Skip to main content

Time Perception and Discrimination in Individuals Suffering from Hallucinations

  • Chapter
  • First Online:
The Neuroscience of Hallucinations

Abstract

Hallucinations are perceptual experiences arising in the absence of external stimulation, and that are perceived to be real. Auditory hallucinations have been intensively studied in the last 30 years or so, and different explanations have been proposed. This chapter reviews evidence of timing abnormalities in people with schizophrenia and auditory hallucinations. The first section of this chapter shows that abnormalities in time perception and time discrimination are common in schizophrenia, with difficulties occurring across all timing periods, stimulus modalities, and at all stages of information processing. The second section synthesises different theoretical models of auditory hallucinations, and demonstrates that abnormal timing mechanisms might contribute in a significant way to cognitive difficulties and perceptual distortions that underlie hallucinatory experiences. Timing dysfunctions arise from disruptions to the integrity of neural circuits and neurobiological mechanisms in schizophrenia. A plausible explanation suggests that these might obstruct the normal coordination of internal systems, the integration of bottom–up and top–down processes, and self-monitoring mechanisms linked to hallucinations. Timing problems might also induce distortions in action causation, motivational significance, and higher-order cognitive functions. Altogether, timing abnormalities provide a parsimonious explanation for neural, cognitive, and phenomenological findings in auditory hallucinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DA:

Dopamine

ERP:

Event-related potential

fMRI:

Functional magnetic resonance imaging

PFC:

Prefrontal cortex

SZ:

Schizophrenia

References

  • Alexander, I., Cowey, A., & Walsh, V. (2005). The right parietal cortex and time perception: Back to Critchley and the Zeitraffer phenomenon. Cognitive Neuropsychology, 22 (3/4), 306–315.

    Article  PubMed  Google Scholar 

  • Andreasen, N. (1999). A unitary model of schizophrenia. Archives of General Psychiatry, 56, 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Bentall, R. P., & Slade, P. D. (1985). Reality testing and auditory hallucinations: A signal detection analysis. British Journal of Clinical Psychology, 24, 159–169.

    Article  PubMed  Google Scholar 

  • Blakemore, S.-J., & Frith, C. (2003). Self-awareness and action. Current Opinion in Neurobiology, 13, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, S.-J., Smith, J., Steel, R., Johnstone, E., & Frith, C. (2000). The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: Evidence for a breakdown in self-monitoring. Psychological Medicine, 30, 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, S.-J., Wolpert, D., & Frith, C. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1 (7), 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Bleuler, E. (1911). Dementia praecox or the group of schizophrenias. Oxford: International Universities Press (Translated 1950).

    Google Scholar 

  • Brebion, G., Amador, X., David, A., Malaspina, D., Sharif, Z., & Gorman, J. (2000). Positive symptomatology and source-monitoring failure in schizophrenia—An analysis of symptom specific effects. Psychiatry Research, 95, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S., Kieffaber, P., Carroll, C., Vohs, J., Tracy, J., Shekhar, A., et al. (2005). Eyeblink conditioning deficits indicate timing and cerebellar abnormalities in schizophrenia. Brain and Cognition, 58, 94–108.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, C. A., Boggs, J., O’Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2008). Temporal processing dysfunction in schizophrenia. Brain and Cognition, 67 (2), 150–161.

    Article  PubMed  Google Scholar 

  • Carroll, C. A., O’Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2009). Timing dysfunctions in schizophrenia span from millisecond to several-second durations. Brain and Cognition, 70 (2), 181–190.

    Article  PubMed  Google Scholar 

  • Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ­ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacology Biochemistry and Behavior, 85, 114–122.

    Article  CAS  Google Scholar 

  • Cools, R. (2008). Role of dopamine in the motivational and cognitive control of behavior. The Neuroscientist, 14 (4), 381–395.

    Article  PubMed  CAS  Google Scholar 

  • Corlett, P. R., Honey, G. D., & Fletcher, P. C. (2007). From prediction error to psychosis: Ketamine as a pharmacological model of delusions. Journal of Psychopharmacology, 21 (3), 238–252.

    Article  PubMed  CAS  Google Scholar 

  • Davalos, D. B., Kisley, M. A., & Freedman, R. (2005). Behavioral and electrophysiological indices of temporal processing dysfunction in schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 17 (4), 517–525.

    Article  PubMed  Google Scholar 

  • Davalos, D., Kisley, M., & Ross, R. (2002). Deficits in auditory and visual temporal perception in schizophrenia. Cognitive Neuropsychiatry, 7 (4), 273–282.

    Article  PubMed  Google Scholar 

  • Davalos, D., Kisley, M., & Ross, R. (2003). Effects of interval duration on temporal processing in schizophrenia. Brain and Cognition, 52 (3), 295–301.

    Article  PubMed  Google Scholar 

  • Deco, G., & Romo, R. (2008). The Role of Fluctuations in Perception. Trends in Neuroscience, 31, 591–598.

    Article  CAS  Google Scholar 

  • Densen, M. (1977). Time perception and schizophrenia. Perceptual and Motor Skills, 44, 436–438.

    Article  PubMed  CAS  Google Scholar 

  • Dreher, J. C., Banquiet, J. P., Allilaire, J. F., Paillere-Martinont, M. L., Dubois, B., & Burnod, Y. (2001). Temporal order and spatial memory in schizophrenia: A parametric study. Schizophrenia Research, 51, 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Elvevåg, B., Brown, G., McCormack, T., Vousden, J., & Goldberg, T. (2004). Identification of tone duration, line length, and letter position: An experimental approach to timing and working memory deficits in schizophrenia. Journal of Abnormal Psychology, 113 (4), 509–521.

    Article  PubMed  Google Scholar 

  • Elvevåg, B., McCormack, T., Gilbert, A., Brown, G., Weinberger, D., & Goldberg, T. (2003). Duration judgement in patients with schizophrenia. Psychological Medicine, 33 (7), 1249–1261.

    Article  PubMed  Google Scholar 

  • Franck, N., Posada, A., Pichon, S., & Haggard, P. (2005). Altered subjective time of events in schizophrenia. The Journal of Nervous and Mental Disease, 193 (5), 350–353.

    Article  PubMed  Google Scholar 

  • Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3 (2), 89–97.

    PubMed  CAS  Google Scholar 

  • Frith, C. (1987). The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychological Medicine, 17, 631–648.

    Article  PubMed  CAS  Google Scholar 

  • Frith, C. (2005). The self in action: Lessons from delusions of control. Consciousness and Cognition, 14, 752–770.

    Article  PubMed  Google Scholar 

  • Frith, C., & Dolan, R. (1997). Brain mechanisms associated with top-down processes in perception. Philosophical Transactions of the Royal Society of London Biological Sciences, 352, 1221–1230.

    Article  CAS  Google Scholar 

  • Fuster, J. M. (1999). Synopsis of function and dysfunction of the frontal lobe. Acta Psychiatrica Scandinavica, 99 (Suppl. 395), 51–57.

    Article  Google Scholar 

  • Galtress, T., & Kirkpatrick, K. (2009). Reward value effects on timing in the peak procedure. Learning and Motivation, 40, 109–131.

    Article  Google Scholar 

  • Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Science, 9 (6), 290–295.

    Article  Google Scholar 

  • Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5 (4), 382–385.

    Article  PubMed  CAS  Google Scholar 

  • Haggard, P., & Eimer, M. (1999). On the relation between brain potentials and the awareness of voluntary movements. Experimental Brain Research, 126, 128–133.

    Article  CAS  Google Scholar 

  • Harrington, D., Haaland, K., & Knight, R. (1998). Cortical networks underlying mechanisms of time perception. The Journal of Neuroscience, 18 (3), 1085–1095.

    PubMed  CAS  Google Scholar 

  • Harvey, P. (1985). Reality monitoring in mania and schizophrenia. Journal of Nervous and Mental Disorders, 173, 67–73.

    CAS  Google Scholar 

  • Hemsley, D. R. (1993). A simple (or simplistic?) cognitive model for schizophrenia. Behaviour Research and Therapy, 31, 633–645.

    Article  PubMed  CAS  Google Scholar 

  • Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., et al. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61 (7), 658–668.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Spencer, R. M. (2004). The neural representation of time. Current Opinion in Neurobiology, 14 (2), 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Jantzen, K. J., Oullier, O., Marshall, M., Steinberg, F. L., & Kelso, J. A. (2007). A parametric fMRI investigation of context effects in sensorimotor timing and coordination. Neuropsychologia, 45 (4), 673–684.

    Article  PubMed  CAS  Google Scholar 

  • Jardri, R., Pouchet, A., Pins, D., & Thomas, P. (2011). Cortical activations during auditory-verbal hallucinations in schizophrenia: A coordinate-based meta-analysis. The American Journal of Psychiatry, 168 (1), 73–81.

    Article  PubMed  Google Scholar 

  • Johnson, J. E., & Petzel, T. P. (1971). Temporal orientation and time estimation in chronic schizophrenics. Journal of Clinical Psychology, 27 (2), 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. The American Journal of Psychiatry, 160, 13–23.

    Article  PubMed  Google Scholar 

  • Krishnan, R. R., Kraus, M. S., & Keefe, R. S. (2011). Comprehensive model of how reality distortion and symptoms occur in schizophrenia: Could impairment in learning-dependent predictive perception account for the manifestations of schizophrenia? Psychiatry and Clinical Neurosciences, 65, 305–317.

    Article  PubMed  Google Scholar 

  • Lee, K. H., Bhaker, R. S., Mysore, A., Parks, R. W., Birkett, P. B., & Woodruff, P. W. (2009). Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Research, 166 (2–3), 174–183.

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13 (2), 250–255.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, C. J., & Meck, W. H. (2005). Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology, 182, 1–13.

    Article  Google Scholar 

  • Meck, W. H. (1996). Neuropharmacology of timing and time perception. Brain Research and Cognition, 3, 227–242.

    Article  CAS  Google Scholar 

  • Meck, W. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58, 1–8.

    Article  PubMed  Google Scholar 

  • Meehl, P. E. (1989). Schizotaxia revisited. Archives of General Psychiatry, 46 (10), 935–944.

    Article  PubMed  CAS  Google Scholar 

  • Ojeda, N., Ortuno, F., Arbizu, J., Lopez, P., Marti-Climent, J. M., Penuelas, I., et al. (2002). Functional neuroanatomy of sustained attention in schizophrenia: Contribution of parietal cortices. Human Brain Mapping, 17 (2), 116–130.

    Article  PubMed  Google Scholar 

  • Ortuňo, F. M., Lopez, P., Ojeda, N., & Cervera, S. (2005). Dysfunctional supplementary motor area implication during attention and time estimation tasks in schizophrenia: A PET-O15 water study. NeuroImage, 24 (2), 575–579.

    Article  PubMed  Google Scholar 

  • Penney, T., Meck, W., Roberts, S., Gibbon, J., & Erlenmeyer-Kimling, L. (2005). Interval-timing deficits in individuals at high risk for schizophrenia. Brain and Cognition, 58, 109–118.

    Article  PubMed  Google Scholar 

  • Phillips, W., & Silverstein, S. (2002). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. The Behavioral and Brain Sciences, 26 (1).

    Google Scholar 

  • Picton, T., Stuss, D., Shallice, T., Alexander, M., & Gillingham, S. (2006). Keeping time: Effects of focal frontal lesions. Neuropsychologia, 44, 1195–1209.

    Article  PubMed  Google Scholar 

  • Rizzo, L., Danion, J.-M., van der Linden, M., & Grange, D. (1996). Patients with schizophrenia remember that an event has occurred, but not when. The British Journal of Psychiatry, 168, 427–431.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, B., Deutsch, L., Cohen, C., Warden, D., & Deutsch, S. (1991). Memory for temporal order in schizophrenia. Biological Psychiatry, 29, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Shum, D., Ungvari, G. S., Tang, W. K., & Leung, J. P. (2004). Performance of schizophrenia patients on time-, event-, and activity-based prospective memory tasks. Schizophrenia Bulletin, 30 (4), 693–701.

    Article  PubMed  Google Scholar 

  • Spence, S. (1996). Free will in the light of neuropsychiatry. Philosophy, Psychiatry and Psychology, 3, 75–90.

    Article  Google Scholar 

  • Spence, S. A. (2004). Voices in the brain. Cognitive Neuropsychiatry, 9 (1/2), 1–8.

    Article  PubMed  Google Scholar 

  • Spencer, K. M. (2008). Visual gamma oscillations in schizophrenia: Implications for understanding neural circuitry abnormalities. Clinical EEG and Neuroscience: Official Journal of the EEG and Clinical Neuroscience Society, 39 (2), 65–68.

    Article  Google Scholar 

  • Spencer, K. M., Niznikiewicz, M. A., Shenton, M. E., & McCarley, R. W. (2008). Sensory-evoked gamma oscillations in chronic schizophrenia. Biological Psychiatry, 63 (8), 744–747.

    Article  PubMed  Google Scholar 

  • Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59 (10), 929–939.

    Article  PubMed  CAS  Google Scholar 

  • Todd, J. (2006). Impaired detection of silent interval change in schizophrenia. NeuroReport, 17 (8), 785–789.

    Article  PubMed  Google Scholar 

  • Tracy, J., Monaco, C., McMichael, H., Tyson, K., Chambliss, C., Christensen, H., et al. (1998). Information-processing characteristics of explicit time estimation by patients with schizophrenia and normal controls. Perceptual and Motor Skills, 86, 515–526.

    Article  PubMed  CAS  Google Scholar 

  • Tysk, L. (1990). Estimation of time by patients with positive and negative schizophrenia. Perceptual and Motor Skills, 71 (3 Pt 1), 826.

    Article  PubMed  CAS  Google Scholar 

  • Uhlhaas, P., & Silverstein, S. (2005). Perceptual organization in schizophrenia spectrum disorders: Empirical research and theoretical implications. Psychological Bulletin, 131 (4), 618–632.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52 (1), 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Volz, H.-P., Nenadic, I., Gaser, C., Rammsayer, T., Hager, F., & Sauer, H. (2001). Time estimation in schizophrenia: An fMRI study at adjusted levels of difficulty. NeuroReport, 12 (2), 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, O. F., & Sieg, D. (1980). Time estimation among schizophrenics. Perceptual and Motor Skills, 50 (2), 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Waters, F., Badcock, J., & Maybery, M. (2006). The who and when of context memory: Different patterns of association with auditory hallucinations. Schizophrenia Research, 82 (2–3), 271–273.

    Article  PubMed  Google Scholar 

  • Waters, F., Badcock, J., Michie, P., & Maybery, M. (2006). Auditory hallucinations in schizophrenia: Intrusive thoughts and forgotten memories. Cognitive Neuropsychiatry, 11 (1), 65–83.

    Article  PubMed  Google Scholar 

  • Waters, F., & Jablensky, A. (2009). Timing judgment deficits in patients with first-rank (passivity) symptoms. Psychiatry Research, 167, 12–20.

    Article  PubMed  Google Scholar 

  • Waters, F., Maybery, M., Badcock, J., & Michie, P. (2004). Context memory and binding in schizophrenia. Schizophrenia Research, 68 (2–3), 119–125.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

FW is supported by National Health and Medical Research Grant ID 634328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavie Waters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waters, F. (2013). Time Perception and Discrimination in Individuals Suffering from Hallucinations. In: Jardri, R., Cachia, A., Thomas, P., Pins, D. (eds) The Neuroscience of Hallucinations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4121-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4121-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4120-5

  • Online ISBN: 978-1-4614-4121-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics