Cardiovascular Informatics: A Perspective on Promises and Challenges of IVUS Data Analysis

  • Ioannis A. Kakadiaris
  • E. Gerardo Mendizabal Ruiz
Chapter

Abstract

Intravascular ultrasound (IVUS) is a catheter-based medical imaging modality that is capable of providing cross-sectional images of the interior of blood vessels. A comprehensive analysis of the IVUS data allows collecting information about the morphology and structure of the vessel and the atherosclerotic plaque, if present. Atherosclerotic plaque formation is considered to be a part of an inflammatory process. Recent evidence has suggested that the presence and proliferation of vasa vasorum (VV) in the plaque is correlated with the increase of plaque inflammation and the processes which lead to its destabilization. Hence, the detection and measurement of VV in plaque has the potential to enable the development of an index of plaque vulnerability. In this paper, we review the research at the Computational Biomedicine Lab towards the development of a complete pipeline for the detection and quantification of extra-luminal blood detection from IVUS data which may be an indication of the existence of VV.

References

  1. 1.
    K.R. Balakrishnan, S. Kuruvilla, Role of inflammation in atherosclerosis: Immunohistochemical and electron microscopic images of a coronary endarterectomy specimen. Circulation 113, e41–e43 (2006)CrossRefGoogle Scholar
  2. 2.
    K. Caballero, J. Barajas, O. Pujol, J. Mauri, P. Radeva. in In-Vivo IVUS Tissue Classification a Comparison Between Normalized Image Reconstruction and RF Signals Analysis. Proceedings of 11th Iberoamerican Congress on Pattern Recognition, Cancun, Mexico, pp. 137–146 (2006)Google Scholar
  3. 3.
    S. Carlier, I. Kakadiaris, N. Dib, M. Vavuranakis, C. Stephanadis, S. O’Malley, C. Hartley, R. Metcalfe, R. Mehran, E. Falk, K. Gul, M. Naghavi, Vasa vasorum imaging: A new window to the clinical detection of vulnerable atherosclerotic plaques. Curr. Atherosclerosis Rep. 7(2), 164–169 (2005)CrossRefGoogle Scholar
  4. 4.
    F. Chen, P. Eriksson, T. Kimura, I. Herzfeld, G. Valen, Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque. Coron. Artery Dis. 16(3), 191–197 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Ciompi, O. Pujol, E. Fernandez-Nofrerias, J. Mauri, P. Radeva, in ECOC Random Fields for Lumen Segmentation in Radial Artery IVUS Sequences. Proceedings of 12th International Conference on Medical Image Computing and Computer Assisted Intervention, London, UK, pp. 869–876, 20–24 September 2009Google Scholar
  6. 6.
    R. Downe, A. Wahle, T. Kovarnik, H. Skalicka, J. Lopez, J. Horak, M. Sonka. in Segmentation of Intravascular Ultrasound Images Using Graph Search and a Novel Cost Function. Proceedings of 2nd MICCAI Workshop on Computer Vision for Intravascular and Intracardiac Imaging, New York, NY, pp. 71–79, 10 September 2008Google Scholar
  7. 7.
    M. Fleiner, M. Kummer, M. Mirlacher, G. Sauter, G. Cathomas, R. Krapf, B.C. Biedermann, Arterial neovascularization and inflammation in vulnerable patients. Circulation 110(18), 2843–2850 (2004)CrossRefGoogle Scholar
  8. 8.
    D.E. Goertz, M.E. Frijlink, N. de Jong, A.F. van der Steen, Nonlinear intravascular ultrasound contrast imaging. Ultrasound Med. Biol. 32(4), 491–502 (2006)CrossRefGoogle Scholar
  9. 9.
    D.E. Goertz, M.E. Frijlink, D. Tempel, V. Bhagwandas, A. Gisolf, R. Krams, N. de Jong, A.F.W. van der Steen, Subharmonic contrast intravascular ultrasound for vasa vasorum imaging. Ultrasound Med. Biol. 33(12), 1859–1872 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Gossl, N. Malyar, M. Rosol, P. Beighley, E. Ritman, Impact of coronary vasa vasorum functional structure on coronary vessel wall perfusion distribution. Am. J. Physiol. Heart Circ. Physiol. 285(5), H2019–H2026 (2003)Google Scholar
  11. 11.
    J. Granada, S. Feinstein, Imaging of the vasa vasorum. Nat. Rev. Cardiol. 5(2s), S18–S25 (2008)Google Scholar
  12. 12.
    M. Hayden, S. Tyagi, Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: A malignant transformation. Cardiovascular Diabetol. 3(1) (2004)Google Scholar
  13. 13.
    D.D. Heistad, M.L. Marcus, Role of vasa vasorum in nourishment of the aorta. Blood Ves. 16, 225–238 (1979)Google Scholar
  14. 14.
    I. Kakadiaris, S. O’Malley, M. Vavuranakis, S. Carlier, R. Metcalfe, C. Hartley, E. Falk, M. Naghavi, Signal processing approaches to risk assessment in coronary artery disease. IEEE Signal Process. Mag. 23(6), 59–62 (2006)CrossRefGoogle Scholar
  15. 15.
    I. Kakadiaris, U. Kurkure, E. Mendizabal-Ruiz, M. Naghavi, in Towards Cardiovascular Risk Stratification Using Imaging Data. Proceedings of 31st International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN,, pp. 1918–1921, 2–6 September 2009Google Scholar
  16. 16.
    A. Katouzian, B. Baseri, E.E. Konofagou, A.F. Laine, in An Alternative Approach to Spectrum-Based Atherosclerotic Plaque Characterization Techniques Using Intravascular Ultrasound (IVUS) Backscattered Signals. Proceedings of 2nd MICCAI Workshop on Computer Vision for Intravascular and Intracardiac Imaging, New York, NY, 2008Google Scholar
  17. 17.
    A. Katouzian, B. Baseri, E. Konofagou, A. Laine, in Automatic Detection of Blood Versus Non-Blood Regions on Intravascular Ultrasound (IVUS) Images Using Wavelet Packet Signatures. Proceedings of SPIE Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, San Diego, CA, 16–21 February 2008Google Scholar
  18. 18.
    M. Kawasaki, H. Takatsu, T. Noda, Y. Ito, A. Kunishima, M. Arai, K. Nishigaki, G. Takemura, N. Morita, S. Minatoguchi, H. Fujiwara, Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: Comparison between histology and integrated backscatter images. J. Am. Coll. Cardiol. 38(2), 486–492 (2001)CrossRefGoogle Scholar
  19. 19.
    M. Kawasaki, H. Takatsu, T. Noda, K. Sano, Y. Ito, K. Hayakawa, K. Tsuchiya, M. Arai, K. Nishigaki, G. Takemura, S. Minatoguchi, T. Fujiwara, H. Fujiwara, In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105, 2487–2492 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Kawasaki, B. Bouma, J. Bressner, S. Houser, S. Nadkarni, B. MacNeill, I. Jang, H. Fujiwara, G. Tearney, Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J. Am. Coll. Cardiol. 48(1), 81–88 (2006)CrossRefGoogle Scholar
  21. 21.
    F. Kolodgie, H. Gold, A. Burke, D. Fowler, H. Kruth, D. Weber, A. Farb, L. Guerrero, M. Hayase, R. Kutys, J. Narula, A. Finn, R. Virmani, Intraplaque hemorrhage and progression of coronary atheroma. New Engl. J. Med. 349(24), 2316–2325 (2003)CrossRefGoogle Scholar
  22. 22.
    A.C. Langheinrich, A. Michniewicz, D.G. Sedding, G. Walker, P.E. Beighley, W.S. Rau, R.M. Bohle, E.L. Ritman, Correlation of vasa vasorum neovascularization and plaque progression in aortas of apolipoprotein E(-/-)/low-density lipoprotein(-/-) double knockout mice. Arterioscler. Thromb. Vasc. Biol. 26(2), 347–352 (2006)CrossRefGoogle Scholar
  23. 23.
    E. Mendizabal-Ruiz, G. Biros, I.A. Kakadiaris, in An Inverse Scattering Algorithm for the Segmentation of the Luminal Border on Intravascular Ultrasound Data. Proceedings of 12th International Conference on Medical Image Computing and Computer Assisted Intervention, London, UK, pp. 885–892, 20–24 September 2009Google Scholar
  24. 24.
    E. Mendizabal-Ruiz, I. Kakadiaris, in One-Class Acoustic Characterization Applied to Contrast Agent Detection in IVUS. Proceedings of International Workshop on Computer Vision for Intravascular and Intracardiac Imaging, New York, NY, 10 September 2008Google Scholar
  25. 25.
    E. Mendizabal-Ruiz, M. Rivera, I. Kakadiaris, in A Probabilistic Segmentation Method for the Identification of Luminal Borders in Intravascular Ultrasound Images. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, AK, pp. 1–8, 24–26 June 2008Google Scholar
  26. 26.
    A.K. Mitra, A.S. Dhume, D.K. Agrawal, “Vulnerable plaques” – ticking of the time bomb. Can. J. Physiol. Pharmacol. 82(10), 860–871 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Naghavi, P. Libby, E. Falk, S. Casscells, S. Litovsky, J. Rumberger, J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. Fitzgerald, D. Siscovick, C. de Korte, M. Aikawa, K. Airaksinen, G. Assmann, C. Becker, J. Chesebro, A. Farb, Z. Galis, C. Jackson, I. Jang, W. Koenig, R. Lodder, K. March, J. Demirovic, M. Navab, S. Priori, M. Rekhter, R. Bahr, S. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, J. Insull, W., R. Schwartz, R. Vogel, P. Serruys, G. Hansson, D. Faxon, S. Kaul, H. Drexler, P. Greenland, J. Muller, R. Virmani, P. Ridker, D. Zipes, P. Shah, J. Willerson, From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 108(14), 1664–1672 (2003)Google Scholar
  28. 28.
    M. Naghavi, P. Libby, E. Falk, S. Casscells, S. Litovsky, J. Rumberger, J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. Fitzgerald, D. Siscovick, C. de Korte, M. Aikawa, K. Airaksinen, G. Assmann, C. Becker, J. Chesebro, A. Farb, Z. Galis, C. Jackson, I. Jang, W. Koenig, R. Lodder, K. March, J. Demirovic, M. Navab, S. Priori, M. Rekhter, R. Bahr, S. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, R. Schwartz, R. Vogel, P. Serruys, G. Hansson, D. Faxon, S. Kaul, H. Drexler, P. Greenland, J. Muller, R. Virmani, P. Ridker, D. Zipes, P. Shah, J. Willerson, From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part II. Circulation 108(15), 1772–1778 (2003)CrossRefGoogle Scholar
  29. 29.
    M. Naghavi, E. Falk, H. Hecht, M. Jamieson, S. Kaul, D. Berman, Z. Fayad, M. Budoff, J. Rumberger, T. Naqvi, L. Shaw, O. Faergeman, J. Cohn, R. Bahr, W. Koenig, J. Demirovic, D. Arking, V. Herrera, J. Badimon, J. Goldstein, Y. Rudy, J. Airaksinen, R. Schwartz, W. Riley, R. Mendes, P. Douglas, P. Shah, From vulnerable plaque to vulnerable patient-Part III: Executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am. J. Cardiol. 98(2A), 2H–15H (2006); SHAPE Task Force Consensus Development Conference Journal Article Review United StatesGoogle Scholar
  30. 30.
    A. Nair, B. Kuban, E. Tuzcu, P. Schoenhagen, S. Nissen, D. Vince, Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17), 2200–2206 (2002)CrossRefGoogle Scholar
  31. 31.
    A. Nair, M. Margolis, B. Kuban, D. Vince, Automated coronary plaque characterisation with intravascular ultrasound backscatter: Ex vivo validation. Eurointervention 3(1), 113–120 (2007)Google Scholar
  32. 32.
    K. Nasu, E. Tsuchikane, O. Katoh, D. G. Vince, R. Virmani, J. F. Surmely, A. Murata, Y. Takeda, T. Ito, M. Ehara, T. Matsubara, M. Terashima, T. Suzuki, Accuracy of in vivo coronary plaque morphology assessment: A validation study of in vivo virtual histology compared with in vitro histopathology. J. Am. Coll. Cardiol. 47(12), 2405–2412 (2006)CrossRefGoogle Scholar
  33. 33.
    S. O’Malley, M. Naghavi, I. Kakadiaris, in Image-Based Frame Gating for Stationary-Catheter IVUS Sequences. Proceedings of International Workshop on Computer Vision for Intravascular and Intracardiac Imaging, Copenhagen, Denmark, pp. 14–21, 1–6 October 2006Google Scholar
  34. 34.
    S. O’Malley, M. Vavuranakis, R. Metcalfe, C. Hartley, M. Naghavi, I. Kakadiaris, in Intravascular Ultrasound-Based Imaging Of Vasa Vasorum for the Detection of Vulnerable Atherosclerotic Plaque. Proceedings of Houston Society for Engineering in Medicine and Biology, Houston, TX, 2006Google Scholar
  35. 35.
    S. O’Malley, S. Carlier, M. Naghavi, I. Kakadiaris, in Image-Based Frame Gating of IVUS Pullbacks: A Surrogate for ECG. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Honolulu, HI, pp. 433–436, 15–20 April 2007Google Scholar
  36. 36.
    S.M. O’Malley, M. Naghavi, I.A. Kakadiaris, in One-Class Acoustic Characterization Applied to Blood Detection in IVUS. Proceedings of 10th International Conference on Medical Image Computing and Computer Assisted Intervention, Brisbane, Australia, pp. 202–209, 29 October–2 November 2007Google Scholar
  37. 37.
    S. O’Malley, J. Granada, S. Carlier, M. Naghavi, I. Kakadiaris, Image-based gating of intravascular ultrasound pullback sequences. IEEE Trans. Inform. Tech. Biomed. 12(3), 299–306 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Papadogiorgaki, V. Mezaris, Y. Chatzizisis, G. Giannoglou, I. Kompatsiaris, Image analysis techniques for automated IVUS contour detection. Ultrasound Med. Biol. 34(9), 1482–1498 (2008)CrossRefGoogle Scholar
  39. 39.
    J.R. Rice, J.S. White, Norms for smoothing and estimation. Soc. Ind. Appl. Math. Rev. 243–256 (1964)Google Scholar
  40. 40.
    G.A. Rodriguez-Granillo, E.P. McFadden, M. Valgimigli, C.A. van Mieghem, E. Regar, P.J. de Feyter, P.W. Serruys, Coronary plaque composition of nonculprit lesions, assessed by in vivo intracoronary ultrasound radio frequency data analysis, is related to clinical presentation. Am. Heart J. 151(5), 1020–1024 (2006)CrossRefGoogle Scholar
  41. 41.
    A. Roodaki, A. Taki, S.K. Setarehdan, N. Navab, Modified Wavelet Transform Features for Characterizing Different Plaque Types in IVUS Images; A Feasibility Study. Proceedings of 9th International Conference on Signal Processing, Beijing, China, pp. 789–792, 26–29 October 2008Google Scholar
  42. 42.
    E. Sanidas, M. Vavuranakis, T. Papaioannou, I. Kakadiaris, S. Carlier, G. Syros, G. Dangas, C. Stefanadis, Study of atheromatous plaque using intravascular ultrasound. Hellenic J. Cardiol. 49(6), 415–421 (2008)Google Scholar
  43. 43.
    K.K. Shung, M.B. Smith, B. Tsui, Principles of Medical Imaging. (Academic, NY, 1992)Google Scholar
  44. 44.
    A. Taki, Z. Najafi, A. Roodaki, S. Setarehdan, R. Zoroofi, A. Konig, N. Navab, Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int. J. Comp. Assist. Radiol. Surg. 3(3–4), 347–354 (2008)CrossRefGoogle Scholar
  45. 45.
    G. Unal, S. Bucher, S. Carlier, G. Slabaugh, T. Fang, K. Tanaka, Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Trans. Inform. Tech. Biomed. 12(3), 335–347 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Vavuranakis, I. Kakadiaris, S. O’Malley, T. Papaioannou, E. Sanidas, S. Carlier, M. Naghavi, C. Stefanadis, Contrast enhanced intravascular ultrasound for the detection of vulnerable plaques: A combined morphology and activity-based assessment of plaque vulnerability. Expert Rev. Cardiovasc. Ther. (2005)Google Scholar
  47. 47.
    M. Vavuranakis, I. Kakadiaris, S. O’Malley, C. Stefanadis, S. Vaina, M. Drakopoulou, I. Mitropoulos, S. Carlier, M. Naghavi, Detection of luminal-intima border and coronary wall enhancement in intravascular ultrasound imaging after injection of microbubbles and simultaneous sonication with transthoracic echocardiography. Circulation 112(1), E1–E2 (2005)CrossRefGoogle Scholar
  48. 48.
    M. Vavuranakis, T. Papaioannou, I. Kakadiaris, S. O’Malley, M. Naghavi, K. Filis, E. Sanidas, A. Papalois, I. Stamatopoulos, C. Stefanadis, Detection of perivascular blood flow in vivo by contrast-enhanced intracoronary ultrasonography and image analysis: An animal study. Clin. Exp. Pharmacol. Physiol. 34(12), 1319–1323 (2007)CrossRefGoogle Scholar
  49. 49.
    M. Vavuranakis, I. Kakadiaris, S. O’Malley, T. Papaioannou, E. Sanidas, M. Naghavi, S. Carlier, D. Tousoulis, C. Stefanadis, A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and automated differential image analysis. Int. J. Cardiol. 130(1), 23–29 (2008)CrossRefGoogle Scholar
  50. 50.
    D. Vince, K. Dixon, R. Cothren, J. Cornhill, Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Comp. Med. Imag. Graph. 24(4), 221–229 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ioannis A. Kakadiaris
    • 1
  • E. Gerardo Mendizabal Ruiz
    • 2
  1. 1.Computational Biomedicine Lab, Departments of Computer Science, Electrical and Computer Engineering, and Biomedical EngineeringUniversity of HoustonHoustonUSA
  2. 2.Computational Biomedicine Lab, Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations