Solving an Electromagnetic Scattering Problem in Chiral Media

  • Christodoulos Athanasiadis
  • Sotiria Dimitroula
  • Kostantinos Skourogiannis
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 71)

Abstract

In this work we consider the problem of scattering of a plane electromagnetic wave by a chiral dielectric obstacle in a chiral environment. We formulate the problem in terms of Beltrami fields in order to state existence and uniqueness. We prove a general scattering theorem when the incident field is a chiral electromagnetic Herglotz pair. Using low-frequency techniques the scattering problem is reduced to an iterative sequence of potential problems which can be solved successively in terms of expansions in appropriate ellipsoidal harmonic functions and we evaluate the zeroth-order approximation.

Keywords

Chiral media Herglotz functions Far-field operator Low-frequency scattering 

References

  1. 1.
    Ammari, H., Nedelec, J.C.: Time-harmonic electromagnetic fields in chiral media. Modern Methods Diff. Theory Appl. Eng. 42, 174–202 (1997)MathSciNetGoogle Scholar
  2. 2.
    Ammari, H., Laoudi, M., Nedelec. J.: Low frequency behavior of solutions to electromagnetic scattering problems in chiral media. SIAM J. Appl. Math. 58, 1022–1042 (1998)Google Scholar
  3. 3.
    Ammari, H., Hamdache, K., Nedelec, J.C.: Chirality in the Maxwell equations by the dipole approximation method. SIAM J. Appl. Math. 59, 2045–2059 (1999)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Allam, A.M.RI.: Chiral absorbing material. In: Seventeenth National Radio Science Conference, Minufga University , Egypt, 2000Google Scholar
  5. 5.
    Arago, D.F.J.: Sur une modification remarquable qu’eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d’optique., Mem. Inst. 12, Part I, 93–134 (1811)Google Scholar
  6. 6.
    Athanasiadis, C.: Low-frequency electromagnetic scattering for a multi-layered scatterer. Quart. Jl. Mech. Appl. Math. 44, 55–67 (1991)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Athanasiadis, C., Martin, P., Stratis, I.G.: Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral relations and low-chirality approximations. SIAM J. Appl. Math. 59, 1745–1762 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Athanasiadis, C., Costakis, G., Stratis, I.G.: Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment. IMA J. Appl. Math. 64, 245–258 (2000)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Athanasiadis, C., Costakis, G., Stratis, I.G.: Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: solvability and low frequency theory. Math. Meth. Appl. Sci. 25, 927–944 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Athanasiadis, C., Costakis, G., Stratis, I.G.: Transmission problems in contrasting chiral media. Rep. Math. Phys. 53, 143–156 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Athanasiadis, C.: On the far field patterns for electromagnetic scattering by a chiral obstacle in a chiral environment. Math.Anal. Appl. 309, 517–533 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Athanasiadis, C., Kardasi, E.: Beltrami Herglotz functions for electromagnetic scattering in chiral media. Appl. Anal. 84, 1–19 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Athanasiadis, C., Kardasi E.: On the far field operator for electromagnetic scattering in chiral media. Applicable Analysis. 85, 623–639 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Athanasiadis, C., Berketis, N.: Scattering relations for point-source excitation in chiral media. Math. Meth. Appl. Sci. 29, 27–48 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bohren, C.F.: Light scattering by an oprtically active sphere. Chem. Phys. Lett. 29, 458–462 (1974)CrossRefGoogle Scholar
  16. 16.
    Bohren, C.F.: Scattering of an electromagnetic wave by an optically active cylinder. J. Colloid Interface Sci. 66, 105–109 (1978)CrossRefGoogle Scholar
  17. 17.
    Biot, J.B.: Memorire sur le rotations que certains substances impriment aux axes de polarization de rayons lumineux. Memoiries de la classe de sciences Mathematiques et Physiques de l’Institut Imperial de France II, 41–136 (1812)Google Scholar
  18. 18.
    Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)MATHGoogle Scholar
  19. 19.
    Colton, D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)MATHGoogle Scholar
  20. 20.
    Colton, D., Kress, R.: Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26(3), 601–615 (1995)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Colton, D., Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 26(6), 1724–1735 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dassios, G., Kleinman, R.: Low Frequency Scattering Theory. Clarendon Press, Oxford (2000)Google Scholar
  23. 23.
    Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York (1955)Google Scholar
  24. 24.
    Lakhtakia, A., Varadan, V., Varadan K.: Time-harmonic electromagnetic fields in chiral media. Lecture Notes in Physics, No 335, Springer, Berlin (1989)Google Scholar
  25. 25.
    Lakhtakia, A., Varadan, V., Varadan, K.: Effective properties of a sparse random distribution of non-interacting small chiral spheres in a chiral host medium. J. Phys. D. Appl. Phys. 24, 1–6 (1991)CrossRefGoogle Scholar
  26. 26.
    Lakhtakia, A.: Beltrami Fields in Chiral Media. World Scientific, Singapore (1994)Google Scholar
  27. 27.
    Lindell, I.V., Sihvola, A.H., Tretyakov, S.A., Viitanen A. J.: Electromagnetic waves in chiral and Bi-isotropic media. Artech House, Boston (1994)Google Scholar
  28. 28.
    Ola, P.: Boundary integral equations for the scattering of electromagnetic waves by a homogeneous chiral obstacle. J.Math.Phys. 35, 3969–3980 (1994)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Pasteur, L.C.R.: Acad. Sci. Paris, 26, 48–49 (1848)Google Scholar
  30. 30.
    Pasteur, L.C.R.: Acad. Sci. Paris, 28, 56–59 (1850)Google Scholar
  31. 31.
    Roach, G.F.: Green’s Functions. Cambridge University Press, London (1982)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Christodoulos Athanasiadis
    • 1
  • Sotiria Dimitroula
    • 1
  • Kostantinos Skourogiannis
    • 1
  1. 1.Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations