Brain Functioning When the Voices Are Silent: Aberrant Default Modes in Auditory Verbal Hallucinations

  • Vincent van de VenEmail author


Almost two decades of functional brain imaging has shown that auditory verbal hallucinations (AVH) in schizophrenia correspond with increased brain activity in a wide variety of different brain areas. However, these localized changes in brain activity are likely the end result of a more profound and fundamental aberration in brain dynamics that ultimately leads to the perception of hallucinated voices. AVH could arise from pathological brain states or modes that occur beyond moments of conscious AVH experiences. In other words, could AVH result from intrinsic brain activity at times when the voices are silent? Recent advances in functional brain imaging have shown that intrinsic brain states possess a rich and complex functional architecture that closely resembles brain dynamics observed during many different kinds of cognitive and sensorimotor tasks. Further, intrinsic brain states may prove to be of importance to goal-directed brain activity, and ultimately to our perception and performance, that is, of importance to our behavior. Pioneering studies provide the first indications that intrinsic brain states may play an important role in AVH and other psychotic symptoms in schizophrenia. This chapter describes the main findings and advances in measuring intrinsic brain states in humans in vivo, and discusses how intrinsic brain states can contribute to our understanding of the etiology and experience of AVH in schizophrenia.


Functional Connectivity Independent Component Analysis Auditory Cortex Supplementary Motor Area Posterior Cingulate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Auditory verbal hallucinations


Cluster analysis


Default mode network


Functional magnetic resonance imaging


Independent component analysis


Medial prefrontal cortex


Repetitive transcranial magnetic stimulation


Supplementary motor area


Principal component analysis


Posterior cingulate cortex


  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.PubMedCrossRefGoogle Scholar
  2. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.PubMedCrossRefGoogle Scholar
  3. Aleman, A., Formisano, E., Koppenhagen, H., Hagoort, P., de Haan, E. H., & Kahn, R. S. (2005). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words. Cerebral Cortex, 15(2), 221–228.PubMedCrossRefGoogle Scholar
  4. Aleman, A., Sommer, I. E., & Kahn, R. S. (2007). Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: A meta-analysis. The Journal of Clinical Psychiatry, 68(3), 416–421.PubMedCrossRefGoogle Scholar
  5. American, P. A. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press.Google Scholar
  6. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277.PubMedCrossRefGoogle Scholar
  7. Andreasen, N. C. (1999). A unitary model of schizophrenia: Bleuler’s “fragmented phrene” as schizencephaly. Archives of General Psychiatry, 56(9), 781–787.PubMedCrossRefGoogle Scholar
  8. Beer, J. S. (2007). The default self: Feeling good or being right? Trends in Cognitive Science, 11(5), 187–189.CrossRefGoogle Scholar
  9. Bentall, R. P. (1990). The illusion of reality: A review and integration of psychological research on hallucinations. Psychological Bulletin, 107(1), 82–95.PubMedCrossRefGoogle Scholar
  10. Bentall, R. P., & Slade, P. D. (1985). Reality testing and auditory hallucinations: A signal detection analysis. British Journal of Clinical Psychology, 24(Pt 3), 159–169.PubMedCrossRefGoogle Scholar
  11. Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Rao, S. M., & Cox, R. W. (1999). Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience, 11(1), 80–95.PubMedCrossRefGoogle Scholar
  12. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17(1), 353–362.PubMedGoogle Scholar
  13. Biswal, B. B., van Kylen, J., & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR in Biomedicine, 10(4–5), 165–170.PubMedCrossRefGoogle Scholar
  14. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.PubMedCrossRefGoogle Scholar
  15. Bleuler, E. (1911). Dementia Praecox oder Gruppe der Schizophrenien. In G. Aschaffenburg (Ed.), Handbuch der Psychiatrie. Leipzig: Deuticke.Google Scholar
  16. Bluhm, R. L., Miller, J., Lanius, R. A., Osuch, E. A., Boksman, K., Neufeld, R. W., et al. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: Anomalies in the default network. Schizophrenia Bulletin, 33(4), 1004–1012.PubMedCrossRefGoogle Scholar
  17. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Science, 8(12), 539–546.CrossRefGoogle Scholar
  18. Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16(13), 4207–4221.PubMedGoogle Scholar
  19. Braff, D. L., Freedman, R., Schork, N. J., & Gottesman, I. I. (2007). Deconstructing schizophrenia: An overview of the use of endophenotypes in order to understand a complex disorder. Schizophrenia Bulletin, 33(1), 21–32.PubMedCrossRefGoogle Scholar
  20. Buzsaki, G., Chen, L. S., & Gage, F. H. (1990). Spatial organization of physiological activity in the hippocampal region: Relevance to memory formation. Progress in Brain Research, 83, 257–268.PubMedCrossRefGoogle Scholar
  21. Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929.PubMedCrossRefGoogle Scholar
  22. Calhoun, V. D., Eichele, T., & Pearlson, G. (2009). Functional brain networks in schizophrenia: A review. Frontiers in Human Neuroscience, 3, 17.PubMedCrossRefGoogle Scholar
  23. Calhoun, V. D., Kiehl, K. A., Liddle, P. F., & Pearlson, G. D. (2004). Aberrant localization of synchronous hemodynamic activity in auditory cortex reliably characterizes schizophrenia. Biological Psychiatry, 55(8), 842–849.PubMedCrossRefGoogle Scholar
  24. Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., & Kiehl, K. A. (2008). Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping, 29(11), 1265–1275.PubMedCrossRefGoogle Scholar
  25. Chang, B., Hawes, N. L., Hurd, R. E., Wang, J., Howell, D., Davisson, M. T., et al. (2005). Mouse models of ocular diseases. Visual Neuroscience, 22(5), 587–593.PubMedCrossRefGoogle Scholar
  26. Christoffels, I. K., Formisano, E., & Schiller, N. O. (2007). Neural correlates of verbal feedback processing: An fMRI study employing overt speech. Human Brain Mapping, 28(9), 868–879.PubMedCrossRefGoogle Scholar
  27. Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., et al. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR. American Journal of Neuroradiology, 22(7), 1326–1333.PubMedGoogle Scholar
  28. Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. H., et al. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR. American Journal of Neuroradiology, 21(9), 1636–1644.PubMedGoogle Scholar
  29. Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., & Maravilla, K. (2002). Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic Resonance Imaging, 20(4), 305–317.PubMedCrossRefGoogle Scholar
  30. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.PubMedCrossRefGoogle Scholar
  31. David, N., Bewernick, B. H., Cohen, M. X., Newen, A., Lux, S., Fink, G. R., et al. (2006). Neural representations of self versus other: Visual-spatial perspective taking and agency in a virtual ball-tossing game. Journal of Cognitive Neuroscience, 18(6), 898–910.PubMedCrossRefGoogle Scholar
  32. Dierks, T., Linden, D. E. J., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., et al. (1999). Activation of Heschl’s gyrus during auditory hallucinations. Neuron, 22, 823–835.CrossRefGoogle Scholar
  33. Esposito, F., Aragri, A., Latorre, V., Popolizio, T., Scarabino, T., Cirillo, S., et al. (2009). Does the default-mode functional connectivity of the brain correlate with working-memory performances? Archives Italiennes de Biologie, 147(1–2), 11–20.PubMedGoogle Scholar
  34. Farrer, C., Franck, N., Georgieff, N., Frith, C. D., Decety, J., & Jeannerod, M. (2003). Modulating the experience of agency: A positron emission tomography study. NeuroImage, 18(2), 324–333.PubMedCrossRefGoogle Scholar
  35. Farrer, C., & Frith, C. D. (2002). Experiencing oneself vs another person as being the cause of an action: The neural correlates of the experience of agency. NeuroImage, 15(3), 596–603.PubMedCrossRefGoogle Scholar
  36. Ford, J. M., Mathalon, D. H., Heinks, T., Kalba, S., Faustman, W. O., & Roth, W. T. (2001). Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. The American Journal of Psychiatry, 158(12), 2069–2071.PubMedCrossRefGoogle Scholar
  37. Ford, J. M., Roach, B. J., & Mathalon, D. H. (2010). Assessing corollary discharge in humans using noninvasive neurophysiological methods. Nature Protocols, 5(6), 1160–1168.PubMedCrossRefGoogle Scholar
  38. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.PubMedCrossRefGoogle Scholar
  39. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.PubMedCrossRefGoogle Scholar
  40. Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.PubMedCrossRefGoogle Scholar
  41. Fries, P., Neuenschwander, S., Engel, A. K., Goebel, R., & Singer, W. (2001). Rapid feature selective neuronal synchronization through correlated latency shifting. Nature Neuroscience, 4(2), 194–200.PubMedCrossRefGoogle Scholar
  42. Friston, K. J. (1996). Statistical parametric mapping and other analyses of functional imaging data. In A. W. Toga & J. C. Mazziotta (Eds.), Brain mapping: The methods (pp. 363–396). San Diego: Academic.Google Scholar
  43. Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125.PubMedCrossRefGoogle Scholar
  44. Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. J. (1993). Functional connectivity: The principal component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5–14.PubMedCrossRefGoogle Scholar
  45. Frith, C. (2005). The neural basis of hallucinations and delusions. Comptes Rendus Biologies, 328(2), 169–175.PubMedCrossRefGoogle Scholar
  46. Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. The American Journal of Psychiatry, 164(3), 450–457.PubMedCrossRefGoogle Scholar
  47. Gavrilescu, M., Rossell, S., Stuart, G. W., Shea, T. L., Innes-Brown, H., Henshall, K., et al. (2010). Reduced connectivity of the auditory cortex in patients with auditory hallucinations: A resting state functional magnetic resonance imaging study. Psychological Medicine, 40(7), 1149–1158.PubMedCrossRefGoogle Scholar
  48. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry, 160(4), 636–645.PubMedCrossRefGoogle Scholar
  49. Greicius, M. D., Krasnow, B., Boyett-Anderson, J. M., Eliez, S., Schatzberg, A. F., Reiss, A. L., et al. (2003). Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus, 13(1), 164–174.PubMedCrossRefGoogle Scholar
  50. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedCrossRefGoogle Scholar
  51. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.PubMedCrossRefGoogle Scholar
  52. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal ­cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264.PubMedCrossRefGoogle Scholar
  53. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2(10), 685–694.PubMedCrossRefGoogle Scholar
  54. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.PubMedCrossRefGoogle Scholar
  55. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006). Brain ­connectivity related to working memory performance. Journal of Neuroscience, 26(51), 13338–13343.PubMedCrossRefGoogle Scholar
  56. Hampson, M., Peterson, B. S., Skudlarski, P., Gatenby, J. C., & Gore, J. C. (2002). Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping, 15(4), 247–262.PubMedCrossRefGoogle Scholar
  57. Harrison, B. J., Pujol, J., Ortiz, H., Fornito, A., Pantelis, C., & Yucel, M. (2008). Modulation of brain resting-state networks by sad mood induction. PLoS One, 3(3), e1794.PubMedCrossRefGoogle Scholar
  58. Higashima, M., Takeda, T., Kikuchi, M., Nagasawa, T., Hirao, N., Oka, T., et al. (2007). State-dependent changes in intrahemispheric EEG coherence for patients with acute exacerbation of schizophrenia. Psychiatry Research, 149(1–3), 41–47.PubMedCrossRefGoogle Scholar
  59. Hoffman, R. E., Hampson, M., Wu, K., Anderson, A. W., Gore, J. C., Buchanan, R. J., et al. (2007). Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation. Cerebral Cortex, 17(11), 2733–2743.PubMedCrossRefGoogle Scholar
  60. Hoffman, R. E., Hawkins, K. A., Gueorguieva, R., Boutros, N. N., Rachid, F., Carroll, K., et al. (2003). Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Archives of General Psychiatry, 60(1), 49–56.PubMedCrossRefGoogle Scholar
  61. Hoffman, K. L., & McNaughton, B. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science, 297(5589), 2070–2073.PubMedCrossRefGoogle Scholar
  62. Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., et al. (2010). Amplitude of low-frequency oscillations in schizophrenia: A resting state fMRI study. Schizophrenia Research, 117(1), 13–20.PubMedCrossRefGoogle Scholar
  63. Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., et al. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61(7), 658–668.PubMedCrossRefGoogle Scholar
  64. Hunter, M. D., Eickhoff, S. B., Miller, T. W. R., Farrow, T. F. D., Wilkinson, I. D., & Woodruff, P. W. R. (2006). Neural activity in speech-sensitive auditory cortex during silence. Proceedings of the National Academy of Sciences of the United States of America, 103(1), 189–194.PubMedCrossRefGoogle Scholar
  65. Jardri, R., Pins, D., Bubrovszky, M., Despretz, P., Pruvo, J. P., Steinling, M., et al. (2007). Self awareness and speech processing: An fMRI study. NeuroImage, 35(4), 1645–1653.PubMedCrossRefGoogle Scholar
  66. Jardri, R., Pouchet, A., Pins, D., & Thomas, P. (2011). Cortical activations during auditory verbal hallucinations in schizophrenia: A coordinate-based meta-analysis. The American Journal of Psychiatry, 168(1), 73–81.PubMedCrossRefGoogle Scholar
  67. Kang, J. I., Kim, J. J., Seok, J. H., Chun, J. W., Lee, S. K., & Park, H. J. (2009). Abnormal brain response during the auditory emotional processing in schizophrenic patients with chronic auditory hallucinations. Schizophrenia Research, 107(1), 83–91.PubMedCrossRefGoogle Scholar
  68. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425(6961), 954–956.PubMedCrossRefGoogle Scholar
  69. Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., et al. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1–2), 15–30.PubMedCrossRefGoogle Scholar
  70. Kubicki, M., Westin, C. F., McCarley, R. W., & Shenton, M. E. (2005). The application of DTI to investigate white matter abnormalities in schizophrenia. Annals of the New York Academy of Sciences, 1064, 134–148.PubMedCrossRefGoogle Scholar
  71. Lawrie, S. M., Büchel, C., Whalley, H. C., Frith, C. D., Friston, K. J., & Johnstone, E. C. (2002). Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biological Psychiatry, 51, 1008–1011.PubMedCrossRefGoogle Scholar
  72. Lennox, B. R., Park, S. B., Medley, I., Morris, P. G., & Jones, P. B. (2000). The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Research, 100, 13–20.PubMedCrossRefGoogle Scholar
  73. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17558–17563.PubMedCrossRefGoogle Scholar
  74. Liang, M., Zhou, Y., Jiang, T., Liu, Z., Tian, L., Liu, H., et al. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport, 17(2), 209–213.PubMedCrossRefGoogle Scholar
  75. Linden, D. E., Thornton, K., Kuswanto, C. N., Johnston, S. J., van de Ven, V., & Jackson, M. C. (2011). The brain’s voices: Comparing nonclinical auditory hallucinations and imagery. Cerebral Cortex, 21(2), 330–337.PubMedCrossRefGoogle Scholar
  76. Lindner, M., Hundhammer, T., Ciaramidaro, A., Linden, D. E., & Mussweiler, T. (2008). The neural substrates of person comparison–an fMRI study. NeuroImage, 40(2), 963–971.PubMedCrossRefGoogle Scholar
  77. Liu, H., Kaneko, Y., Ouyang, X., Li, L., Hao, Y., Chen, E. Y., et al. (2010). Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network. Schizophrenia Bulletin, 38(2), 285–294.PubMedCrossRefGoogle Scholar
  78. Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131(Pt 4), 945–961.PubMedCrossRefGoogle Scholar
  79. Mason, M. F., Norton, M. I., van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315(5810), 393–395.PubMedCrossRefGoogle Scholar
  80. Mayer, J. S., Roebroeck, A., Maurer, K., & Linden, D. E. (2010). Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 31(1), 126–139.PubMedGoogle Scholar
  81. McGuire, P. K., Silbersweig, D. A., & Frith, C. D. (1996). Functional neuroanatomy of verbal self-monitoring. Brain, 119, 907–917.PubMedCrossRefGoogle Scholar
  82. McGuire, P. K., Silbersweig, D. A., Wright, I., Murray, R. M., David, A. S., Frackowiak, R. S., et al. (1995). Abnormal monitoring of inner speech: A physiological basis for auditory hallucinations. Lancet, 346(8975), 596–600.PubMedCrossRefGoogle Scholar
  83. McKay, C. M., Headlam, D. M., & Copolov, D. L. (2000). Central auditory processing in patients with auditory hallucinations. The American Journal of Psychiatry, 157, 759–766.PubMedCrossRefGoogle Scholar
  84. McKeown, M. J., Hansen, L. K., & Sejnowsk, T. J. (2003). Independent component analysis of functional MRI: What is signal and what is noise? Current Opinion in Neurobiology, 13(5), 620–629.PubMedCrossRefGoogle Scholar
  85. McKeown, M. J., Jung, T.-P., Makeig, S., Brown, G., Kindermann, S. S., Lee, T.-W., et al. (1998). Spatially independent activity patterns in functional MRI data during the Stroop color-naming task. Proceedings of the National Academy of Sciences of the United States of America, 95, 803–810.PubMedCrossRefGoogle Scholar
  86. McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15(3), 394–408.PubMedCrossRefGoogle Scholar
  87. Meyer-Lindenberg, A. S., Olsen, R. K., Kohn, P. D., Brown, T., Egan, M. F., Weinberger, D. R., et al. (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry, 62(4), 379–386.PubMedCrossRefGoogle Scholar
  88. Meyer-Lindenberg, A., Poline, J. B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., et al. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. The American Journal of Psychiatry, 158(11), 1809–1817.PubMedCrossRefGoogle Scholar
  89. Mezer, A., Yovel, Y., Pasternak, O., Gorfine, T., & Assaf, Y. (2009). Cluster analysis of resting-state fMRI time series. NeuroImage, 45(4), 1117–1125.PubMedCrossRefGoogle Scholar
  90. Mintz, S., & Alpert, M. (1972). Imagery vividness, reality testing, and schizophrenic hallucinations. Journal of Abnormal Psychology, 79(3), 310–316.PubMedCrossRefGoogle Scholar
  91. Nayani, T. H., & David, A. S. (1996). The auditory hallucination: A phenomenological survey. Psychological Medicine, 26(1), 177–189.PubMedCrossRefGoogle Scholar
  92. Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., et al. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16(10), 1746–1772.PubMedCrossRefGoogle Scholar
  93. Oertel, V., Rotarska-Jagiela, A., van de Ven, V. G., Haenschel, C., Maurer, K., & Linden, D. E. (2007). Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Research, 156(3), 269–273.PubMedCrossRefGoogle Scholar
  94. Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955.PubMedCrossRefGoogle Scholar
  95. Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232–237.PubMedCrossRefGoogle Scholar
  96. Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J., & Evans, A. C. (1996). Modulation of cerebral blood flow in the human auditory cortex during speech: Role of motor-to-sensory discharges. European Journal of Neuroscience, 8(11), 2236–2246.PubMedCrossRefGoogle Scholar
  97. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.PubMedCrossRefGoogle Scholar
  98. Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.PubMedCrossRefGoogle Scholar
  99. Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry, 69(10), 967–973.PubMedCrossRefGoogle Scholar
  100. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447.PubMedCrossRefGoogle Scholar
  101. Rogers, B. P., Morgan, V. L., Newton, A. T., & Gore, J. C. (2007). Assessing functional connectivity in the human brain by fMRI. Magnetic Resonance Imaging, 25(10), 1347–1357.PubMedCrossRefGoogle Scholar
  102. Rotarska-Jagiela, A., Oertel-Knoechel, V., DeMartino, F., van de Ven, V., Formisano, E., Roebroeck, A., et al. (2009). Anatomical brain connectivity and positive symptoms of schizophrenia: A diffusion tensor imaging study. Psychiatry Research, 174(1), 9–16.PubMedCrossRefGoogle Scholar
  103. Rotarska-Jagiela, A., van de Ven, V., Oertel-Knochel, V., Uhlhaas, P. J., Vogeley, K., & Linden, D. E. (2010). Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophrenia Research, 117(1), 21–30.PubMedCrossRefGoogle Scholar
  104. Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A PET investigation of agency. Nature Neuroscience, 4(5), 546–550.PubMedGoogle Scholar
  105. Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R., & Vogeley, K. (2008). Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Consciousness and Cognition, 17(2), 457–467.PubMedCrossRefGoogle Scholar
  106. Seal, M. L., Aleman, A., & McGuire, P. K. (2004). Compelling imagery, unanticipated speech and deceptive memory: Neurocognitive models of auditory verbal hallucinations in schizophrenia [review]. Cognitive Neuropsychiatry, 9, 43–72.PubMedCrossRefGoogle Scholar
  107. Shatz, C. J. (1996). Emergence of order in visual system development. Proceedings of the National Academy of Sciences of the United States of America, 93(2), 602–608.PubMedCrossRefGoogle Scholar
  108. Shergill, S. S., Brammer, M. J., Williams, S. C., Murray, R. M., & McGuire, P. K. (2000). Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Archives of General Psychiatry, 57(11), 1033–1038.PubMedCrossRefGoogle Scholar
  109. Shergill, S. S., Bullmore, E. T., Brammer, M. J., Williams, S. C., Murray, R. M., & McGuire, P. K. (2001). A functional study of auditory verbal imagery. Psychological Medicine, 31(2), 241–253.PubMedCrossRefGoogle Scholar
  110. Shergill, S. S., Bullmore, E., Simmons, A., Murray, R., & McGuire, P. (2000). Functional anatomy of auditory verbal imagery in schizophrenic patients with auditory hallucinations. The American Journal of Psychiatry, 157(10), 1691–1693.PubMedCrossRefGoogle Scholar
  111. Shergill, S. S., Kanaan, R. A., Chitnis, X. A., O’Daly, O., Jones, D. K., Frangou, S., et al. (2007). A diffusion tensor imaging study of fasciculi in schizophrenia. The American Journal of Psychiatry, 164(3), 467–473.PubMedCrossRefGoogle Scholar
  112. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., et al. (1997). Common blood flow changes across visual tasks: II Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9, 648–663.CrossRefGoogle Scholar
  113. Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510.PubMedCrossRefGoogle Scholar
  114. Steele, J. D., & Lawrie, S. M. (2004). Segregation of cognitive and emotional function in the prefrontal cortex: A stereotactic meta-analysis. NeuroImage, 21(3), 868–875.PubMedCrossRefGoogle Scholar
  115. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From ­abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527.PubMedCrossRefGoogle Scholar
  116. Stephane, M., Barton, S., & Boutros, N. N. (2001). Auditory verbal hallucinations and dysfunction of the neural substrates of speech. Schizophrenia Research, 50(1–2), 61–78.PubMedCrossRefGoogle Scholar
  117. Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280–290.PubMedCrossRefGoogle Scholar
  118. Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.PubMedCrossRefGoogle Scholar
  119. van de Ven, V. G., Bledowski, C., Prvulovic, D., Goebel, R., Formisano, E., Di Salle, F., et al. (2008). Visual target modulation of functional connectivity networks revealed by self-organizing group ICA. Human Brain Mapping, 29(12), 1450–1461.PubMedCrossRefGoogle Scholar
  120. van de Ven, V. G., Esposito, F., & Christoffels, I. K. (2009). Neural network of speech monitoring overlaps with overt speech production and comprehension networks: A sequential spatial and temporal ICA study. NeuroImage, 47(4), 1982–1991.PubMedCrossRefGoogle Scholar
  121. van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., & Linden, D. E. (2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping, 22(3), 165–178.PubMedCrossRefGoogle Scholar
  122. van de Ven, V. G., Formisano, E., Roder, C. H., Prvulovic, D., Bittner, R. A., Dietz, M. G., et al. (2005). The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. NeuroImage, 27(3), 644–655.PubMedCrossRefGoogle Scholar
  123. van den Heuvel, M., Mandl, R., & Hulshoff Pol, H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3(4), e2001.PubMedCrossRefGoogle Scholar
  124. Vercammen, A., Knegtering, H., den Boer, J. A., Liemburg, E. J., & Aleman, A. (2010). Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biological Psychiatry, 67(10), 912–918.PubMedCrossRefGoogle Scholar
  125. Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., et al. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of Neurophysiology, 96(6), 3517–3531.PubMedCrossRefGoogle Scholar
  126. Vogeley, K., Kurthen, M., Falkai, P., & Maier, W. (1999). Essential functions of the human self model are implemented in the prefrontal cortex. Consciousness and Cognition, 8(3), 343–363.PubMedCrossRefGoogle Scholar
  127. Weiss, A. P., & Heckers, S. (1999). Neuroimaging of hallucinations: A review of the literature. Psychiatry Research, 92(2–3), 61–74.PubMedCrossRefGoogle Scholar
  128. Weiss, A. P., Zalesak, M., DeWitt, I., Goff, D., Kunkel, L., & Heckers, S. (2004). Impaired hippocampal function during the detection of novel words in schizophrenia. Biological Psychiatry, 55(7), 668–675.PubMedCrossRefGoogle Scholar
  129. Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284.PubMedCrossRefGoogle Scholar
  130. Wible, C. G., Preus, A. P., & Hashimoto, R. (2009). A cognitive neuroscience view of schizophrenic symptoms: Abnormal activation of a system for social perception and communication. Brain Imaging and Behavior, 3(1), 85–110.PubMedCrossRefGoogle Scholar
  131. Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676–679.PubMedCrossRefGoogle Scholar
  132. Woodruff, P. W. (2004). Auditory hallucinations: Insights and questions from neuroimaging. Cognitive Neuropsychiatry, 9(1–2), 73–91.PubMedCrossRefGoogle Scholar
  133. Xiong, J., Parsons, L. M., Gao, J. H., & Fox, P. T. (1999). Interregional connectivity to primary motor cortex revealed using MRI resting state images. Human Brain Mapping, 8(2–3), 151–156.PubMedCrossRefGoogle Scholar
  134. Zhang, L. I., & Poo, M. M. (2001). Electrical activity and development of neural circuits. Nature Neuroscience, 4(Suppl), 1207–1214.PubMedCrossRefGoogle Scholar
  135. Zhou, Y., Liang, M., Tian, L., Wang, K., Hao, Y., Liu, H., et al. (2007). Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophrenia Research, 97(1–3), 194–205.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Cognitive NeuroscienceMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations