Selected Topics in Critical Element Detection

Part of the Springer Optimization and Its Applications book series (SOIA, volume 71)


In this paper we consider the problem of detecting critical elements in networks. The objective of these problems is to identify a subset of elements (i.e., nodes, arcs, paths, cliques, etc.) whose deletion minimizes a given connectivity measure over the resulting network. This paper surveys some of the recent advances for solving these kinds of problems including heuristic, mathematical programming, approximated algorithms, and dynamic programming approaches.


Critical element detection Critical node problem Critical clique detection 


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1993)MATHGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRefGoogle Scholar
  3. 3.
    Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theor. 12, 21–34 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Network 28(4), 466–484 (2006)CrossRefGoogle Scholar
  6. 6.
    Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: The median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)CrossRefGoogle Scholar
  7. 7.
    Corley, H., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1(4), 157–160 (1982)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Comput. Oper. Res. 38(12), 1766–1774 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: Hardness and approximation, Networking, IEEE/ACM Transactions on, 20(2), 609–619 (2012)CrossRefGoogle Scholar
  10. 10.
    Garey, M., Johnson, D., Stockmeyer, L.: Some simplified np-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)Google Scholar
  12. 12.
    Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Grötschel, M., Monma, C., Stoer, M.: Design of survivable networks. In: Ball, C.M.M.O., Magnanti, T.L., Nemhauser, G. (eds.) Network Models. Handbooks in Operations Research and Management Science, vol. 7, pp. 617–672. Elsevier (1995)Google Scholar
  14. 14.
    Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Program. 47, 367–387 (1990)MATHCrossRefGoogle Scholar
  15. 15.
    Grubesic, T.H., Matisziw T.C., Murray, A.T., Snediker D.: Comparative approaches for assessing network vulnerability. Int. Reg. Sci. Rev. 31(1), 88–112 (2008)CrossRefGoogle Scholar
  16. 16.
    T. H. Grubesic and A. T. Murray. Vital nodes, interconnected infrastructures, and the geographies of network survivability. Ann. Assoc. Am. Geogr. 96(1), 64–83 (2006)CrossRefGoogle Scholar
  17. 17.
    Houck, D.J., Kim, E., O’Reilly, G.P., Picklesimer, D.D., Uzunalioglu, H.: A network survivability model for critical national infrastructures. Bell Labs Technical J. 8(4), 153–172 (2004)CrossRefGoogle Scholar
  18. 18.
    Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Jenelius, E., Petersen, T., Mattsson L.-G.: Importance and exposure in road network vulnerability analysis. Transport. Res. Part A: Pol. Prac. 40(7), 537–560 (2006)CrossRefGoogle Scholar
  20. 20.
    Lim, C., Smith, J.C.: Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Transactions 39(1), 15–26 (2007)CrossRefGoogle Scholar
  21. 21.
    Matisziw, T.C., Murray, A.T.: Modeling s-t path availability to support disaster vulnerability assessment of network infrastructure. Comput. Oper. Res. 36, 16–26 (2009)MATHCrossRefGoogle Scholar
  22. 22.
    Myung, Y.-S., joon Kim, H.: A cutting plane algorithm for computing k-edge survivability of a network. Eur. J. Oper. Res. 156(3), 579–589 (2004)Google Scholar
  23. 23.
    Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices: a polyhedral approach. Statistica Neerlandica 61(1), 35–60 (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Salmeron, J., Wood, K.R., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Transactions on Power Systems. 19(2), 905–912 (2004)CrossRefGoogle Scholar
  25. 25.
    Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks, Wiley Subscription Services, Inc., A Wiley Company (2011) doi: 10.1002/net.20464Google Scholar
  26. 26.
    Shmoys, D.B.: Cut problems and their application to divide-and-conquer, pages 192–235. PWS Publishing Co., Boston, MA, USA (1997)Google Scholar
  27. 27.
    Simaan, M., Cruz, J.B.: On the stackelberg strategy in nonzero-sum games. J. Optim. Theor. Appl. 11, 533–555 (1973)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Tao, Z., Zhongqian, F., Binghong, W.: Epidemic dynamics on complex networks. Progr. Nat. Sci. 16(5), 452–457 (2006) doi: 10.1080/10020070612330019MATHCrossRefGoogle Scholar
  29. 29.
    Walteros, J.L., Pardalos, P.M.: A decomposition approach for solving critical clique detection problems, Experimental Algorithms. In: Klasing, R., (ed.) Lecture Notes in Computer Science, vol. 7276, pp. 393–404, Springer Berlin, Heidelberg (2012)Google Scholar
  30. 30.
    Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Industrial ans Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA

Personalised recommendations