Complement-Mediated Microvascular Injury Leads to Chronic Rejection

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 735)

Abstract

Microvascular loss may be an unappreciated root cause of chronic rejection for all solid organ transplants. As the only solid organ transplant that does not undergo primary systemic arterial revascularization at the time of surgery, lung transplants rely on the establishment of a microcirculation and are especially vulnerable to the effects of microvascular loss. Microangiopathy, with its attendant ischemia, can lead to tissue infarction and airway fibrosis. Maintaining healthy vasculature in lung allografts may be critical for preventing terminal airway fibrosis, also known as the bronchiolitis obliterans syndrome (BOS). BOS is the major obstacle to lung transplant success and affects up to 60% of patients surviving 5 years. The role of complement in causing acute microvascular loss and ischemia during rejection has recently been examined using the mouse orthotopic tracheal transplantation; this is an ideal model for parsing the role of airway vasculature in rejection. Prior to the development of airway fibrosis in rejecting tracheal allografts, C3 deposits on the vascular endothelium just as tissue hypoxia is first detected. With the eventual destruction of vessels, microvascular blood flow to the graft stops altogether for several days. Complement deficiency and complement inhibition lead to markedly improved tissue oxygenation in transplants, diminished airway remodeling, and accelerated vascular repair. CD4+ T cells and antibody-dependent complement activity independently mediate vascular destruction and sustained tissue ischemia during acute rejection. Consequently, interceding against complement-mediated microvascular injury with adjunctive therapy during acute rejection episodes, in addition to standard immunosuppression which targets CD4+ T cells, may help prevent the subsequent development of chronic rejection.

Keywords

Ischemia Luminal Fluorescein Isothiocyanate Bronchitis 

References

  1. Al-Lamki RS, Bradley JR, Pober JS (2008) Endothelial cells in allograft rejection. Transplantation 86(10):1340–1348PubMedCentralPubMedCrossRefGoogle Scholar
  2. Babu AN, Murakawa T, Thurman JM, Miller EJ, Henson PM, Zamora MR et al (2007) Microvascular destruction identifies murine allografts that cannot be rescued from airway fibrosis. J Clin Invest 117(12):3774–3785PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baldwin WM III, Qian Z, Ota H, Samaniego M, Wasowska B, Sanfilippo F et al (2000) Complement as a mediator of vascular inflammation and activation in allografts. J Heart Lung Transplant 19(8):723–730PubMedCrossRefGoogle Scholar
  4. Barman SA, Ardell JL, Parker JC, Perry ML, Taylor AE (1988) Pulmonary and systemic blood flow contributions to upper airways in canine lung. Am J Physiol 255(5 Pt 2):H1130–H1135PubMedGoogle Scholar
  5. Bishop GA, Waugh JA, Landers DV, Krensky AM, Hall BM (1989) Microvascular destruction in renal transplant rejection. Transplantation 48(3):408–414PubMedCrossRefGoogle Scholar
  6. Bustos M, Coffman TM, Saadi S, Platt JL (1997) Modulation of eicosanoid metabolism in endothelial cells in a xenograft model. Role of cyclooxygenase-2. J Clin Invest 100(5):1150–1158PubMedCentralPubMedCrossRefGoogle Scholar
  7. Byrne GW, McCurry KR, Kagan D, Quinn C, Martin MJ, Platt JL et al (1995) Protection of xenogeneic cardiac endothelium from human complement by expression of CD59 or DAF in transgenic mice. Transplantation 60(10):1149–1156PubMedCrossRefGoogle Scholar
  8. Choi J, Cho YM, Yang WS, Park TJ, Chang JW, Park SK (2007) Peritubular capillary C4d deposition and renal outcome in post-transplant IgA nephropathy. Clin Transplant 21(2):159–165PubMedCrossRefGoogle Scholar
  9. Contreras AG, Briscoe DM (2007) Every allograft needs a silver lining. J Clin Invest 117(12):3645–3648PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cool CD, Groshong SD, Rai PR, Henson PM, Stewart JS, Brown KK (2006) Fibroblast foci are not discrete sites of lung injury or repair: the fibroblast reticulum. Am J Respir Crit Care Med 174(6):654–658PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW et al (2004) Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 170(3):242–251PubMedCrossRefGoogle Scholar
  12. Daggett CW, Yeatman M, Lodge AJ, Chen EP, Van Trigt P, Byrne GW et al (1997) Swine lungs expressing human complement-regulatory proteins are protected against acute pulmonary dysfunction in a human plasma perfusion model. J Thorac Cardiovasc Surg 113(2):390–398PubMedCrossRefGoogle Scholar
  13. Dalmasso AP, Vercellotti GM, Fischel RJ, Bolman RM, Bach FH, Platt JL (1992) Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am J Pathol 140(5):1157–1166PubMedCentralPubMedGoogle Scholar
  14. Dhillon GS, Zamora MR, Roos JE, Sheahan D, Sista RR, Van der Starre P et al (2010) Lung transplant airway hypoxia: a diathesis to fibrosis? Am J Respir Crit Care Med 182(2):230–236PubMedCentralPubMedCrossRefGoogle Scholar
  15. Distler JH, Jungel A, Pileckyte M, Zwerina J, Michel BA, Gay RE et al (2007) Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum 56(12):4203–4215PubMedCrossRefGoogle Scholar
  16. Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74(7):867–872PubMedCrossRefGoogle Scholar
  17. Gaca JG, Appel JZ III, Lukes JG, Gonzalez-Stawinski GV, Lesher A, Palestrant D et al (2006) Effect of an anti-C5a monoclonal antibody indicates a prominent role for anaphylatoxin in pulmonary xenograft dysfunction. Transplantation 81(12):1686–1694PubMedCrossRefGoogle Scholar
  18. Genden EM, Boros P, Liu J, Bromberg JS, Mayer L (2002) Orthotopic tracheal transplantation in the murine model. Transplantation 73(9):1420–1425PubMedCrossRefGoogle Scholar
  19. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203(9):2165–2175PubMedCentralPubMedCrossRefGoogle Scholar
  20. Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA (2008) Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med 177(9):1033–1040PubMedCrossRefGoogle Scholar
  21. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193): 314–321PubMedCrossRefGoogle Scholar
  22. Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ (1993) Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol 142(6):1945–1951PubMedCentralPubMedGoogle Scholar
  23. Ionescu DN, Girnita AL, Zeevi A, Duquesnoy R, Pilewski J, Johnson B et al (2005) C4d deposition in lung allografts is associated with circulating anti-HLA alloantibody. Transpl Immunol 15(1):63–68PubMedCrossRefGoogle Scholar
  24. Ishii Y, Sawada T, Kubota K, Fuchinoue S, Teraoka S, Shimizu A (2005) Injury and progressive loss of peritubular capillaries in the development of chronic allograft nephropathy. Kidney Int 67(1):321–332PubMedCrossRefGoogle Scholar
  25. Jiang X, Khan MA, Tian W, Beilke J, Natarajan R, Kosek J et al (2011) Adenovirus-mediated HIF-1alpha gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection. J Clin Invest 121(6):2336–2349PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kallio EA, Lemstrom KB, Hayry PJ, Ryan US, Koskinen PK (2000) Blockade of complement inhibits obliterative bronchiolitis in rat tracheal allografts. Am J Respir Crit Care Med 161(4 Pt 1):1332–1339PubMedCrossRefGoogle Scholar
  27. Kaminski N, Rosas IO (2006) Gene expression profiling as a window into idiopathic pulmonary fibrosis pathogenesis: can we identify the right target genes? Proc Am Thorac Soc 3(4):339–344PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kamler M, Nowak K, Bock M, Herold U, Motsch J, Hagl S et al (2004) Bronchial artery revascularization restores peribronchial tissue oxygenation after lung transplantation. J Heart Lung Transplant 23(6):763–766PubMedCrossRefGoogle Scholar
  29. Karakiulakis G, Papakonstantinou E, Aletras AJ, Tamm M, Roth M (2007) Cell type-specific effect of hypoxia and platelet-derived growth factor-BB on extracellular matrix turnover and its consequences for lung remodeling. J Biol Chem 282(2):908–915PubMedCrossRefGoogle Scholar
  30. Keshavjee S, Davis RD, Zamora MR, de Perrot M, Patterson GA (2005) A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg 129(2):423–428PubMedCrossRefGoogle Scholar
  31. Khan MA, Jiang X, Dhillon G, Beilke J, Holers VM, Atkinson C et al (2011) CD4+ T cells and complement independently mediate graft ischemia in the rejection of mouse orthotopic tracheal transplants. Circ Res 109(11):1290–1301PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kuo E, Bharat A, Goers T, Chapman W, Yan L, Street T et al (2006) Respiratory viral infection in obliterative airway disease after orthotopic tracheal transplantation. Ann Thorac Surg 82(3):1043–1050PubMedCrossRefGoogle Scholar
  33. Labarrere CA, Nelson DR, Park JW (2001) Pathologic markers of allograft arteriopathy: insight into the pathophysiology of cardiac allograft chronic rejection. Curr Opin Cardiol 16(2):110–117PubMedCrossRefGoogle Scholar
  34. Ledbetter S, Kurtzberg L, Doyle S, Pratt BM (2000) Renal fibrosis in mice treated with human recombinant transforming growth factor-beta2. Kidney Int 58(6):2367–2376PubMedCrossRefGoogle Scholar
  35. Libby P, Pober JS (2001) Chronic rejection. Immunity 14(4):387–397PubMedCrossRefGoogle Scholar
  36. Luckraz H, Goddard M, McNeil K, Atkinson C, Charman SC, Stewart S et al (2004) Microvascular changes in small airways predispose to obliterative bronchiolitis after lung transplantation. J Heart Lung Transplant 23(5):527–531PubMedCrossRefGoogle Scholar
  37. Luckraz H, Goddard M, McNeil K, Atkinson C, Sharples LD, Wallwork J (2006) Is obliterative bronchiolitis in lung transplantation associated with microvascular damage to small airways? Ann Thorac Surg 82(4):1212–1218PubMedCrossRefGoogle Scholar
  38. Magro CM, Klinger DM, Adams PW, Orosz CG, Pope-Harman AL, Waldman WJ et al (2003a) Evidence that humoral allograft rejection in lung transplant patients is not histocompatibility antigen-related. Am J Transplant 3(10):1264–1272PubMedCrossRefGoogle Scholar
  39. Magro CM, Ross P Jr, Kelsey M, Waldman WJ, Pope-Harman A (2003b) Association of humoral immunity and bronchiolitis obliterans syndrome. Am J Transplant 3(9):1155–1166PubMedCrossRefGoogle Scholar
  40. Magro CM, Abbas AE, Seilstad K, Pope-Harman AL, Nadasdy T, Ross P Jr (2006) C3d and the septal microvasculature as a predictor of chronic lung allograft dysfunction. Hum Immunol 67(4–5):274–283PubMedCrossRefGoogle Scholar
  41. Manotham K, Tanaka T, Matsumoto M, Ohse T, Inagi R, Miyata T et al (2004) Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int 65(3):871–880PubMedCrossRefGoogle Scholar
  42. Matsumoto Y, McCaughan GW, Painter DM, Bishop GA (1993) Evidence that portal tract microvascular destruction precedes bile duct loss in human liver allograft rejection. Transplantation 56(1):69–75PubMedCrossRefGoogle Scholar
  43. Minami K, Murata K, Lee CY, Fox-Talbot K, Wasowska BA, Pescovitz MD et al (2006) C4d deposition and clearance in cardiac transplants correlates with alloantibody levels and rejection in rats. Am J Transplant 6(5 Pt 1):923–932PubMedCrossRefGoogle Scholar
  44. Minamoto K, Pinsky DJ (2002) Recipient iNOS but not eNOS deficiency reduces luminal narrowing in tracheal allografts. J Exp Med 196(10):1321–1333PubMedCentralPubMedCrossRefGoogle Scholar
  45. Murakawa T, Kerklo MM, Zamora MR, Wei Y, Gill RG, Henson PM et al (2005) Simultaneous LFA-1 and CD40 ligand antagonism prevents airway remodeling in orthotopic airway transplantation: implications for the role of respiratory epithelium as a modulator of fibrosis. J Immunol 174(7):3869–3879PubMedCrossRefGoogle Scholar
  46. Murata K, Iwata T, Nakashima S, Fox-Talbot K, Qian Z, Wilkes DS et al (2008) C4d deposition and cellular infiltrates as markers of acute rejection in rat models of orthotopic lung transplantation. Transplantation 86(1):123–129PubMedCentralPubMedCrossRefGoogle Scholar
  47. Nakashima S, Qian Z, Rahimi S, Wasowska BA, Baldwin WM III (2002) Membrane attack complex contributes to destruction of vascular integrity in acute lung allograft rejection. J Immunol 169(8):4620–4627PubMedCrossRefGoogle Scholar
  48. Nicolls MR, Zamora MR (2010) Bronchial blood supply after lung transplantation without bronchial artery revascularization. Curr Opin Organ Transplant 15(5):563–567PubMedCentralPubMedCrossRefGoogle Scholar
  49. Norgaard MA, Efsen F, Andersen CB, Svendsen UG, Pettersson G (1997) Medium-term patency and anatomic changes after direct bronchial artery revascularization in lung and heart-lung transplantation with the internal thoracic artery conduit. J Thorac Cardiovasc Surg 114(3):326–331PubMedCrossRefGoogle Scholar
  50. Norgaard MA, Andersen CB, Pettersson G (1998) Does bronchial artery revascularization influence results concerning bronchiolitis obliterans syndrome and/or obliterative bronchiolitis after lung transplantation? Eur J Cardiothorac Surg 14(3):311–318PubMedCrossRefGoogle Scholar
  51. Norgaard MA, Andersen CB, Pettersson G (1999) Airway epithelium of transplanted lungs with and without direct bronchial artery revascularization. Eur J Cardiothorac Surg 15(1):37–44PubMedCrossRefGoogle Scholar
  52. Nowak K, Kamler M, Bock M, Motsch J, Hagl S, Jakob H et al (2002) Bronchial artery revascularization affects graft recovery after lung transplantation. Am J Respir Crit Care Med 165(2):216–220PubMedCrossRefGoogle Scholar
  53. Okazaki M, Krupnick AS, Kornfeld CG, Lai JM, Ritter JH, Richardson SB et al (2007) A mouse model of orthotopic vascularized aerated lung transplantation. Am J Transplant 7(6):1672–1679PubMedCrossRefGoogle Scholar
  54. Ozdemir BH, Demirhan B, Ozdemir FN, Dalgic A, Haberal M (2004) The role of microvascular injury on steroid and OKT3 response in renal allograft rejection. Transplantation 78(5):734–740PubMedCrossRefGoogle Scholar
  55. Paradis I, Yousem S, Griffith B (1993) Airway obstruction and bronchiolitis obliterans after lung transplantation. Clin Chest Med 14(4):751–763PubMedGoogle Scholar
  56. Patterson GA (1993) Airway revascularization: is it necessary? Ann Thorac Surg 56(4):807–808PubMedCrossRefGoogle Scholar
  57. Platt JL, Fischel RJ, Matas AJ, Reif SA, Bolman RM, Bach FH (1991) Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 52(2):214–220PubMedCrossRefGoogle Scholar
  58. Ross DJ, Marchevsky A, Kramer M, Kass RM (1997) “Refractoriness” of airflow obstruction associated with isolated lymphocytic bronchiolitis/bronchitis in pulmonary allografts. J Heart Lung Transplant 16(8):832–838PubMedGoogle Scholar
  59. Sato M, Keshavjee S (2008) Bronchiolitis obliterans syndrome: alloimmune-dependent and -independent injury with aberrant tissue remodeling. Semin Thorac Cardiovasc Surg 20(2):173–182, SummerPubMedCrossRefGoogle Scholar
  60. Shiao SL, Kirkiles-Smith NC, Shepherd BR, McNiff JM, Carr EJ, Pober JS (2007) Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. J Immunol 179(7):4397–4404PubMedCrossRefGoogle Scholar
  61. Sundset A, Tadjkarimi S, Khaghani A, Kvernebo K, Yacoub MH (1997) Human en bloc double-lung transplantation: bronchial artery revascularization improves airway perfusion. Ann Thorac Surg 63(3):790–795PubMedCrossRefGoogle Scholar
  62. Trulock EP, Edwards LB, Taylor DO, Boucek MM, Keck BM, Hertz MI (2006) Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult lung and heart-lung transplantation report–2006. J Heart Lung Transplant 25(8):880–892PubMedCrossRefGoogle Scholar
  63. Wallace WD, Reed EF, Ross D, Lassman CR, Fishbein MC (2005) C4d staining of pulmonary allograft biopsies: an immunoperoxidase study. J Heart Lung Transplant 24(10):1565–1570PubMedCrossRefGoogle Scholar
  64. Yeatman M, Daggett CW, Lau CL, Byrne GW, Logan JS, Platt JL et al (1999) Human complement regulatory proteins protect swine lungs from xenogeneic injury. Ann Thorac Surg 67(3):769–775PubMedCrossRefGoogle Scholar
  65. Yousem SA, Burke CM, Billingham ME (1985) Pathologic pulmonary alterations in long-term human heart-lung transplantation. Hum Pathol 16(9):911–923PubMedCrossRefGoogle Scholar
  66. Zheng L, Ward C, Snell GI, Orsida BE, Li X, Wilson JW et al (1997) Scar collagen deposition in the airways of allografts of lung transplant recipients. Am J Respir Crit Care Med 155(6):2072–2077PubMedCrossRefGoogle Scholar
  67. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A et al (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 99(9):6292–6297PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineVA Palo Alto/Stanford University School of MedicineStanfordUSA

Personalised recommendations