Bioaugmentation for Aerobic Degradation of CIS-1,2-Dichloroethene

  • Laura K. Jennings
  • Cloelle G. S. Giddings
  • James M. Gossett
  • Jim C. Spain
Chapter
Part of the SERDP ESTCP Environmental Remediation Technology book series (SERDP/ESTCP)

Abstract

Polaromonas sp. strain JS666 is the first isolate capable of using cis-dichloroethene (cis-DCE) as its sole carbon and energy source under aerobic conditions (Coleman et al., 2002a). It is a promising candidate for bioaugmentation at cis-DCE-contaminated sites where cis-DCE has migrated downgradient into an aerobic zone. Addition of the strain can circumvent the problems associated with cometabolic oxidation as a bioremediation strategy because it catalyzes rapid degradation without the addition of a cosubstrate, and the requirements for oxygen are much lower than for cometabolic transformations. The metabolic capabilities of JS666, development of a molecular probe for process monitoring, microcosm assessment of site suitability, and the preliminary results of a field-scale study are discussed in this chapter.

Keywords

Toxicity DMSO Glutathione Acetonitrile Toluene 

Notes

Acknowledgement

This research was supported in part by contracts with the Environmental Security Technology Certification Program (ESTCP) and the SERDP. L.K. Jennings and C. G. S. Giddings were recipients of National Science Foundation (NSF) Graduate Research Fellowships. The authors thank F. Liu, E. Wood, and S. Nishino for sharing unpublished data; and D. Major, C. Aziz, and M. Watling of Geosyntec Consultants, Inc., who conducted the bioaugmentation field study at St. Julien’s Creek Annex, Virginia.

References

  1. Adamson DT, McDade JM, Hughes JB. 2003. Inoculation of DNAPL source zone to initiate reductive dechlorination of PCE. Environ Sci Technol 37:2525–2533.CrossRefGoogle Scholar
  2. Alvarez-Cohen L, Speitel GE. 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126.CrossRefGoogle Scholar
  3. Amann RI, Ludwig W, Schleifer K-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169.Google Scholar
  4. Anders MW, Dekant W. 1998. Glutathione-dependent bioactivation of haloalkenes. Annu Rev Pharmacol Toxicol 38:501–537.CrossRefGoogle Scholar
  5. Azizian MF, Istok JD, Semprini L. 2005. Push-pull test evaluation of the in situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms. Water Sci Technol 52:35–40.Google Scholar
  6. Azizian MF, Istok JD, Semprini L. 2007. Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests. J Contam Hydrol 90:105–124.CrossRefGoogle Scholar
  7. Bloom Y, Aravena R, Hunkeler D, Edwards E, Frape SK. 2000. Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride: Implications for assessment of natural attenuation. Environ Sci Technol 34:2768–2772.CrossRefGoogle Scholar
  8. Bradley PM, Chapelle FH. 1998a. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ Sci Techno 32:553–557.CrossRefGoogle Scholar
  9. Bradley PM, Chapelle FH. 1998b. Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4:81–87.CrossRefGoogle Scholar
  10. Bradley PM, Chapelle FH. 2000. Aerobic microbial mineralization of dichloroethene as sole carbon substrate. Environ Sci Technol 34:221–223.CrossRefGoogle Scholar
  11. Chartrand MMG, Waller A, Mattes TE, Elsner M, Lacrampe-Couloume G, Gossett JM, Edwards EA, Sherwood Lollar B. 2005. Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environ Sci Technol 34:1064–1070.CrossRefGoogle Scholar
  12. Chu KH, Mahendra S, Song DL, Conrad ME, Alvarez-Cohen L. 2004. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes. Environ Sci Technol 38:3126–3130.CrossRefGoogle Scholar
  13. Coleman NV, Mattes TE, Gossett JM, Spain JC. 2002a. Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium. Appl Environ Microbiol 68:2726–2730.CrossRefGoogle Scholar
  14. Coleman NV, Mattes TE, Gossett JM, Spain JC. 2002b. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171.CrossRefGoogle Scholar
  15. Cupples AM. 2008. Real-time PCR quantification of Dehalococcoides populations: Methods and applications. J Microbiol Methods 72:1–11.CrossRefGoogle Scholar
  16. Dekant W, Koob M, Henschler D. 1990. Metabolism of trichloroethene – in vivo and in vitro evidence for activation by glutathione conjugation. Chem Biol Interact 73:89–101.CrossRefGoogle Scholar
  17. Dekant W, Metzler M, Henschler D. 1986. Identification of S-1,2,2-trichlorovinyl-N-acetylcysteine as urinary metabolite of tetrachloroethylene: Bioactiviation through glutathione conjugation as a possible explanation of its nephrocarcinogenicity. J Biochem Toxicol 1:57–72.CrossRefGoogle Scholar
  18. Ellis DE, Lutz EJ, Odom JM, Buchanan RJ, Bartlett CL, Lee MD, Harkness MR, Deweerd KA. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260.CrossRefGoogle Scholar
  19. Elsner M, Chartrand M, Vanstone N, Couloume GL, Sherwood Lollar B. 2008. Identifying abiotic chlorinated ethene degradation: Characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42:5963–5970.CrossRefGoogle Scholar
  20. Elsner M, Cwiertny DM, Roberts AL, Sherwood Lollar B. 2007. 1,1,2,2-tetrachloroethane reactions with OH-, Cr(II), granular iron, and a copper-iron bimetal: Insights from product formation and associated carbon isotope fractionation. Environ Sci Technol 41:4111–4117.CrossRefGoogle Scholar
  21. Ensign SA. 2001. Microbial metabolism of aliphatic alkenes. Biochem 40:5845–5853.CrossRefGoogle Scholar
  22. Giddings CGS, Jennings LK, Gossett JM. 2010a. Microcosm assessment of a DNA probe applied to aerobic degradation of cis-1,2-dichloroethene by Polaromonas sp. strain JS666. Ground Water Monitor Remediat 30:97–105.CrossRefGoogle Scholar
  23. Giddings CGS, LiuF, Gossett JM. 2010b. Microcosm assessment of Polaromonas sp. JS666 as a bioaugmentation agent for degradation of cis-1,2-dichloroethene in aerobic, subsurface environments. Ground Water Monitor Remediat 30:106–113.CrossRefGoogle Scholar
  24. Glod G, Angst W, Holliger C, Schwarzenbach RP. 1997. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environ Sci Technol 31:253–260.CrossRefGoogle Scholar
  25. Hartmans S, Kaptein A, Tramper J, de Bont JAM. 1992. Characterization of a Mycobacterium sp. and a Xanthobacter sp. for the removal of vinyl-chloride and 1,2-dichloroethane from waste gases. Appl Microbiol Biotechnol 37:796–801.Google Scholar
  26. He J, Ritalahti KM, Aiello MR, Löffler FE. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003.CrossRefGoogle Scholar
  27. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC. 2002. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495.CrossRefGoogle Scholar
  28. Hirschorn SK, Dinglasan-Panlilio MJ, Edwards EA, Lacrampe-Couloume G, Sherwood Lollar B. 2007. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environ Microbiol 9:1651–1657.CrossRefGoogle Scholar
  29. Hirschorn SK, Dinglasan MJ, Elsner M, Mancini SA, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B. 2004. Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environ Sci Technol 38:4775–4781.CrossRefGoogle Scholar
  30. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321.CrossRefGoogle Scholar
  31. Hood ED, Major DW, Quinn JW, Yoon WS, Gavaskar A, Edwards EA. 2008. Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Ground Water Monitor Remediat 28:98–107.CrossRefGoogle Scholar
  32. Hopkins GD, McCarty PL. 1995. Field-evaluation of in-situ aerobic cometabolism of trichloroethylene and 3 dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637.CrossRefGoogle Scholar
  33. Hunkeler D, Aravena R, Cox E. 2002. Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: Laboratory experiments and modeling of isotope evolution. Environ Sci Technol 36:3378–3384.CrossRefGoogle Scholar
  34. Jennings LK. 2005. Culturing and Enumeration of Polaromonas sp. Strain JS666 for its Use as a Bioaugmentation Agent in the Remediation of cis-Dichloroethene-Contaminated Sites. MS Thesis. Cornell University, Ithaca, NY, USA.Google Scholar
  35. Jennings LK. 2009. Proteomic and Transcriptomic Analyses Reveal Genes Upregulated by cis-Dichloroethene in Polaromonas JS666. PhD Dissertation. Cornell University, Ithaca, NY, USA.Google Scholar
  36. Jennings LK, Chartrand MMG, Lacrampe-Couloume G, Sherwood Lollar B, Spain JC, Gossett JM. 2009. Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666. Appl Environ Microbiol 75:3733–3744.CrossRefGoogle Scholar
  37. Jeon CO, Park M, Ro H-S, Park W, Madsen EL. 2006. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: Evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 72:1086–1095.CrossRefGoogle Scholar
  38. Kohler-Staub D, Leisinger T. 1985. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol 162:676–681.Google Scholar
  39. Lee PKH, Conrad ME, Alvarez-Cohen L. 2007. Stable carbon isotope fractionation of chloroethenes by dehalorespiring isolates. Environ Sci Technol 41:4277–4285.CrossRefGoogle Scholar
  40. Lendvay JM, Löffler FE, Dollhopf M, Aiello MR, Daniels G, Fathepure BZ, Gebhard M, Heine R, Helton R, Shi J, Krajmalnik-Brown R, Major CL, Barcelona MJ, Petrovskis E, Hickey R, Tiedje JM, Adriaens P. 2003. Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37:1422–1431.CrossRefGoogle Scholar
  41. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116.CrossRefGoogle Scholar
  42. Major D, Aziz C, Watling M, Gossett J, Spain J. 2010. Enhancing natural attenuation through bioaugmentation with aerobic bacteria that degrade cis-1,2-dichloroethene. ESTCP project ER-200516 Final Report. ESTCP, Arlington, VA, USA. http://serdp-estcp.org/content/download/8532/104563/file/ER-0516_FR_PMA_Final. Accessed March 20, 2012.
  43. Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV. 2008. The genome of Polaromonas sp. strain JS666: Insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol 74:6405–6416.Google Scholar
  44. Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.CrossRefGoogle Scholar
  45. McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers TJ. 1998. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32:88–100.CrossRefGoogle Scholar
  46. Osborne TH, Jamieson HE, Hudson-Edwards KA, Nordstrom DK, Walker SR, Ward SA, Santini JM. 2010. Microbial oxidation of arsenite in a subarctic environment: Diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidizer. BMC Microbiol 10:205–213.CrossRefGoogle Scholar
  47. Schaefer CE, Condee CW, Vainberg S, Steffan RJ. 2009. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: Comparison between batch and column experiments. Chemosphere 75:141–148.Google Scholar
  48. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G. 1995. Isolation and characterization of Dehalospirillum multivorans gen nov, sp nov, a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56.CrossRefGoogle Scholar
  49. Semprini L. 1995. In situ bioremediation of chlorinated solvents. Environ Health Perspect 103:101–105.Google Scholar
  50. Semprini L, Dolan ME, Mathias MAB, Hopkins GD, McCarty PL. 2007. Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Adv Water Resour 30:1528–1546.CrossRefGoogle Scholar
  51. Semprini L, Roberts PV, Hopkins GD, McCarty PL. 1990. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 2, Results of biostimulation and biotransformation experiments. Ground Water 28:715–727.CrossRefGoogle Scholar
  52. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KT, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF. 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Sci 307:105–108.CrossRefGoogle Scholar
  53. Sharma S, Radl V, Hai B, Kloos K, Fuka MM, Engel M, Schauss K, Schloter M. 2007. Quantification of functional genes from procaryotes in soil by PCR. J Microbiol Methods 68:445–452.CrossRefGoogle Scholar
  54. Singh H, Löffler FE, Fathepure BZ. 2004. Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture. Biodegradation 15:197–204.CrossRefGoogle Scholar
  55. Slater GF, Sherwood Lollar B, Sleep BE, Edwards EA. 2001. Variability in carbon isotopic fractionation during biodegradation of chlorinated ethenes: Implications for field applications. Environ Sci Technol 35:901–907.CrossRefGoogle Scholar
  56. Sleep BE, Seepersad DJ, Mo K, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebrón C, Sherwood Lollar B, Major DW, Edwards EA. 2006. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633.CrossRefGoogle Scholar
  57. Smith CJ, Nedwell DB, Dong LF, Osborn AM. 2006. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ Microbiol 8:804–815.CrossRefGoogle Scholar
  58. Smits THM, Devenoges C, Szynalski K, Maillard J, Holliger C. 2004. Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. J Microbiol Methods 57:369–378.CrossRefGoogle Scholar
  59. Steffan R, Schaefer C, Lippincott D. 2010. Bioaugmentation for groundwater remediation. Project ER-200515 Final Report. ESTCP, Arlington, VA, USA. 345 p.Google Scholar
  60. Tiehm A, Schmidt KR, Pfeifer B, Heidinger M, Ertl S. 2008. Growth kinetics and stable carbon isotope fractionation during aerobic degradation of cis-1,2-dichloroethene and vinyl chloride. Water Res 42:2431–2438.CrossRefGoogle Scholar
  61. Van Hylckama Vlieg JET, Janssen DB. 2001. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes. J Biotechnol 85:81–102.CrossRefGoogle Scholar
  62. Van Raemdonck H, Maes A, Ossieur W, Verthe K, Boon N. 2006. Real time PCR quantification in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1. J Microbiol Methods 67:294–303.CrossRefGoogle Scholar
  63. Verce MF, Ulrich RL, Freedman DL. 2000. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 66:3535–3542.CrossRefGoogle Scholar
  64. Wang GJ, Gentry TJ, Grass G, Josephson K, Rensing C, Pepper IL. 2004. Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil. FEMS Microbiol Lett 233:307–314.CrossRefGoogle Scholar
  65. Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL. 2009. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 11:2253–2270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laura K. Jennings
    • 1
  • Cloelle G. S. Giddings
    • 1
  • James M. Gossett
    • 1
  • Jim C. Spain
    • 2
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations