Targeting gC1qR Domains for Therapy Against Infection and Inflammation

  • Berhane Ghebrehiwet
  • Jolyon Jesty
  • Rama Vinayagasundaram
  • Uma Vinayagasundaram
  • Yan Ji
  • Alisa Valentino
  • Nithin Tumma
  • Kinga H. Hosszu
  • Ellinor I. B. Peerschke
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 735)

Abstract

The receptor for the globular heads of C1q, gC1qR/p33, is a widely expressed cellular ­protein, which binds to diverse ligands including plasma proteins, cellular proteins, and microbial ligands. In addition to C1q, gC1qR also binds high molecular weight kininogen (HK), which also has two other cell surface sites, namely, cytokeratin 1 and urokinase plasminogen activator receptor (uPAR). On endothelial cells (ECs), the three molecules form two closely associated bimolecular complexes of gC1qR/cytokeratin 1 and uPAR/cytokeratin 1. However, by virtue of its high affinity for HK, gC1qR plays a central role in the assembly of the kallikrein–kinin system, leading to the generation of bradykinin (BK). BK in turn is largely responsible for the vascular leakage and associated inflammation seen in angioedema patients. Therefore, blockade of gC1qR by inhibitory peptides or antibodies may not only prevent the generation of BK but also reduce C1q-induced or microbial-ligand-induced inflammatory responses. Employing synthetic peptides and gC1qR deletion mutants, we confirmed previously predicted sites for C1q (residues 75–96) and HK (residues 204–218) and identified additional sites for both C1q and HK (residues190–202), for C1q (residues 144–162), and for HIV-1 gp41 (residues 174–180). With the exception of residues 75–96, which is located in the αA coiled-coil N-terminal segment, most of the identified residues form part of the highly charged loops connecting the various β-strands in the crystal structure. Taken together, the data support the notion that gC1qR could serve as a novel molecular target for the design of antibody-based and/or peptide-based therapy to attenuate acute and/or chronic inflammation associated with vascular leakage and infection.

Keywords

Hepatitis Adenocarcinoma Pneumonia Heparin Bacillus 

Abbreviations

gC1qR

Receptor for the globular heads of C1q

cC1qR

Receptor for the collagen tail of C1q

HK

High molecular weight kininogen

KKS

Kallikrein–kinin system

BK

Bradykinin

ATIII

Antithrombin III

VN

Vitronectin

TAT

Thrombin–antithrombin complex

VNTAT

Vitronectin–thrombin–antithrombin complex

Notes

Acknowledgement

This work was supported in part by grants from the National Institutes of Health (R01 AI 060866 and R01 AI-084178).

References

  1. Agostinis CR, Bulla C, Tripodo A, Gismondi H, Stabile F, Bossi C, Guarnotta C, De Garlanda F, Seta P, Spessotto A, Santoni B, Ghebrehiwet GG, Tedesco F (2010) An alternative role of C1q in cell migration and tissue remodelling: contribution to trophoblast invasion and placental development. J Immunol 185:4420–4429PubMedCrossRefGoogle Scholar
  2. Agostoni A, Cicardi M (1992) Hereditary and acquired C1-inhibitor deficiency. Biological and clinical characteristics in 235 patients. Medicine 71:206–215PubMedCrossRefGoogle Scholar
  3. Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikrein, kininogen and kinases. Pharmacol Rev 44:1–80PubMedGoogle Scholar
  4. Bordin S, Ghebrehiwet B, Page RC (1990) Participation of C1q and its receptor in adherence of human diploid fibroblasts. J Immunol 145:2520–2526PubMedGoogle Scholar
  5. Bossi F, Fischetti F, Regoli D, Durigutto P, Frossi B, Jr F, Gobeil B, Ghebrehiwet EIB, Peerschke MC, Tedesco F (2009) Novel pathogenic mechanism and therapeutic approaches to angioedema associated with C1 inhibitor deficiency. J Allergy Clin Immunol 124:1303–1310PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bossi F, Peerschke EI, Ghebrehiwet B, Tedesco F (2011) Cross-talk between the complement and the kinin system in vascular permeability. Immunol Lett 105:1053–1059Google Scholar
  7. Braun L, Ghebrehiwet B, Cossart P (2000) gC1q-R/p32, a C1q-binding protein is a novel receptor for Listeria monocytogenes. EMBO J 19:1458–1466PubMedCentralPubMedCrossRefGoogle Scholar
  8. Castellano G, Woltman AM, Nauta AJ, Roos A, Trouw LA, Seelen M, Schena FB, Daha MR, van Kooten C (2004a) Maturation of dendritic cells abrogates C1q production in vivo and in vitro. Blood 103:3813–3820PubMedCrossRefGoogle Scholar
  9. Castellano G, Woltman AM, Schena FP, Roos A, Daha MR, van Kooten C (2004b) Dendritic cells and complement: at the crossroad of innate and adaptive immunity. Mol Immunol 41:133–140PubMedCrossRefGoogle Scholar
  10. Chen A, Gaddipati S, Volkman DJ, Peerschke EIB, Ghebrehiwet B (1994) Human T cells possess specific receptors for C1q: role in activation and proliferation. J Immunol 153:1430–1440PubMedGoogle Scholar
  11. Colman RW, Pixley RA, Najamunnisa S, Yan W, Wang J, Mazar A, McRae KR (1997) Binding of high molecular weight kininogen to human umbilical vein endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 100:1481–1487PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fausther-Bonvendo H, Vieillard V, Sagan S, Bismuth G, Debre P (2010) HIV gp41 engages gC1qR on CD4+ T cells to induce the expression of an NK ligand through the PIP3/H2O2 pathway. PLoS Pathog 6(7):e1000975. doi: 10.1371/journal.ppat.1000975 CrossRefGoogle Scholar
  13. Feng X, Tonnesen MG, Peerschke EIB, Ghebrehiwet B (2002) Cooperation of C1q receptors and integrins in C1q-mediated endothelial cell adhesion and spreading. J Immunol 168:2441–2448PubMedCrossRefGoogle Scholar
  14. Fogal V, Zhang L, Krajewski S, Ruoslahti E (2008) Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68:7210–7218PubMedCentralPubMedCrossRefGoogle Scholar
  15. Ghebrehiwet B, Peerschke EIB (1998) Structure and function of gC1q-R a multiligand binding membrane protein. Immunobiology 199:225–238PubMedCrossRefGoogle Scholar
  16. Ghebrehiwet B, Peerschke EIB (2004) cC1qR (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection. Mol Immunol 41:173–183PubMedCrossRefGoogle Scholar
  17. Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153:665–676PubMedCrossRefGoogle Scholar
  18. Ghebrehiwet B, Beck G, Habicht GS (1990) Interaction of C1q with its receptor (C1qR) on cultured cell lines induces an antiproliferative response. Clin Immunol Immunopathol 54:148–160PubMedCrossRefGoogle Scholar
  19. Ghebrehiwet B, Lim B-L, Peerschke EIB, Willis AC, Reid KBM (1994) Isolation cDNA cloning, and overexpression of a 33-kDa cell surface glycoprotein that binds to the globular ‘heads’ of C1q. J Exp Med 179:1809–1821PubMedCrossRefGoogle Scholar
  20. Ghebrehiwet B, Lim B-L, Kumar R, Feng X, Peerschke EIB (2001) gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins is involved in inflammation and infection. Immunol Rev 180:65–77PubMedCrossRefGoogle Scholar
  21. Ghebrehiwet B, Jesty J, Peerschke EIB (2002) gC1q-R/p33: structure-function predictions from the crystal structure. Immunobiology 205:421–432PubMedCrossRefGoogle Scholar
  22. Ghebrehiwet B, Tantral L, Titmus MA, Panessa-Warren B, Tortora GT, Wong SS, Warren J (2007) Current topics in innate immunity, vol 598. Springer, Berlin, pp 180–197CrossRefGoogle Scholar
  23. Ghebrehiwet B, Jesty J, Xu S, Vinayagasundaram R, Vinayagasundaram U, Ji Y, Valentino A, Hosszu KK, Mathew S, Joseph K, Kaplan AP, Peerschke EIB (2011) Structure-function studies using deletion mutants identify domains of gC1qR/p33 as potential therapeutic targets for vascular permeability and inflammation. Front Immunol 2:1–9CrossRefGoogle Scholar
  24. Gigli I, Kaplan AP, Austen KF (1971) Modulation of function of the activated first component of complement by a fragment derived from serum. J Exp Med 134:1466–1484PubMedCentralPubMedCrossRefGoogle Scholar
  25. Guo N, Weremowicz S, Lynch N, Schwaeble W, Lim B-L, Morton CC, Peerschke EIB, Reid KBM, Ghebrehiwet B, Sastry KN (1997) Assignment of gC1q-R, the C1q globular domain binding protein (C1qBP) to human chromosome band 17p13.3 by in situ hybridization. Cytogenet Cell Genet 77:283–284PubMedCrossRefGoogle Scholar
  26. Hasan AAK, Cines DB, Herwald H, Schmaier AH, Müller-Esterl W (1995) Mapping the cell binding site on high molecular weight kininogen domain 5. J Biol Chem 270:19256–119261PubMedCrossRefGoogle Scholar
  27. Hasan AAK, Zisman T, Schmaier AH (1998) Identification of cytokeratin 1 as a binding protein and presentation receptor for kininogens on endothelial cells. Proc Natl Acad Sci USA 95:3615–3620PubMedCentralPubMedCrossRefGoogle Scholar
  28. Herwald H, Hasan AAK, Godovac-Zimmermann J, Schmaier AH, Müller-Esterl W (1995) Identification of an endothelial cell binding site on kininogen domain D3. J Biol Chem 270:14634–14642PubMedGoogle Scholar
  29. Herwald H, Dedio J, Kellner R, Loos M, Müller-Esterl W (1996) Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. J Biol Chem 271:13040–13047PubMedCrossRefGoogle Scholar
  30. Hettasch JM, Greenberg CS (1998) Fibrin formation and stabilization. In: Loscalzo J, Schafer AI (eds) Thrombosis and hemorrhage. William & Willkins, Philadelphia, pp 129–154Google Scholar
  31. Hosszu KK, Vinayagasundaram U, Habiel D, Ji Y, Vinayagasundaram R, Peerschke EIB, Ghebrehiwet B (2010a) Evidence that the full-length gC1qR (residues 1–282) is expressed on the cell surface. Mol Immunol 47:2223, XXIIIrd, (abstract)CrossRefGoogle Scholar
  32. Hosszu K, Vinayagasundaram U, Vinayagasundaram R, Santiago-Schwarz F, Peerschke E (2010b) Evidence that gC1qR and DC-SIGN associate on the surface of immature dendritic cells. J Immunol 184:136.24 (abstract)Google Scholar
  33. Jiang J, Zhang Y, Krainer A, Xu R-M (1999) Crystal structure of p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 96:3572–3577PubMedCentralPubMedCrossRefGoogle Scholar
  34. Joseph K, Ghebrehiwet B, Peerschke EIB, Reid KBM, Kaplan AP (1996) Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor, which binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci USA 93:8552–8557PubMedCentralPubMedCrossRefGoogle Scholar
  35. Kaplan AP (2004a) Mechanisms of bradykinin formation. In: Greaves MW, Kaplan AP (eds) Urticaria and angioedema. Marcel Dekker Inc., New York, pp 51–72Google Scholar
  36. Kaplan AP (2004b) C1 inhibitor deficiency. In: Greaves MW, Kaplan AP (eds) Urticaria and angioedema. Marcel Dekker Inc., New York, pp 303–320Google Scholar
  37. Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470PubMedCrossRefGoogle Scholar
  38. Kim K-B, Yi J-S, Nguyen N, Lee J-H, Kwon Y-C, Ahn B-Y, Cho H, Kim YK, Yoo H-J, Lee J-S, Ko Y-G (2011) Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem 286:23093–23101CrossRefGoogle Scholar
  39. Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS (2000) Interaction between complement receptor gC1q-R and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest 106:1239–1249PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kuna P, Iyer M, Peerschke EIB, Kaplan AP, Reid KBM, Ghebrehiwet B (1996) Human C1q induces eosinophil migration. Clin Immunol Immunopathol 81:48–54PubMedCrossRefGoogle Scholar
  41. Leigh LE, Ghebrehiwet B, Perera TP, Bird IN, Strong P, Kishore U, Reid KBM, Eggleton P (1998) C1q-mediated chemotaxis by human neutrophils: involvement of gClqR and G-protein signalling mechanisms. Biochem J 1998(330):247–254Google Scholar
  42. Lim B-L, Preissner K, Ghebrehiwet B, Leigh LEA, Reid KBM (1996) The binding protein for globular “heads” of complement C1q, gC1q-R: functional expression and characterization as a novel vitronectin binding factor. J Biol Chem 271:26739PubMedCrossRefGoogle Scholar
  43. Lim B-L, White RA, Hummel GS, Mak S-C, Schwaeble WJ, Reid KBM, Peerschke EIB, Ghebrehiwet B (1998) Characterization of the murine gene for gC1q-BP (gC1q-R), a novel cell protein that binds the globular heads of C1q, vitronectin, high molecular weight kininogen and factor XII. Gene 209:229–237PubMedCrossRefGoogle Scholar
  44. Lim B-L, Tye AJ, Guo N, Sastry KN, Peerschke EIB, Ghebrehiwet B (2001) The Human gC1q-R/p33 gene (C1qBP): genomic organization and promoter analysis. J Biol Chem 276:17069–17075PubMedCrossRefGoogle Scholar
  45. Lozada C, Levin RI, Huie MR, Hirschhorn M, Naime D, Whittlow M, Recht PA, Golden B, Cronstein B (1995) Identification of C1q as the heat-labile serum cofactor required for immune complexes to stimulate endothelial expression of the adhesion molecules E-selectin and intracellular and vascular cell adhesion molecules 1. Proc Natl Acad Sci USA 92:8378–8382PubMedCentralPubMedCrossRefGoogle Scholar
  46. Lu PD, Galanakis D, Ghebrehiwet B, Peerschke EIB (1999) The receptor for the globular ‘heads’ of C1q, gC1q-R binds to fibrinogen and impairs its polymerization. Clin Immunol Immunopathol 90:360–367CrossRefGoogle Scholar
  47. Mahdi F, Shariat-Madar Z, Todd RF III, Figueroa CD, Schmaier AH (2001) Expression and Localization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood 97:2342–2350PubMedCrossRefGoogle Scholar
  48. Marques G, Anton LC, Barrio E, Sanchez A, Ruiz S, Gavilanes F, Vivanco F (1993) Arginine residues of the globular regions of human C1q involved in the interaction with immunoglobulin G. J Biol Chem 268:10393–10402PubMedGoogle Scholar
  49. Nguyen T, Ghebrehiwet B, Peerschke EIB (2000) Staphylococcus aureus protein A recognizes platelet gC1q-R/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 68:2061–2068PubMedCentralPubMedCrossRefGoogle Scholar
  50. Peerschke EIB, Ghebrehiwet B (2001) Human blood platelet gC1qR/p33. Immunol Rev 180:56–64PubMedCrossRefGoogle Scholar
  51. Peerschke EIB, Reid KBM, Ghebrehiwet B (1993) Platelet activation by C1q results in the induction of αIIb/β3 integrins (GP IIb/IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 178:579–587PubMedCrossRefGoogle Scholar
  52. Peerschke EIB, Minta JO, Zhou SZ, Bini A, Gotlieb A, Colman RW, Ghebrehiwet B (2004) Expression of gC1qR/p33 and its major ligands in human atherosclerotic lesions. Mol Immunol 41:759–766PubMedCrossRefGoogle Scholar
  53. Peerschke EI, Bayer AS, Ghebrehiwet B, Xiong YQ (2006) gC1qR/p33 blockade reduces Staphylococcus aureus colonization of target tissues in an animal model of infective endocarditis. Infect Immun 74:4418–4423PubMedCentralPubMedCrossRefGoogle Scholar
  54. Peerschke EIB, Dembitzer FR, Kinoshita Y, Burstein D, Phelps R, Ghebrehiwet B (2011) Differential expression of gC1qR in normal and pathologic human tissue. Mol Immunol 48:1718–2011 (abstract)CrossRefGoogle Scholar
  55. Pixley RA, Espinola RG, Ghebrehiwet B, Joseph K, Kao A, Cines DB, Colman RW (2011) Interaction of high molecular-weight kininogen with endothelial cell binding proteins suPAR, gC1qR and cytokeratin 1 determined by surface plasmon resonance (BiaCore). Thromb Hemost 105:1053–1059CrossRefGoogle Scholar
  56. Reddigari SR, Shibayama Y, Brunnee T, Kaplan AP (1993a) Human Hageman factor (factor XII) and high molecular weight kininogen compete for the same binding site on human umbilical vein endothelial cells. J Biol Chem 268:11982–11987PubMedGoogle Scholar
  57. Reddigari SR, Kuna P, Miragliotta GF, Shibayama Y, Nishikawa K, Kaplan AP (1993b) Human high molecular weight kininogen binds to human umbilical vein endothelial cells via its heavy and light chains. Blood 81:1306–1311PubMedGoogle Scholar
  58. Regoli D, Barabe J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46PubMedGoogle Scholar
  59. Rety S, Salamitou S, Garcia-Verdugo I, Hulmes DJS, Le Hagarat F, Chaby R, Lewit-Bentley A (2005) The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J Biol Chem 280:43073–43078PubMedCrossRefGoogle Scholar
  60. Rubinstein DB, Stortchevoi A, Boosalis M, Ashfaq R, Ghebrehiwet B, Peerschke EIB, Calvo F, Gillaume T (2004) Receptor for the globular heads of C1q (gC1q-R; p33); Hyaluronan-binding protein is preferentially expressed by adenocarcinoma cells. Int Cancer Res 110:741–750CrossRefGoogle Scholar
  61. Sethi S, Herrmann M, Roller J, von Müller L, Peerschke EI, Ghebrehiwet B, Bajric I, Menger MD, Laschke MW (2011) Inhibition of gC1qR/p33, a receptor for C1q, decreases adherence of Staphylococcus aureus to the microvascular endothelium in vivo. Microvasc Res 82:66–72PubMedCentralPubMedCrossRefGoogle Scholar
  62. Stewart JM (1980) Chemistry and biologic activity of peptides related to bradykinin. In: Erdos EG (ed) Bradykinin, kallidin and kallikrein. Springer, New York, pp 227–272Google Scholar
  63. Szabo J, Cervenak L, Toth FD, Prohaszka Z, Horvath L, Kerekes K, Beck Z, Bacsi A, Erdei A, Peerschke EI, Füst G, Ghebrehiwet B (2001) Soluble gC1q-R/p33, a cell protein that binds to the globular “heads” of C1q, effectively inhibits the growth of HIV-1 strains in cell cultures. Clin Immunol 99(2):222–231PubMedCrossRefGoogle Scholar
  64. van den Berg RH, Faber-Krol MC, Sim RB, Daha MR (1998) The first subcomponent of complement C1q triggers the production of IL-6, IL-8 and chemoattractant peptide 1 by human umbilical vein endothelial cells. J Immunol 161:6924–6934PubMedGoogle Scholar
  65. van Leuwen HC, O’Hare P (2001) Retargeting of the mitochondrial protein p32/gC1qR to a cytoplasmic compartment and the cell surface. J Cell Sci 114:2115–2123Google Scholar
  66. Vegh-Goyarts Z, Kew R, Gruber B, Ghebrehiwet B (2005) Chemotaxis of human monocyte derived dendritic cells toward C1q is mediated by gC1qR and cC1qR. Mol Immunol 43:1402–1407CrossRefGoogle Scholar
  67. Xu S, Menzies CA, Vinayagasundaram R, Mathew S, Vinayagasundaram U, Peerschke EIB, Jesty J (2009) Structure-function analysis of gC1qR/p33 using deletion mutants show additional binding sites for C1q. J Immunol 182:134.69 (abstract)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Berhane Ghebrehiwet
    • 1
  • Jolyon Jesty
    • 1
  • Rama Vinayagasundaram
    • 1
  • Uma Vinayagasundaram
    • 1
  • Yan Ji
    • 1
  • Alisa Valentino
    • 1
  • Nithin Tumma
    • 1
  • Kinga H. Hosszu
    • 1
  • Ellinor I. B. Peerschke
    • 2
  1. 1.The Department of MedicineStony Brook University School of Medicine, Health Sciences CenterNew YorkUSA
  2. 2.The Department of Laboratory MedicineMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations