Skip to main content

EEG Based Biomarker Identification Using Graph-Theoretic Concepts: Case Study in Alcoholism

  • Chapter
  • First Online:
  • 1159 Accesses

Part of the book series: Fields Institute Communications ((FIC,volume 63))

Abstract

Over the past few years there has been an increased interest in studying the under-lying neural mechanism of cognitive brain activity in order to identify features capable of discriminating brain engagement tasks in terms of cognitive load. Rather recently there is a growing suspicion that the noninvasive technique of high-resolution quantitative electroencephalography may provide features able to identify and quantify functional interdependencies among synchronized brain lobes based on graph-theoretic algorithms. In the emerging view of translational medicine, graph-theoretic measures and tools, currently used to describe large scale networks, can be potential candidates for future inclusion in a clinical trial setting. This paper discusses different families of graph theoretical measures able to capture the topology of brain networks as potential EEG-based biomarkers. As a case study, statistically significant graph-theoretic indices, capable of capturing and quantifying collective motifs in an alcoholism paradigm are identified and presented.

Mathematics Subject Classification (2010): Primary 54C40, 14E20; Secondary 46E25, 20C20

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger, A robust method for detecting interdependences: application to intracranially recorded EEG. Phys. D: Nonlinear Phenom. 134(4), 419–430 (1999)

    Article  MATH  Google Scholar 

  2. D.S. Bassett, E. Bullmore, B.A. Verchinski, V.S. Mattay, D.R. Weinberger, A. Meyer-Lindenberg, Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28(37), 9239 (2008)

    Google Scholar 

  3. I. Bosma, J.C. Reijneveld, M. Klein, L. Douw, B.W. Van Dijk, J.J. Heimans, C.J. Stam, Disturbed functional brain networks and neurocognitive function in low-grade glioma patients: A graph theoretical analysis of resting-state MEG. Nonlinear Biomed. Phys. 3(9) (2009)

    Google Scholar 

  4. M.A.B. Brazier, J.U. Casby, Crosscorrelation and autocorrelation studies of electroencephalographic potentials. Electroencephalogr. Clin. Neurophysiol. 4(2), 201–211 (1952)

    Article  Google Scholar 

  5. R.L. Buckner, J. Sepulcre, T. Talukdar, F.M. Krienen, H. Liu, T. Hedden, J.R. Andrews-Hanna, R.A. Sperling, K.A. Johnson, Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29(6), 1860 (2009)

    Google Scholar 

  6. E. Bullmore, O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  7. E.A. de Bruin, C.J. Stam, S. Bijl, M.N. Verbaten, J.L. Kenemans, Moderate-to-heavy alcohol intake is associated with differences in synchronization of brain activity during rest and mental rehearsal. Int. J. Psychophysiol. 60(3), 304–314 (2006)

    Article  Google Scholar 

  8. A.A. Fingelkurts, A.A. Fingelkurts, S. Kahkonen, New perspectives in pharmaco-electroencephalography. Progr. Neuro Psychopharmacol. Biol. Psychiatr. 29(2), 193–199 (2005)

    Article  Google Scholar 

  9. L.C. Freeman, Centrality in social networks conceptual clarification. Soc. Network. 1(3), 215–239 (1979)

    Article  Google Scholar 

  10. K.J. Friston, Modalities, modes, and models in functional neuroimaging. Science 326(5951), 399 (2009)

    Google Scholar 

  11. G. Gong, Y. He, L. Concha, C. Lebel, D.W. Gross, A.C. Evans, C. Beaulieu, Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebr. Cortex 19(3), 524 (2009)

    Google Scholar 

  12. R. Grech, T. Cassar, J. Muscat, K.P. Camilleri, S.G. Fabri, M. Zervakis, P. Xanthopoulos, V. Sakkalis, B. Vanrumste, Review on solving the inverse problem in EEG source analysis. J. NeuroEng. Rehabilitation 5(1), 25 (2008)

    Google Scholar 

  13. R. Guimera, L.A.N. Amaral, Cartography of complex networks: Modules and universal roles. J. Stat. Mech. Theor. Exp. 2005, P02001 (2005)

    Article  Google Scholar 

  14. C. Hammond, H. Bergman, P. Brown, Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends Neurosci. 30(7), 357–364 (2007)

    Article  Google Scholar 

  15. Y. He, Z. Chen, A. Evans, Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28(18), 4756 (2008)

    Google Scholar 

  16. B. Horwitz, The elusive concept of brain connectivity. Neuroimage 19(2), 466–470 (2003)

    Article  Google Scholar 

  17. Y. Iturria-Medina, EJ Canales-Rodriguez, L. Melie-Garcia, PA Valdes-Hernandez, E. Martinez-Montes, Y. Aleman-Gomez, JM Sanchez-Bornot, Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36(3), 645–660 (2007)

    Google Scholar 

  18. J. Jeong, EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115(7), 1490–1505 (2004)

    Article  Google Scholar 

  19. J. Jeong, J.C. Gore, B.S. Peterson, Mutual information analysis of the EEG in patients with Alzheimer’s disease. Clin. Neurophysiol. 112(5), 827–835 (2001)

    Article  Google Scholar 

  20. M.A. Koch, D.G. Norris, M. Hund-Georgiadis, An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16(1), 241–250 (2002)

    Article  Google Scholar 

  21. M.A. Kramer, E.D. Kolaczyk, H.E. Kirsch, Emergent network topology at seizure onset in humans. Epilepsy Res. 79(2–3), 173–186 (2008)

    Article  Google Scholar 

  22. J.P. Lachaux, E. Rodriguez, J. Martinerie, F.J. Varela, Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999)

    Article  Google Scholar 

  23. V. Latora, M. Marchiori, Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Google Scholar 

  24. Y. Li, Y. Liu, J. Li, W. Qin, K. Li, C. Yu, T. Jiang, Brain anatomical network and intelligence. PLoS Comput. Biol. 5(5), e1000395 (2009)

    Google Scholar 

  25. Y. Liu, M. Liang, Y. Zhou, Y. He, Y. Hao, M. Song, C. Yu, H. Liu, Z. Liu, T. Jiang, Disrupted small-world networks in schizophrenia. Brain 131(4), 945 (2008)

    Google Scholar 

  26. E.N. Lorenz, Deterministic nonperiodic flow. Atmos. Sci (1963)

    Google Scholar 

  27. S. Milgram, The small world problem. Psychol. Today 2(1), 60–67 (1967)

    MathSciNet  Google Scholar 

  28. F. Mormann, K. Lehnertz, P. David, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D: Nonlinear Phenom. 144(3–4), 358–369 (2000)

    Article  MATH  Google Scholar 

  29. M. Murias, S.J. Webb, J. Greenson, G. Dawson, Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatr. 62(3), 270–273 (2007)

    Article  Google Scholar 

  30. S.H. Na, S.H. Jin, S.Y. Kim, B.J. Ham, EEG in schizophrenic patients: mutual information analysis. Clin. Neurophysiol. 113(12), 1954–1960 (2002)

    Article  Google Scholar 

  31. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577 (2006)

    Article  Google Scholar 

  32. E. Niedermeyer, F.H.L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, PA, 2005)

    Google Scholar 

  33. J.P. Onnela, J. Saramäki, J. Kertész, K. Kaski, Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71(6), 065103 (2005)

    Google Scholar 

  34. A. Ooyen, Competition in the development of nerve connections: A review of models. Netw. Comput. Neural Syst. 12(1), 1–47 (2001)

    Google Scholar 

  35. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  36. G. Pfurtscheller, C. Andrew, Event-related changes of band power and coherence: methodology and interpretation. J. Clin. Neurophysiol. 16(6), 512 (1999)

    Google Scholar 

  37. A.S. Pikovsky, On the interaction of strange attractors. Zeitschrift für Phys. B Condens. Matter 55(2), 149–154 (1984)

    Article  MathSciNet  Google Scholar 

  38. R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E 65(4), 041903 (2002)

    Google Scholar 

  39. G. Rippon, J. Brock, C. Brown, J. Boucher, Disordered connectivity in the autistic brain: Challenges for the new psychophysiology. Int. J. Psychophysiol. 63(2), 164–172 (2007)

    Article  Google Scholar 

  40. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  41. V. Sakkalis, Applied strategies towards EEG/MEG biomarker identification in clinical and cognitive research. Biomarkers Med., Future Med. 5(1), 93–105 (2011)

    Google Scholar 

  42. V. Sakkalis, Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comp. Biol. Med. (2011). doi:10.1016/j.compbiomed.2011.06.020

    Google Scholar 

  43. V. Sakkalis, M. Zervakis, S. Micheloyannis, Significant EEG features involved in mathematical reasoning: Evidence from wavelet analysis. Brain Topogr. 19(1), 53–60 (2006)

    Article  Google Scholar 

  44. V. Sakkalis, T. Oikonomou, E. Pachou, I. Tollis, S. Micheloyannis, M. Zervakis, in Time-Significant Wavelet Coherence for the Evaluation of Schizophrenic Brain Activity Using a Graph Theory Approach. Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE (IEEE, NY, 2006), pp. 4265–4268

    Google Scholar 

  45. V. Sakkalis, V. Tsiaras, M. Zervakis, I. Tollis, in Optimal Brain Network Synchrony Visualization: Application in an Alcoholism Paradigm. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (IEEE, NY, 2007), pp. 4285–4288

    Google Scholar 

  46. V. Sakkalis, C.D. Giurcaneanu, P. Xanthopoulos, M.E. Zervakis, V. Tsiaras, Y. Yang, E. Karakonstantaki, S. Micheloyannis, Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm. IEEE Trans. Inform. Tech. Biomed. 13(4), 433–441 (2009)

    Article  Google Scholar 

  47. V. Sakkalis, T. Cassar, M. Zervakis, C.D. Giurcaneanu, C. Bigan, S. Micheloyannis, K.P. Camilleri, S.G. Fabri, E. Karakonstantaki, K. Michalopoulos, A decision support framework for the discrimination of children with controlled epilepsy based on EEG analysis. J. NeuroEng. Rehabilitation 7, 24 (2010)

    Article  Google Scholar 

  48. V. Sakkalis, V. Tsiaras, I. Tollis, Graph analysis and visualization for brain function characterization using EEG data. J. Healthc. Eng. 1(3), 435-460 (2010)

    Article  Google Scholar 

  49. V. Sakkalis, M. Zervakis, in Methodological Framework for EEG Feature Selection Based on Spectral and Temporal Profiles, ed. by W. Chaovalitwongse, P.M. Pardalos, P. Xanthopoulos. Computational Neuroscience (Springer, New York, 2010), pp. 43–56

    Google Scholar 

  50. J. Saramäki, M. Kivelä, J.P. Onnela, K. Kaski, J. Kertész, Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    Google Scholar 

  51. K.A. Schindler, S. Bialonski, M.T. Horstmann, C.E. Elger, K. Lehnertz, Evolving functional network properties and synchronizability during human epileptic seizures. Chaos: An Interdiscipl. J. Nonlinear Sci. 18, 033119 (2008)

    Article  Google Scholar 

  52. W.W. Seeley, R.K. Crawford, J. Zhou, B.L. Miller, M.D. Greicius, Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1), 42–52 (2009)

    Article  Google Scholar 

  53. O. Sporns, J.D. Zwi, The small world of the cerebral cortex. Neuroinformatics 2(2), 145–162 (2004)

    Article  Google Scholar 

  54. O. Sporns, G. Tononi, G.M. Edelman, Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebr. Cortex 10(2), 127 (2000)

    Google Scholar 

  55. D. Stoffers, J.L.W. Bosboom, J.B. Deijen, E.C. Wolters, C.J. Stam, H.W. Berendse, Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: An MEG study. Neuroimage 41(2), 212–222 (2008)

    Article  Google Scholar 

  56. K. Supekar, V. Menon, D. Rubin, M. Musen, M.D. Greicius, Network analysis of intrinsic functional brain connectivity in Alzheimers disease. PLoS Comput. Biol. 4(6), e1000100 (2008)

    Google Scholar 

  57. F. Takens, Detecting strange attractors in turbulence. Dyn. Syst. Turbulence Warwick 1980, 366–381 (1981)

    Article  Google Scholar 

  58. L. Timmermann, E. Florin, C. Reck, Pathological cerebral oscillatory activity in parkinsons disease: A critical review on methods, data and hypotheses. Expert Rev. Med. Dev. 4(5), 651–661 (2007)

    Article  Google Scholar 

  59. P.J. Uhlhaas, C. Haenschel, D. Nikolić, W. Singer, The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. Bull. 34(5), 927 (2008)

    Google Scholar 

  60. D.J. Watts, S.H. Strogatz, Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)

    Google Scholar 

  61. G. Winterer, M.A. Enoch, KV White, M. Saylan, R. Coppola, D. Goldman, EEG phenotype in alcoholism: Increased coherence in the depressive subtype. Acta Psychiatr. Scand. 108(1), 51–60 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Henri Begleiter at the Neurodynamics Laboratory, State University of NY Health Center at Brooklyn for kindly providing the EEG dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vangelis Sakkalis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakkalis, V., Marias, K. (2013). EEG Based Biomarker Identification Using Graph-Theoretic Concepts: Case Study in Alcoholism. In: Pardalos, P., Coleman, T., Xanthopoulos, P. (eds) Optimization and Data Analysis in Biomedical Informatics. Fields Institute Communications, vol 63. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4133-5_9

Download citation

Publish with us

Policies and ethics