized sampling expansion. IEEE Trans Circuits Syst 24:652–654MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Ron A, Shen Z (1995) Frames and stable bases for shift-invariant subspaces of L 2(ℝ d). Can J Math 47:1051–1094MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Saitoh S (1997) Integral transforms, reproducing kernels and their applications. Longman, EssexMATHGoogle Scholar
  38. 38.
    Selesnick IW (1999) Interpolating multiwavelet bases and the sampling theorem. IEEE Trans Signal Process 47:1615–1620MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    {S}ikić H, Wilson EN (2011) Lattice invariant subspaces and sampling. Appl Comput Harmon Anal 31:26–43Google Scholar
  40. 40.
    Sun Q (2006) Nonuniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J Math Anal 38:1389–1422MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Sun Q (2010) Local reconstruction for sampling in shift-invariant spaces. Adv Comput Math 32:335–352MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Sun W (1999) On the stability of multivariate trigonometric systems. J Math Anal Appl 235:159–167MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Sun W, Zhou X (1999) Sampling theorem for multiwavelet subspaces Chin Sci Bull 44:1283–1285MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Signal Process Mag 16:22–38CrossRefGoogle Scholar
  45. 45.
    Unser M (2000) Sampling 50 years after Shannon. Proc IEEE 88:569–587CrossRefGoogle Scholar
  46. 46.
    Vaidyanathan PP (1993) Multirate systems and filter banks. Prentice-Hall, Englewood HillsMATHGoogle Scholar
  47. 47.
    Walter GG (1992) A sampling theorem for wavelet subspaces. IEEE Trans Inform Theor 38:881–884MATHCrossRefGoogle Scholar
  48. 48.
    Wojtaszczyk P (1997) A mathematical introduction to wavelets. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  49. 49.
    Xian J, Li S (2007) Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications. Appl Comput Harmon Anal 23:171–180MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Xian J, Sun W (2010) Local sampling and reconstruction in shift-invariant spaces and their applications in spline subspaces. Numer Funct Anal Optim 31:366–386MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Xian J, Luo SP, Lin W (2006) Weighted sampling and signal reconstruction in spline subspace. Signal Process 86:331–340MATHCrossRefGoogle Scholar
  52. 52.
    Zayed AI (1993) Advances in Shannon’s sampling theory. CRC Press, Boca RatonMATHGoogle Scholar
  53. 53.
    Zhou X, Sun W (1999) On the sampling theorem for wavelet subspaces. J Fourier Anal Appl 5:347–354MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  • H. R. Fernández-Morales
    • 1
  • A. G. García
    • 1
  • G. Pérez-Villalón
    • 2
  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridLeganés (Madrid)Spain
  2. 2.Departamento de Matemática AplicadaE.U.I.T.T., U.P.M.MadridSpain

Personalised recommendations