Skip to main content

Enzymes Involved in Ascorbate Biosynthesis and Metabolism in Plants

  • Chapter
  • First Online:
Ascorbic Acid in Plants

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

Although several pathways for ascorbate biosynthesis have been successively proposed in plants, more evidence from biochemistry and genetics indicates that Smirnoff pathway is the major mechanism by which plants synthesize ascorbate. With the cloning of the gene encoding the last step enzyme in Smirnoff pathway in 2007, all the genes encoding for the key enzymes in Smirnoff pathway have been identified in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    CAS  Google Scholar 

  2. Briza J, Ruzickova N, Niedermeierova H, Dusbaskova J, Vlasak J (2010) Phosphomannose isomerase gene for selection in lettuce (Lactuca sativa L.) transformation. Acta Biochim Pol 57:63–68

    PubMed  CAS  Google Scholar 

  3. Wallbraun M, Sonntag K, Eisenhauer C, Krzcal G, Wang YP (2009) Phosphomannose isomerase (PMI) gene as a selectable marker for Agrobacterium-mediated transformation of rapeseed. Plant Cell Tiss Org Cult 99:345–351

    CAS  Google Scholar 

  4. He ZQ, Fu YP, Si HM, Hu GC, Zhang SH, Yu YH, Sun ZX (2004) Phosphomannose-isomerase (PMI) gene as a selectable marker for rice transformation via Agrobacterium. Plant Sci 166:17–22

    CAS  Google Scholar 

  5. Briza J, Pavingerova D, Prikrylova P, Gazdova J, Vlasak J, Niedermeierova H (2008) Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato. Biol Plant 52:453–461

    CAS  Google Scholar 

  6. Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, PMI, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43:31–37

    CAS  Google Scholar 

  7. Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156

    PubMed  CAS  Google Scholar 

  8. Min BW, Cho YN, Song MJ, Noh TK, Kim BK, Chae WK, Park YS, Choi YD, Harn CH (2007) Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep 26:337–344

    PubMed  CAS  Google Scholar 

  9. Lamblin F, Aime A, Hano C, Roussy I, Domon JM, Van Droogenbroeck B, Laine E (2007) The use of the phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum). Plant Cell Rep 26:765–772

    PubMed  CAS  Google Scholar 

  10. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    PubMed  CAS  Google Scholar 

  11. Oesterhelt C, Schnarrenberger C, Gross W (1996) Phosphomannomutase and phosphoglucomutase in the red alga Galdieria sulphuraria. Plant Sci 121:19–27

    CAS  Google Scholar 

  12. Popova TN, Matasova LV, Lapot’ko AA (1998) Purification, separation and characterization of phosphoglucomutase and phosphomannomutase from maize leaves. Biochem Mol Biol Int 46:461–470

    PubMed  CAS  Google Scholar 

  13. Oesterhelt C, Schnarrenberger C, Gross W (1997) The reaction mechanism of phosphomannomutase in plants. FEBS Lett 401:35–37

    PubMed  CAS  Google Scholar 

  14. Qian WQ, Yu CM, Qin HJ, Liu X, Zhang AM, Johansen IE, Wang DW (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    PubMed  CAS  Google Scholar 

  15. Badejo AA, Eltelib HA, Fukunaga K, Fujikawa Y, Esaka M (2009) Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra) phosphomannomutase gene. Plant Cell Physiol 50:423–428

    Google Scholar 

  16. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    PubMed  CAS  Google Scholar 

  17. Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Nat Acad Sci USA 96:4198–4203

    PubMed  CAS  Google Scholar 

  18. Keller R, Springer F, Renz A, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    PubMed  CAS  Google Scholar 

  19. Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    CAS  Google Scholar 

  20. Badejo AA, Jeong ST, Goto-Yamamoto N, Esaka M (2007) Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. Plant Physiol Biochem 45:665–672

    PubMed  CAS  Google Scholar 

  21. Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Nat Acad Sci USA 93:9970–9974

    PubMed  CAS  Google Scholar 

  22. Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49:126–132

    PubMed  CAS  Google Scholar 

  23. Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR (2001) Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Nat Acad Sci USA 98:2262–2267

    PubMed  CAS  Google Scholar 

  24. Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    PubMed  CAS  Google Scholar 

  25. Qin C, Qian WQ, Wang WF, Wu Y, Yu CM, Jiang XH, Wang DW, Wu P (2008) GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proc Nat Acad Sci USA 105:18308–18313

    PubMed  CAS  Google Scholar 

  26. Barth C, Gouzd ZA, Steele HP, Imperio RM (2010) A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis. J Exp Bot 61:379–394

    PubMed  CAS  Google Scholar 

  27. Li Q, Li BH, Kronzucker HJ, Shi WM (2010) Root growth inhibition by NH +4  in Arabidopsis is mediated by the root tip and is linked to NH +4  efflux and GMPase activity. Plant Cell Environ 33:1529–1542

    PubMed  CAS  Google Scholar 

  28. Wolucka BA, Persiau G, Van Doorsselaere J, Davey MW, Demol H, Vandekerckhove J, Van Montagu M, Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose 3’, 5’-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Nat Acad Sci USA 98:14843–14848

    PubMed  CAS  Google Scholar 

  29. Wolucka BA, Van Montagu M (2003) GDP-mannose 3’, 5’-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    PubMed  CAS  Google Scholar 

  30. Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    PubMed  CAS  Google Scholar 

  31. Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-D-mannose 3’, 5’-epimerase from rice. Phytochemistry 67:338–346

    PubMed  CAS  Google Scholar 

  32. Zhang CJ, Liu JX, Zhang YY, Cai XF, Gong PJ, Zhang JH, Wang TT, Li HX, Ye ZB (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    PubMed  CAS  Google Scholar 

  33. Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    PubMed  CAS  Google Scholar 

  34. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    PubMed  CAS  Google Scholar 

  35. Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    PubMed  CAS  Google Scholar 

  36. Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases ascorbate content. Proc Nat Acad Sci USA 104:9534–9539

    PubMed  CAS  Google Scholar 

  37. Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885

    PubMed  CAS  Google Scholar 

  38. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    PubMed  CAS  Google Scholar 

  39. Muller-Moule P (2008) An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol Biol 68:31–41

    PubMed  Google Scholar 

  40. Bulley SM, Rassam M, Hoser D, Otto W, Schunemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    PubMed  CAS  Google Scholar 

  41. Linster CL, Clarke SG (2008) L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

    PubMed  CAS  Google Scholar 

  42. Laing WA, Frearson N, Bulley S, MacRae E (2004) Kiwifruit L-galactose dehydrogenase: molecular, biochemical and physiological aspects of the enzyme. Funct Plant Biol 31:1015–1025

    CAS  Google Scholar 

  43. Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Barraclough D, MacRae E (2004) A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Nat Acad Sci USA 101:16976–16981

    PubMed  CAS  Google Scholar 

  44. Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    PubMed  CAS  Google Scholar 

  45. Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    PubMed  CAS  Google Scholar 

  46. Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    PubMed  CAS  Google Scholar 

  47. Gatzek S (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate-synthesis and reveals light modulated L-galactose synthesis. Plant J 31:553–553

    CAS  Google Scholar 

  48. Mieda T, Yabuta Y, Rapolu M, Motoki T, Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate. Plant Cell Physiol 45:1271–1279

    PubMed  CAS  Google Scholar 

  49. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  50. Oba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of L-galactono-gamma-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    PubMed  CAS  Google Scholar 

  51. Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M (1998) L-galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    PubMed  CAS  Google Scholar 

  52. Ostergaard J, Persiau G, Davey MW, Bauw G, VanMontagu M (1997) Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272:30009–30016

    PubMed  CAS  Google Scholar 

  53. Mutsuda M, Ishikawa T, Takeda T, Shigeoka S (1995) Subcellular-localization and properties of L-galactono-γ-lactone dehydrogenase in spinach leaves. Biosci Biotechnol Biochem 59:1983–1984

    CAS  Google Scholar 

  54. Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial L-galactono-gamma-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675

    PubMed  CAS  Google Scholar 

  55. do Nascimento JRO, Higuchi BK, Gomez MLPA, Oshiro RA, Lajolo FM (2005) L-ascorbate biosynthesis in strawberries: L-galactono-1,4-lactone dehydrogenase expression during fruit development and ripening. Postharvest Biol Technol 38:34–42

    Google Scholar 

  56. Pateraki I, Sanmartin M, Kalamaki MS, Gerasopoulos B, Kanellis AK (2004) Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactone dehydrogenase. J Exp Bot 55:1623–1633

    PubMed  CAS  Google Scholar 

  57. Zhang YY, Li HX, Shu WB, Zhang CJ, Zhang W, Ye ZB (2011) Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Rep 29:638–645

    Google Scholar 

  58. Leferink NGH, van den Berg WAM, van Berkel WJH (2008) L-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 275:713–726.

    Google Scholar 

  59. Arrigoni O, DeGara L, Paciolla C, Evidente A, dePinto MC, Liso R (1997) Lycorine: a powerful inhibitor of L-galactono-gamma-lactone dehydrogenase activity. J Plant Physiol 150:362–364

    CAS  Google Scholar 

  60. Leferink NGH, van den Berg, WAM, van Berkel WJH (2008) L-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 275:713–726.

    Google Scholar 

  61. Tabata K, Takaoka T, Esaka M (2002) Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631–635

    PubMed  CAS  Google Scholar 

  62. Tabata K, Oba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase. Plant Journal 27:139–148

    PubMed  CAS  Google Scholar 

  63. Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta 220:854–863

    PubMed  CAS  Google Scholar 

  64. Imai T, Niwa M, Ban Y, Hirai M, Oba K, Moriguchi T (2009) Importance of the L-galactonolactone pool for enhancing the ascorbate content revealed by L-galactonolactone dehydrogenase-overexpressing tobacco plants. Plant Cell Tiss Org Cult 96:105–112

    CAS  Google Scholar 

  65. Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    PubMed  CAS  Google Scholar 

  66. Pineau B, Layoune O, Danon A, De Paepe R (2008) L-Galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283:32500–32505

    PubMed  CAS  Google Scholar 

  67. Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    CAS  Google Scholar 

  68. Esaka M, Hattori T, Fujisawa K, Sakajo S, Asahi T (1990) Molecular cloning and nucleotide sequence of full-length cDNA for ascorbate oxidase from cultured pumpkin cells. Eur J Biochem 191:537–541

    PubMed  CAS  Google Scholar 

  69. Moser O, Kanellis AK (1994) Ascorbate oxidase of Cucumis melo L. var. reticulatus: purification, characterization and antibody production. J Exp Bot 45:717–724

    CAS  Google Scholar 

  70. Ohkawa J, Okada N, Shinmyo A, Takano M (1989) Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression. Proc Nat Acad Sci USA 86:1239–1243

    PubMed  CAS  Google Scholar 

  71. Ohkawa J, Ohya T, Ito T, Nozawa H, Nishi Y, Okada N, Yoshida K, Takano M, Shinmyo A (1994) Structure of the genomic dna encoding cucumber ascorbate oxidase and its expression in transgenic plants. Plant Cell Rep 13:481–488

    CAS  Google Scholar 

  72. Diallinas G, Pateraki I, Sanmartin M, Scossa A, Stilianou E, Panopoulos NJ, Kanellis AK (1997) Melon ascorbate oxidase: cloning of a multigene family, induction during fruit development and repression by wounding. Plant Mol Biol 34:759–770

    PubMed  CAS  Google Scholar 

  73. Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  74. Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    PubMed  CAS  Google Scholar 

  75. Albani D, Sardana R, Robert LS, Altosaar I, Arnison PG, Fabijanski SF (1992) A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J 2:331–342

    PubMed  CAS  Google Scholar 

  76. Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    PubMed  CAS  Google Scholar 

  77. Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plantarum 105:321–329

    CAS  Google Scholar 

  78. Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    PubMed  CAS  Google Scholar 

  79. Yamamoto A, Bhuiyan NH, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    PubMed  CAS  Google Scholar 

  80. Felton GW, Summers CB (1993) Potential role of ascorbate oxidase as a plant defense protein against insect herbivory. J Chem Ecol 19:1553–1568

    CAS  Google Scholar 

  81. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    PubMed  CAS  Google Scholar 

  82. Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plantarum 85:235–241

    CAS  Google Scholar 

  83. Amako K, Chen GX, Asada K (1994) Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol 35:497–504

    CAS  Google Scholar 

  84. Dabrowska G, Katai A, Goc A, Szechynska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biologica Cracoviensia Series Botanica 49:7–17

    Google Scholar 

  85. Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2002) Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. J Biol Chem 277:40623–40632

    PubMed  CAS  Google Scholar 

  86. Mittler R, Zilinskas BA (1992) Molecular-Cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    PubMed  CAS  Google Scholar 

  87. Lopez F, Vansuyt G, CasseDelbart F, Fourcroy P (1996) Ascorbate peroxidase activity, not the mRNA level, is enhanced in salt-stressed Raphanus sativus plants. Physiol Plantarum 97:13–20

    CAS  Google Scholar 

  88. Santos M, Gousseau H, Lister C, Foyer C, Creissen G, Mullineaux P (1996) Cytosolic ascorbate peroxidase from Arabidopsis thaliana L is encoded by a small multigene family. Planta 198:64–69

    PubMed  CAS  Google Scholar 

  89. Gadea J, Conejero V, Vera P (1999) Developmental regulation of a cytosolic ascorbate peroxidase gene from tomato plants. Mol Gen Genet 262:212–219

    PubMed  CAS  Google Scholar 

  90. Kitajima S, Ueda M, Sano S, Miyake C, Kohchi T, Tomizawa K, Shigeoka S, Yokota A (2002) Stable form of ascorbate peroxidase from the red alga Galdieria partita similar to both chloroplastic and cytosolic isoforms of higher plants. Biosci Biotechnol Biochem 66:2367–2375

    PubMed  CAS  Google Scholar 

  91. Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322:93–103

    PubMed  CAS  Google Scholar 

  92. da Costa DS, Pereira CS, Teixeira J, Pereira S (2006) Isolation and characterisation of a cDNA encoding a novel cytosolic ascorbate peroxidase from potato plants (Solanum tuberosum L.). Acta Physiol Plant 28:41–47

    Google Scholar 

  93. Zhang YY, Li HX, Shu WB, Zhang CJ, Ye ZB (2011) RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Scientia Horticulturae 129:220–226

    Google Scholar 

  94. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    PubMed  CAS  Google Scholar 

  95. Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    PubMed  CAS  Google Scholar 

  96. Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (APX1)-deficient Arabidopsis plants. Plant J 34:185–201

    Google Scholar 

  97. Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-Maria GE, Guiamet JJ, Ugalde RA (2003) Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol 132:2116–2125

    PubMed  CAS  Google Scholar 

  98. Payton P, Allen RD, Webb R, Holaday AS (1997) Chilling-stress tolerance of cotton plants over-expressing superoxide dismutase, ascorbate peroxidase, or glutathione reductase. Plant Physiol 114:593–593

    Google Scholar 

  99. Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11:1297–1305

    CAS  Google Scholar 

  100. Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  101. Yan JQ, Wang J, Tissue D, Holaday AS, Allen R, Zhang H (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci 43:1477–1483

    CAS  Google Scholar 

  102. Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882

    Google Scholar 

  103. Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both Cu Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    PubMed  CAS  Google Scholar 

  104. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    PubMed  CAS  Google Scholar 

  105. Saji H, Aono M, Kubo A, Tanaka K, Kondo N (1997) Paraquat sensitivity of transgenic Nicotiana tabacum plants that overproduce a cytosolic ascorbate peroxidase. Phyton-Annales Rei Botanicae 37:259–264

    CAS  Google Scholar 

  106. Sengupta A, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress—induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants. Plant Physiol 103:1067–1073

    CAS  Google Scholar 

  107. Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    PubMed  CAS  Google Scholar 

  108. Ishikawa T, Sakai K, Takeda T, Shigeoka S (1995) Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett 367:28–32

    PubMed  CAS  Google Scholar 

  109. Hossain MA, Asada K (1985) Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme. J Biol Chem 260:12920–12926

    PubMed  CAS  Google Scholar 

  110. Shimaoka T, Yokota A, Miyake C (2000) Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol 41:1110–1118

    PubMed  CAS  Google Scholar 

  111. Elia MR, Borraccino G, Dipierro S (1992) Soluble ascorbate peroxidase from potato tubers. Plant Sci 85:17–21

    CAS  Google Scholar 

  112. Shimaoka T, Miyake C, Yokota A (2003) Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts. Eur J Biochem 270:921–928

    PubMed  CAS  Google Scholar 

  113. Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett 466:107–111

    PubMed  CAS  Google Scholar 

  114. Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Nat Acad Sci USA 100:3525–3530

    PubMed  CAS  Google Scholar 

  115. Qin AG, Shi QH, Yu XC (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    PubMed  CAS  Google Scholar 

  116. Eltelib HA, Fujikawa Y, Esaka M (2012) Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S Afr J Bot 78:295–301

    CAS  Google Scholar 

  117. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    PubMed  CAS  Google Scholar 

  118. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    PubMed  CAS  Google Scholar 

  119. Grantz A, Brummell DA, Bennett AB (1995) Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol 108:411–418

    PubMed  CAS  Google Scholar 

  120. Yoon HS, Lee H, Lee IA, Kim KY, Jo JK (2004) Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. Biochimica et Biophysica Acta-Bioenergetics 1658:181–186

    CAS  Google Scholar 

  121. Deleonardis S, Delorenzo G, Borraccino G, Dipierro S (1995) A specific ascorbate free radical reductase isozyme participates in the regeneration of ascorbate for scavenging toxic oxygen species in potato tuber mitochondria. Plant Physiol 109:847–851

    CAS  Google Scholar 

  122. Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Rio LA (2005) Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    PubMed  CAS  Google Scholar 

  123. Sano S, Tao S, Endo Y, Inaba T, Hossain A, Hossain MA, Miyake C, Matsuo M, Aoki H, Asada K, Saito K (2005) Purification and cDNA cloning of chloroplastic monodehydroascorbate reductase from spinach. Biosci Biotechnol Biochem 69:762–772

    PubMed  CAS  Google Scholar 

  124. Sano S, Asada K (1994) cDNA cloning of monodehydroascorbate radical reductase from cucumber: a high-degree of homology in terms of amino acid sequence between this enzyme and bacterial flavoenzymes. Plant Cell Physiol 35:425–437

    PubMed  CAS  Google Scholar 

  125. Murthy SS, Zilinskas BA (1994) Molecular cloning and characterization of a cDNA encoding pea monodehydroascorbate reductase. J Biol Chem 269:31129–31133

    PubMed  CAS  Google Scholar 

  126. Arrigoni O (1994) Ascorbate system in plant development. J Bioenerg Biomembr 26:407–419

    Google Scholar 

  127. Loewus FA, Loewus MW (1987) Biosynthesis and metabolism of ascorbic acid in plants. Crit Rev Plant Sci 5:101–119

    CAS  Google Scholar 

  128. Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    PubMed  CAS  Google Scholar 

  129. Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R (2005) The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221:243–254

    PubMed  CAS  Google Scholar 

  130. Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049

    PubMed  CAS  Google Scholar 

  131. Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    CAS  Google Scholar 

  132. Radzio JA, Lorence A, Chevone BI, Nessler CL (2003) L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53:837–844

    PubMed  CAS  Google Scholar 

  133. Hemavathi C, Upadhyaya P, Akula N, Young KE, Chun SC, Kim DH, Park SW (2010) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

    Google Scholar 

  134. Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    PubMed  CAS  Google Scholar 

  135. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  136. Caldwell CR, Turano FJ, McMahon MB (1998) Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E.coli. Planta 204:120–126

    PubMed  CAS  Google Scholar 

  137. Morimura Y, Iwamoto K, Ohya T, Igarashi T, Nakamura Y, Kubo A, Tanaka K, Ikawa T (1999) Light-enhanced induction of ascorbate peroxidase in Japanese radish roots during postgerminative growth. Plant Sci 142:123–132

    CAS  Google Scholar 

  138. Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author

About this chapter

Cite this chapter

Zhang, Y. (2013). Enzymes Involved in Ascorbate Biosynthesis and Metabolism in Plants. In: Ascorbic Acid in Plants. SpringerBriefs in Plant Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4127-4_7

Download citation

Publish with us

Policies and ethics